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Abstract

Background: Late Gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging can be used
to visualise regions of fibrosis and scarring in the left atrium (LA) myocardium. This can be important for treatment
stratification of patients with atrial fibrillation (AF) and for assessment of treatment after radio frequency catheter
ablation (RFCA). In this paper we present a standardised evaluation benchmarking framework for algorithms
segmenting fibrosis and scar from LGE CMR images. The algorithms reported are the response to an open challenge
that was put to the medical imaging community through an ISBI (IEEE International Symposium on Biomedical
Imaging) workshop.

Methods: The image database consisted of 60 multicenter, multivendor LGE CMR image datasets from patients with
AF, with 30 images taken before and 30 after RFCA for the treatment of AF. A reference standard for scar and fibrosis
was established by merging manual segmentations from three observers. Furthermore, scar was also quantified using
2, 3 and 4 standard deviations (SD) and full-width-at-half-maximum (FWHM) methods. Seven institutions responded
to the challenge: Imperial College (IC), Mevis Fraunhofer (MV), Sunnybrook Health Sciences (SY), Harvard/Boston
University (HB), Yale School of Medicine (YL), King’s College London (KCL) and Utah CARMA (UTA, UTB). There were 8
different algorithms evaluated in this study.

Results: Some algorithms were able to perform significantly better than SD and FWHM methods in both pre- and
post-ablation imaging. Segmentation in pre-ablation images was challenging and good correlation with the
reference standard was found in post-ablation images. Overlap scores (out of 100) with the reference standard were
as follows: Pre: IC = 37, MV = 22, SY = 17, YL = 48, KCL = 30, UTA = 42, UTB = 45; Post: IC = 76, MV = 85, SY = 73,
HB = 76, YL = 84, KCL = 78, UTA = 78, UTB = 72.
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Conclusions: The study concludes that currently no algorithm is deemed clearly better than others. There is scope
for further algorithmic developments in LA fibrosis and scar quantification from LGE CMR images. Benchmarking of
future scar segmentation algorithms is thus important. The proposed benchmarking framework is made available as
open-source and new participants can evaluate their algorithms via a web-based interface.
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Background
In the past decade, there has been a rapid develop-
ment of analysis tools in medical imaging. In contrast,
their translation to the clinical environment has remained
limited. A major contributing factor for this failure is
lack of proper validation strategies. Even though algo-
rithms are tested in-house extensively following devel-
opment, it is often not clear how they perform relative
to other state-of-the-art algorithms. The main reason
for this is they are not compared using the same set of
data. Differences in evaluated datasets (i.e. patient type,
image quality and resolution) makes a fair comparison
difficult.

Benchmarking of algorithms is thus a very important
activity as we move from bench to bedside in the medical
image processing community. In the last few years, sev-
eral conferences in the medical image analysis field have
provided a platform to benchmark algorithms from multi-
ple research groups. These challenges have been organised
to invite participants to test their algorithms on com-
mon data. The participants are given a number of training
datasets and then asked to complete analysis of a number
of unseen data within an allotted time. Following sub-
mission, the algorithms’ results are evaluated in a unified
manner.

In the past few years, a number of collaborating research
groups have set up a publicly available evaluation frame-
works for the medical image processing and analysis com-
munity. Most of them have been initiated through an
organised challenge and an index of past challenges can be
found in http://www.grand-challenge.org/. In the cardiac
imaging domain, some recent challenges include cardiac
motion tracking [1] and coronary artery stenosis detection
[2].

Motivation for left atrial fibrosis/scar segmentation
challenge
There is a great interest in understanding the mechanisms
of the causes of atrial fibrillation (AF) and of pulmonary
vein (PV) reconnection following ablation procedures
[3]. Late Gadolinium enhancement (LGE) cardiovascu-
lar magnetic resonance (CMR) imaging plays an impor-
tant role in the management of AF. Recent work has

demonstrated its use in assessment of atrial fibrosis before
ablation and of atrial injury after ablation [4-8].

Segmentation of fibrosis or scar in LGE CMR is chal-
lenging due to multiple causes including the thin LA wall,
contrast variation due to inversion time, signal-to-noise
ratio, motion blurring and artefacts [8]. The inversion
time choice can generate the appearance of more or less
scar, and change the appropriate scar threshold. Motion
blurring also reduces the appearance of scar. There are
also artefacts which appear in the image due to respiratory
compensation, selectively reducing the ability to visualise
scar in the right PVs. There is also the complex geome-
try of the LA, resulting in some transverse slices where a
very small section of the anatomy is visible, particularly
for left and right superior PVs. There are also many reg-
ularly enhancing structures, such as the aortic wall, the
valves and the oesophagus, which must be distinguished
from LA enhancement.

As CMR plays an increasingly important role in the
quantification of pre-ablation fibrosis and post-ablation
scar, development of reliable algorithms that remove
observer bias is key for clinically useful quantification.
To our knowledge, there is no standardised evaluation
framework or methodology to evaluate the performance
of existing or newly developed LGE CMR segmentation.

State-of-the-art for cardiac fibrosis/scar segmentation
Here we give an overview of the previously published
fibrosis or scar detection, quantification and segmenta-
tion algorithms and report on how they were evaluated.
Refer to Table 1 for a brief summary. A common method
for detecting fibrosis or scar is the application of a thresh-
old two or three standard deviations above the average
intensity value of a healthy myocardial region [9-11]. Oth-
ers such as the full-width-at-half-maximum (FWHM) can
be used [12] and some use thresholding to further classify
scar into core or peri-core regions [13].

Other approaches exist to compute the threshold
automatically [10] or apply clustering [14,16], or with
Graph-cuts [18]. Visualization of infarcted regions with
maximum intensity projections (MIP) is also possible [4]
which is useful for visualising the amount of scarring
on the LA surface. For detection of pre-ablation fibrosis,

http://www.grand-challenge.org/
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Table 1 Overview of previously published scar detection, quantification and segmentation methods

Reference Model n Modality LV/LA Algorithm Evaluation

Kim et al. [9] Canine 26 CMR LV SD Infarct size, ex-vivo

Amado et al. [12] Animal 13 CMR LV SD, FWHM Bland altman, Infarct volume

Kolipaka et al. [10] Human 23 CMR LV SD Percentage scar, Bland-Altman

Positano et al. [14] Human 15 CMR LV Clustering Percentage scar

Yan et al. [13] Human 144 CMR LV SD Percentage scar

Schmidt et al. [11] Human 47 CMR LV SD Infarct size

Hennemuth et al. [15] Human 21 CMR LV EM fitting Percentage scar, Bland-Altman

Oakes et al. [5] Human 81 CMR LA SD Percentage scar

Detsky et al. [16] Human 15 CMR LV Clustering Infarct size

Tao et al. [17] Human 20 CMR LV Otsu thresholding Dice

Knowles et al. [4] Human 7 CMR LA MIP Percentage scar

Lu et al. [18] Human 10 CMR LV Graph-cuts Infarct size and Bland-Altman

Methods were analysed on the type of data they were evaluated with and the structure of interest: left ventricle (LV) or left atrium (LA). The number of datasets (n) is
listed. Most methods employed simple standard deviation (SD) thresholding from a base healthy tissue intensity value. Others such as full-width-at-half-maximum
(FWHM), maximum intensity projection (MIP) and expectation-maximisation (EM) fitting have also been proposed. The evaluation measures used were compared.

a global threshold for the image can be computed and
adjusting it on a slice-by-slice basis provides good detec-
tion [5].

All of the existing methods reviewed except for [5] and
[4] detect scar in the ventricle myocardium. Segmenting
scar in the atrium poses different challenges especially
from nearby enhancing structures such as aortic wall and
valves. The atrial myocardium is of smaller thickness com-
pared to ventricular myocardium and this adds to the
difficulty of the problem. It is also important to under-
stand that using a fixed model (SD and FWHM) is not
suitable for the atrium and in our opinion also for the ven-
tricle despite several studies utilising this. The reasons are
clear: a fixed model cannot handle all the different vari-
abilities encountered and these are both from the varied
internal (size, distribution and heterogeneity of scar) and
varied external (resolution, image noise, inversion time,
surface coil intensity variation) situations. And there is at
least one study supporting this fact - in [5] where it was
shown that the threshold had to be re-adjusted on various
slices to obtain a suitable segmentation.

Proposed evaluation framework
In this paper we present an evaluation framework, accessi-
ble via a web-based interface, for algorithms that segment
LA fibrosis or scar from both pre- and post-ablation
LGE CMR images. The presented results were submit-
ted as a response to the open challenge that was put to
the medical imaging community through the cDEMRIS
(Cardiac Delayed Enhancement Segmentation Challenge)
workshop organised as part of the ISBI 2012 (IEEE
International Symposium on Biomedical Imaging) annual
meeting. Each participant quantified the amount of

fibrosis or scar in high-resolution 3D LGE CMR of 30 pre-
and 30 post-ablation patients. There were in total 7 insti-
tutions who responded to the challenge, and segmentation
results from 8 different algorithms were submitted. The
datasets used in this evaluation are publicly available via
the challenge website: http://www.isd.kcl.ac.uk/cdemris/.

The proposed evaluation framework aims to provide a
platform for testing and comparing newly devised algo-
rithms through a web-based interface. With 3 out of the
8 algorithms evaluated in this work already published in
literature [5,15,18], the framework provides a valuable
test-bed.

Methods
Data acquisition database
LGE CMR images of the LA of varying quality, resolution
and parameters were selected from three imaging cen-
tres. These centres were Utah School of Medicine, Beth
Israel Deaconess Medical Center (BIDMC) and Imaging
Sciences at King’s College London (KCL-IM) (see Table 2).
Images were acquired either pre- or post-ablation. A total
of 60 images were collected. These were 30 images taken
at pre- and 30 images at post-ablation. Each centre pro-
vided 10 images each of pre- and post-ablation. The time
of acquisition of pre-scans varied slightly between 1 to 7
days depending on the imaging centre. For post scans this
was more variable with either 1 month or between 3 to
6 months (See Table 2). A wide spectrum of images were
selected to get a representative range from typical clini-
cal acquisitions in the datasets. Images of variable quality
were chosen, especially in relation to enhancement qual-
ity. The collected database also included segmentation of
the LA endocardium and cavity for each LGE CMR scan.

http://www.isd.kcl.ac.uk/cdemris/
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Table 2 Image acquisition: image acquisition parameters for the challenge LGE data

U. Utah BIDMC KCL-IM

Scanner type Siemens Avanto 1.5T or Vario 3T Philips Acheiva 1.5T Philips Achieva 1.5 T

Basic params Free-breathing (FB) with FB and navigator-gating with FB with navigator-gating with
navigator-gating fat suppression fat suppression

TI†, TR, TE 300 ms, 5.4 ms, 2.3 ms 280 ms, 5.3 ms, 2.1 ms 280 ms, 5.3 ms, 2.1 ms

Acquired resolution 1.25 × 1.25 × 2.5mm 1.4 × 1.4 × 1.4mm 1.3 × 1.3 × 4.0mm

Pre-scan < 7 days < 7 days < 48 hours

Post-scan 3 − 6 months = 30 days 3 − 6 months

†- set to null myocardium.
Abbreviations: TI Inversion time, TR Repetition time, TE Echo time. Imaging centres: U. Utah University of Utah, BIDMC Beth Israel Deaconess Medical Center, KCL-IM
Imaging Sciences, King’s College London.

This was also provided as part of the challenge and it was
optional for the participant to utilise it. Representative
images are shown in Figure 1.

A brief summary of the algorithms evaluated for this
framework is given in Table 3. They are described in
greater detail in the section below with a very brief back-
ground on the technique implemented and details of the
implementation.

Algorithm 1: Imperial college - hysterisis thresholding (IC)
Background
Hysteresis thresholding was used in this work to segment
scar. It is a well-known approach in image processing and

computer vision [19]. It is an improvement over regular
thresholding where a major drawback is the absence of
coherence in the final segmentation. Hysteresis threshold-
ing overcomes this because faint sections of atrial scar can
also be segmented as long as they are adjacent to some
salient sections.

Implementation
To model enhancement in scar pixels, pixel intensities I(x)

were first normalized according to:

Î(x) = I(x) − μB
σB

(1)

Figure 1 Challenge LGE CMR data sample. A sample of the CMR data included in the challenge. The pre-procedural (top-row) and
post-procedural (bottom-row) LGE images are shown. Abbreviations: AO - aorta, LA - left atrium, RPV - right pulmonary vein.
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Table 3 A brief summary of algorithms that were evaluated on the proposed framework

Algorithm Technique Evaluation Atrial wall Strengths Weaknesses

IC: Bai et al. Hysteresis 30 pre Euclidean Coherent Fixed sigmoid models derived
thresholding and post distance - 3 mm segmentations from empirical data

MV: Hennemuth et al. Region-growing with 30 pre Euclidean Post ablation Pre-ablation
EM-fitting and post distance - 3 mm imaging imaging

SY: Lu et al. MRF model 20 pre Dilation - Fuzzy membership - Post-processing for small
with graph-cuts and post 4 mm improved delineation cluster removal

HB: Gao et al. Active contour 15 post Active contour Accurate myocardial Fixed number of gaussian
and EM-fitting (snake) segmentation mixtures in model (i.e. two)

YL: Peters et al. Simple 15 pre Manual Accurate segmentation Time
thresholding and post on both pre- and post. consuming

KCL: Karim et al. MRF model 30 pre Post-ablation Pre-ablation Post-processing
with graph-cuts and post imaging imaging steps necessary

UTA: Cates et al. Histogram analysis and 30 pre Manual Accurate segmentation Time
simple thresholding and post on pre and post. consuming

UTB: Perry et al. k-means clustering 30 pre Manual Pre-ablation fibrosis Equivalent variance across all clusters -
and post LA scar variance more variable

Institution abbreviations: IC Imperial College, MV Mevis Fraunhofer, SY Sunnybrook Toronto, HB Harvard/Boston University, YL Yale School of Medicine,
KCL King’s College London, UTA/B Utah School of Medicine.

where μB, σB are mean and standard deviation of LA
blood pool cavity respectively. Based on the normalized
intensity value, the enhancement was modelled with a
sigmoid function. The model outputs a probability pi(x)

based on the normalised intensity:

pi(x) = 1
1 + e−(Î−ci)/hi

(2)

where ci and hi are parameters of the sigmoid function.
As scar should only be located in atrial myocardium, the
likelihood of scar decreases with increasing distance from
LA endocardium, and this was modelled with:

pd(x) = 1
1 + e−(d(x)−cd)/hd

(3)

where cd and hd are parameters of the sigmoid function
and d(x) is the Euclidean distance from LA endocardium.
The joint probability of both the intensity and distance
likelihoods, i.e. p(x) = pd(x) · pi(x) was used to generate
a probabilistic map. Using hysteresis thresholding, pixels
above the higher threshold limit were classified as fore-
ground. Those above the lower threshold limit and con-
nected to foreground were also classified as foreground.
This was accomplished by exploring a foreground pixel’s
neighbourhood and thus this ensured coherence in the
segmented result.

Algorithm 2: Mevis - Region growing with mixture model
fitting (MV)
Background
Region growing is an important segmentation technique
for finding groups of connected pixels with intensity

homogeneity. It was implemented in this work with
thresholds selected both for region-growing and seed
selection using Gaussian mixture models.

Implementation
For scar segmentation, good seed locations are those
within regions that are highly likely to be scar. In this sub-
mission, to obtain good seed voxels, a Gaussian mixture
model with three mixtures was used to model three sep-
arate intensity levels: LGE, atrial wall and blood (B) and
neighbouring structures (N):

h(x) =
∑

i∈{LGE,B,N}
αi

1√
2πσi

e
1
2

[
x−μi

σi

]
(4)

where h(x) is the mixture model with three weighted (αi)
mixtures in LGE, B and N each with a mean μi and stan-
dard deviation σi. The mixture was fitted to the LGE CMR
intensity distribution of the LA. Seed selection was per-
formed by using a lower intensity threshold cut-off at Is:

Is > 0.15 · μB + 0.85 · μLGE (5)

where μB and μLGE were obtained from the fitted mix-
ture model h(x) in Eq. 4. Following seed selection, region
growing was initiated from each seed with an intensity
threshold IR as:

IR > min{μLGE , It} (6)

where It is the intensity at the intersection of blood
and LGE mixtures: B and LGE. It is expected that at
this intersection, LGE intensities starts contributing more
than blood intensities. Region growing was constrained
within a 6 mm band around the endocardial segmentation
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allowing 1 mm inside and 5 mm outside the endocardial
surface. This allowed for any errors in the endocardial
contour.

Algorithm 3: Sunnybrook - Graph-cuts with fuzzy c-means
clustering (SY)
Background
The proposed technique uses graph-cuts and a modified
version of this algorithm is published in [18]. In mathe-
matics, a graph is a network of nodes connected by links.
Each link can be assigned a weight. An image contains
pixels, each of which can be represented with a node.
Adjacent pixels or nodes can then be interconnected with
links. This allows an image to be modelled as a graph.
Numerous problems have been proposed and solved on
graphs, for example shortest path through two nodes or
partitioning the graph into two node sets.

For the task of binary image segmentation, pixels are
grouped or partitioned into two disjoint sets. Similarly,
graph-cuts is an approach of partitioning a graph into two
or more sub-graphs with some imposed constraints. Two
special nodes called source and sink nodes are assigned,
with each node in the graph linked to them. These nodes
represent labels of the segmentation (i.e. foreground and
background). Each link to the source and sink is weighed
based on the probability of the node for the label. A mini-
mum cut through the graph can then be computed, parti-
tioning it into two sets of nodes. Each set is connected to
source or sink. This essentially computes a segmentation
of each pixel into a label. The minimum cut and maxi-
mum flow are dual problems both investigated thoroughly
in mathematics [20,21] and computer vision [22,23].

Implementation
The method of graph-cuts is applied in this work to
segment scar in LGE CMR images. Starting from the
provided LA endocardial segmentation, the atrial wall
myocardium was approximated by dilating the endocar-
dial boundary by 4 mm. A graph of interconnected neigh-
bouring pixels was constructed for all pixels within the
computed atrial wall myocardium. Links were also cre-
ated to the source and sink nodes representing scar and
healthy tissues. Each pixel ended up having two types of
links: 1) links to source and sink, 2) links to its adjacent
pixels. A weight or energy was assigned to each link. The
two weights are summarised in this energy formulation
E(L):

E(L) = λ
∑

x
Rx (Lx) + (1 − λ)

∑
(x,y)∈N

Bxy
(
Lx, Ly

)
(7)

where L = {Lx|x ∈ X} denotes a segmentation of all pixels
X. N is the set of adjacent pixel pairs. Rx is the weight for
links to source/sink nodes and Bxy is the weight for links
between adjacent pixels. The λ term weighs the influence

of these terms in the energy function. In this work, Rx was
obtained by computing a c-means fuzzy clustering [24]
on the computed atrial myocardium region. Following
clustering, each pixel attained a fuzzy membership which
directly contributed to Rx(Lx). Bxy was obtained using
a function that penalised intensity dissimilarity between
adjacent pixels:

Bxy(Lx, Ly) = e−β|Ix−Iy|2

d(x, y)
(8)

where d(x, y) is Euclidean distance between pixels x and y
and β is a penalty co-efficient fixed at 5 in this work. This
value was chosen to increase the relative importance of
high gradient between pixels of different classes, refer to
[18] for further details.

Algorithm 4: Harvard/Boston University - Active contours
and mixture model fitting (HB)
Background
Two techniques are implemented in this work, namely
active contour and the Expectation-Maximization (EM)
algorithm. A brief background is given here on each tech-
nique. Further details can be found in [25].

Active contours [26] was used in this technique to
obtain the epicardial boundary. It counteracts the issue
of region leaking in region growing. This is possible
by imposing constraints on the growing region. An ini-
tial contour was modelled with a spline (i.e. a free-form
curve) allowing it to grow flexibly with additional con-
straints placed by the image. An energy function captured
these constraints and the final shape of the contour was
obtained through energy minimisation.

The expectation-maximization (EM) algorithm [27] is
a technique for estimating model parameters given the
observed data. The observed data in this submission are
the distributions of atrial wall image intensities and the
model is a statistical Gaussian mixture model. The EM
algorithm computes the best estimate of model parame-
ters for which the observed data are most likely. It alter-
nates between the E-step which computes the expectation
of the likelihood of observed data using a present estimate
of model parameters and the M-step that re-computes
model parameters by maximising the likelihood found in
the E-step.

Implementation
The left atrial wall can be challenging to segment in LGE
CMR especially due to two reasons: 1) thickness, and 2)
lack of enhancement making wall difficult to detect. In
this work, prior to segmenting scar, atrial wall is obtained
by segmenting the epicardium. As the LA endocardium is
made available as part of the challenge data, a simple sub-
traction of epicardium to endocardium obtains the wall.
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Active contours are used to accomplish the epicardium
segmentation task. In 3D, active contours can be extended
into surfaces. Let us denote such a deformable surface S
and an energy function E(S) constraining its deformation:

E(S) =
∫

S

(
(1 − λ)f (x) + λ(d(x) − 3)2) dx (9)

where d(x) is the Euclidean distance function and 3 mm is
the expected size of the atrial wall; f (x) represents a simple
function of the image intensity gradient:

f (x) = 1
1 + Gσ ∗ ∇I(x)

(10)

where the intensity gradients ∇I(x) are smoothed using
a Gaussian filter Gσ . This evolves the deformable surface
governed by E(S) and restricts it with a combination of
distance from endocardium (i.e. maximum 3 mm) and
intensity gradient. The evolution must stop at the epicar-
dial border where an intensity change is expected.

Following segmentation of atrial wall, scar is classified
from healthy tissue by modelling the distribution of inten-
sities within atrial wall as a mixture of two Gaussians.
The Gaussians mixture represent scar and healthy tissue.
The mean and standard deviation of each Gaussian in the
mixture model is determined using the EM-algorithm.

Algorithm 5: Yale - Threshold selection with manual wall
delineation (YL)
Background
Simple thresholding is a fundamental technique in image
segmentation. Thresholding is used in this work to
segment scar from both pre-ablation and post-ablation
images. The main disadvantage of thresholding is that
only intensity information is considered and the relation-
ships between pixels is not taken into account. Thus, there
is no guarantee that the pixels identified by thresholding
are contiguous.

Implementation
There are two important considerations in this work: 1)
threshold selection for fibrosis and scar, and 2) manual
delineation of the regions of the atrial wall myocardium
which will be subject to this thresholding. The criteria for
selecting threshold are different for pre- and post-ablation
images. For pre-ablation images, the average intensity of
the enhancement around the mitral valve was used (see
Figure 2(a)). This is reasonable since valves are known to
be fibrotic and usually visible in LGE CMR images. For
post ablation images, the threshold was set to include an
entire region of prominent scar (as shown in Figure 2(a)).
A single threshold is used for the entire 3D volume. The
criteria for including atrial wall for further thresholding
are described in Figure 2(b), and include avoidance of the

mitral valve and aortic wall enhancement and artifactual
enhancement.

Algorithm 6: KCL - Graph-cuts with EM-algorithm (KCL)
Background
A background of the techniques used in this work
is described above in Sections ‘Algorithm 3: Sunny-
brook - Graph-cuts with fuzzy c-means clustering (SY)’
(Graph-cuts) and ‘Algorithm 4: Harvard/Boston Univer-
sity - Active contours and mixture model fitting (HB)’
(EM-algorithm). More details can be found in [28].

Implementation
Scar was segmented both in pre- and post-ablation images
using the graph-cut algorithm [22]. A statistical distribu-
tion model of scar tissue in both pre- and post-ablation
images was developed prior to segmentation. This distri-
bution model was derived from a training set of images. As
a training set was not provided as part of the challenge, the
leave-one-out approach was used for training with 29/30
images for training and 1/30 for testing. The training dis-
tribution model is a Gaussian distribution of the scar
intensities in the training image represented as a ratio of
scar to average blood-pool. Scar was segmented manually
by an experienced observer.

The intensity distribution model for non-scar or healthy
tissue was obtained from the target or unseen image. A
Gaussian mixture was used for this distribution model.
The number of mixtures in the model was kept variable
(1 to 5) depending on the configuration which best fits the
image. The standard EM-algorithm computed mean and
variance for each mixture. Only a region 3 mm inside and
outside the LA endocardium was used for the EM fit, dis-
carding the rest of the image. This also became the search
space for scar.

Pixels within the search space were modelled as a graph
network with paths to source and sink nodes (i.e. scar and
healthy tissue labels). The path to the scar tissue label was
assigned a probability value from the scar training distri-
bution model and the path to the healthy tissue label was
assigned a probability value from the non-scar distribu-
tion model. Paths between adjacent pixels were assigned
a probability value based on intensity homogeneity, with
a low probability value for dissimilar intensities. All of
the above is captured with an energy function which is
the standard graph-cut functional and is equivalent to
Eq. 7.

Algorithm 7: Utah A - Threshold selection with manual wall
delineation (UTA)
Background
The method was primarily implemented for pre-ablation
fibrosis. However, in this challenge, its results on post-
ablation data was also submitted. Thresholding is used in
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Figure 2 Yale method’s threshold criterion. (a) Choice of threshold for pre-ablation (top) and post-ablation (bottom) images. Arrow points to
fibrosis used for choosing threshold. Pre-ablation, this was a prominent section of the aortic valve. Post-ablation, the entire area of a prominent scar
was selected. (b) The LA wall identification excludes regions where enhancement existed, but was attributed to artefacts or fibrosis of the mitral
valve (MV), Aortic wall (AAo, DAo), or right atrial (RA) wall (arrows).

this work and is described above in Section ‘Background’.
The method is also described in detail in [5].

Implementation
The atrial wall myocardium is delineated prior to scar seg-
mentation. An experienced observer delineated the wall
in every slice. Using the intensity histogram of pixels
within the delineated wall, a threshold for scar was calcu-
lated. It is expected that the histogram is bi-modal with
modes for enhancement and non-enhancement intensi-
ties. The threshold was then computed as +2−4 standard
deviations off the mean of the lower mode of the his-
togram. This threshold was adjusted for every slice based
on whether the algorithm was over- or under-estimating
scar.

Algorithm 8: Utah B - Unsupervised learning using k-means
clustering (UTB)
Background
The method uses k-means clustering which is a machine
learning approach used to identify the optimal number of
pixel groups or clusters [29]. It is an unsupervised learning
technique requiring no prior knowledge or training data.
In k-means clustering, the number of possible clusters is
specified. It is an iterative process, where at each iteration
the centre of each cluster is updated and membership of
each point to a cluster is updated based on a pre-defined
distance/error metric in the feature space.

Implementation
The technique was primarily implemented for post-
ablation scar. However, in this challenge, its results on
pre-ablation data was also submitted. There were two
important considerations for the implementation of k-
means: 1) the number of clusters in the k-means algorithm
and 2) the feature vector for comparing pixels. Prior to
segmentation, the optimal number of clusters and feature

vectors were determined through empirical evaluation.
The number of clusters was varied between 3 to 10
and image features such as normalised voxel intensity,
the Sobel filter and the 14 texture metrics proposed by
Haralick et al. [30] were tested. The optimal number of
clusters was found to be 4 with normalised voxel inten-
sity as the feature vector. Following k-means clustering,
the cluster with the highest mean intensity was assigned
as the scar cluster.

Algorithm evaluation
Reference standard 1: pseudo-ground truth
In order to obtain a reference standard for scar, volumetric
segmentations of scars were obtained from three separate
observers. These observers have substantial experience
looking at scars in LGE CMR images for both pre- and
post-ablation images. The observers were from different
centres. They were blinded to the image scanner manufac-
turers and also to the results of the challenge. Scars in the
images were segmented as follows: 1) each axial slice in
the LGE CMR image was analyzed separately. Segmenta-
tion of the LA endocardial body was loaded as an overlay;
2) pixels enhanced along the endocardial border were
labelled as scar; and 3) segmentations were also corrected
in coronal and sagittal slices, wherever necessary.

Although the observers were provided with the same
guidelines, their segmentations differed in some instances
especially in images with low contrast enhancement ratio.
It was thus important to merge the segmentations and
obtain a consensus. This was possible by merging segmen-
tations using the STAPLE algorithm described in [31]. For
each voxel, a probability estimate for the true segmen-
tation was computed. The consensus segmentation can
then be obtained by thresholding this probability above
0.7 or 70%. This is referred in the rest of the text as the
pseudo-ground truth.
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Reference standard 2: n-SD and FWHM
The optimal method for quantifying scar from LGE
CMR images yet remains unclear. However, certain meth-
ods have been adopted for obtaining scar using a fixed
model. In these fixed models, signal intensity of normal
myocardium is measured and a certain number of SD
from this measured intensity is used as the threshold.
Although in [32] this threshold was set to 2-SD, recently
it was shown that FWHM was far more reproducible
and reliable than 2-SD [33]. Other cut-offs are also used:
3,4,5 or 6-SDs. The FWHM technique, which uses half
the maximal signal within a hyper-enhanced region in
scar, is currently being advocated as the most reproducible
technique for ventricle myocardial scar [33].

In order to gauge each challenger’s methodology against
fixed-model quantification methods, the LGE CMR
images were segmented using 2, 4, 6-SD and FWHM
methods. For each method, a segmentation of atrial
myocardium was necessary and this was approximated by
dilating the endocardial wall 3 mm. For the n-SD meth-
ods, an expert observer located a region of voxels in atrial
myocardial that was healthy. The mean and SD of this
region were calculated. Voxels with intensity greater than
2, 4, 6-SD, in the atrial myocardium, were labelled as scar.
For the FWHM method, an experienced observer iden-
tified an enhanced region within atrial myocardium. The
threshold was then set to 50% of the maximum intensity in
this selected region. In some rare instances, the 50% cut-
off was adjusted to 60% or 70% when a 50% cut-off was too
low for the image.

Evaluation metrics
To evaluate the performance of each challenger’s segmen-
tations, they were compared against the pseudo ground-
truth. Since there is no single metric which works best
for evaluating segmentations, a few different metrics
were chosen for evaluating them. These were regional,
volumetric and surface-based metrics. This allowed us to
effectively test the reproducibility and accuracy of each
method. Segmentations from n-SD and FWHM were also
compared using the same metrics. This allowed each chal-
lenger’s algorithm to be gauged against these published
techniques. We briefly describe each evaluation metric:

1. Regional metric: The Dice similarity co-efficient was
used as a regional metric. It measures the proportion
of true positives in the segmentation:

s = 2|X ∩ Y |
|X| + |Y | (11)

where X is the region in ground-truth and Y is the
region in the challenger’s algorithm. The Dice was
measured both on the entire image and also locally.
Since Dice is a regional metric comparing single

voxels, when measured on images as a whole, the
Dice only gives the algorithm’s average performance.
An equal weighting is given to every slice, even
though some slices may only have a few pixels in the
segmentation. An algorithm may do very well in
slices that matter and yet be penalised for slices that
have a small number of enhancing voxels. To
counteract this issue, the Dice was computed for
selected local regions within each image. An
experienced observer selected several regions within
each image where: 1) there was enhancement and the
consensus segmentation agreed or, 2) there was
enhancement but consensus segmentation did not
agree (i.e. artefacts). The Dice was computed
individually for these regions.

2. Surface-based metric: It is common to visualise
segmentations of scar on the LA surface. This is
usually possible with a MIP. The LA surface can be
constructed as an iso-surface from a volumetric
binary segmentation using the marching cubes
algorithm [34]. Scar segmentation is MIP-ed and
each surface mesh vertex attains a label
(1 = scar, 0 = not scar). The surface-based metric
measures the root-mean-squared-error (RMSE)
between vertex points labelled as scar in the
algorithm’s output and ground-truth distance. The
RMSE is given by:

RMSE =
√√√√ 1

N

N∑
i=1

d
(
gi, ti

)2 (12)

where {gi : i = 1, . . . , N} is the set of mesh vertex
points labelled as scar in the ground truth and
{ti : i = 1, . . . , N} labelled as scar in the test or
algorithm output image. Also, d is the Euclidean
distance function.

3. Volumetric-based metric: The total volume error
between the challenger’s segmentation and pseudo
ground truth was found:

δV = |VT − VG| (13)

where VT is the volume of scar in the segmentation
and VG is the volume of scar in consensus
segmentation.

Objective evaluation
Acquisition artifacts and non-scar related enhancement
are common in atrial LGE CMR scans. Unless these
enhancements are explicitly modelled into the technique,
it is challenging to distinguish them. Two sources of non-
scar related enhancements commonly seen in atrial LGE
CMR images are: 1) the navigator beam artifact often
seen near the right PVs, and 2) Gadolinium uptake by
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the aortic wall and valves. To test whether the methods
are able to handle un-related enhancements, each chal-
lenger’s segmentations were evaluated separately in these
regions. An experienced observer selected regions con-
taining navigator artefacts and aortic wall enhancements.
The percentage of voxels detected by each method in these
spurious regions was determined. This gave an indication
of the proportion of false positives.

A good contrast between normal myocardium, blood
pool and scar is desirable and is the most technically chal-
lenging part of LGE CMR image acquisition. The quality
of contrast depends on achieving the optimal inversion
time. Each post-ablation image was scored by three raters
experienced in LGE CMR images and the average score
was taken. Images in the database (only post-ablation
scans) were ranked into three categories: good, average
and poor. The Dice metric was computed separately in
each category. This indicated how robust the algorithms
were against contrast enhancement quality.

Results
In this section results from our evaluation are presented
with figures and plots.

Segmentation accuracy with pseudo ground truth
For each LGE CMR scan available for the challenge, a
pseudo ground truth was available by combining manual
segmentations of scar from three experienced observers
as described in Section ‘Reference standard 1: pseudo-
ground truth’.

On the pre-LGE CMR scans, segmentation accuracies of
each challenger were compared. However, accuracy could
not be computed for challenger HB as they provided no
segmentations on the pre-data. Figure 3 shows the Dice
overlap scores for all participants on pre-LGE CMR scans.
The median Dice overlap shown in the plot are as follows:
IC = 37, MV = 22, SY = 17, YL = 48, KCL = 30, UTA =
42, UTB = 45. Published methods for segmenting scar
such as 4-SD and FWHM were also tested on the pre-data
and the Dice overlap scores for these were: 2-SD = 24,
3-SD = 16, 4-SD = 31 and FWHM = 5. Examples of
segmentations from a single slice are seen in Figure 4.

On the post-LGE CMR scans, segmentation accuracy
of each challenger was evaluated in a similar way to the
pre-data. Figure 5 shows Dice overlap scores of all partici-
pants on post-LGE scans. The median Dice overlap shown
in the plot are as follows: IC = 76, MV = 85, SY =
73, HB = 76, YL = 84, KCL = 78, UTA = 78, UTB = 72.
However, note that some participants (SY, HB and YL)
did not submit segmentations on all scans and their Dice
overlap scores are on a smaller cohort of scans compared
to other challengers who submitted segmentations on all
thirty scans. Examples of segmentations from a single slice
are seen in Figure 6.

Figure 3 Performance on pre-ablation LGE CMR images. Dice
overlap scores in selected regions on pre LGE CMR scans. An asterix(*)
denotes challengers who did not submit segmentations on all
patients. Note that the figure also displays results from the 2-SD, 3-SD,
4-SD and FWHM methods.

Methods using a fixed-model, such as n-SD and FWHM
for segmenting scar in LGE CMR images, were tested
on the post-data. Figure 5 shows Dice overlap scores on
post- LGE scans using n-SD and FWHM. The median
Dice overlap were found to be: 2-SD = 58, 3-SD = 17,
4-SD = 14, 6-SD = 35, FWHM = 59. Apart from using
the Dice overlap for measuring accuracy, the RMSE and
volume difference were also computed. Table 4 lists the
RMSE and volume differences in pre- and post- data for
all algorithms. However, there are some exceptions. As HB
provided no submission on the pre-data, the metrics for
these could not be computed. In addition, SY and YL pro-
vided 20 and 15 (out of total 30) for both pre- and post-
data respectively.

Non-scar enhancing structures
There are various regularly enhancing structures in LGE
CMR images, for example the aortic wall or valves that
should be differentiated from scar. Some examples are
shown in Figure 7. For both pre- and post-LGE CMR scans
of the challenge, the amount of enhancements not related
to scar detected by each method was quantified. They
were compared against enhancements separately labelled
by an experienced observer and deemed to be highly
unlikely from scar. These labels were divided into two
categories: aortic wall enhancement and navigator beam
artefact. The total volume detected by each method was
represented as a percentage of the total volume labelled by
the observer. The results are represented in Figure 8. KCL
and HB detected on average between 40-50% of total non-
scar enhancements labelled by the observer. This value for
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Figure 4 Sample segmentations from pre-ablation data. Segmentations from a pre scan. Clockwise from top-left: original LGE CMR scan,
consensus segmentation, IC, MV, SY, UTB, UTA, KCL, YL. Abbreviations: L- left side, R- right side, LA - left atrium, AO - aorta.

IC, MV, SY, YL, UTA and UTB was between 5%–30%, with
YL less than 5%.

Image quality on segmentation
The LGE CMR images included in this challenge were
acquired at three imaging centres with differing protocols
and scanners (see Table 2). The quality of enhancement
is known to vary and this variation across the imaging
centres was quantified. Further the LGE CMR images
were qualitatively classified based on their quality and the
algorithms evaluated accordingly.

To quantify quality of enhancement, using images
from all three centres, histograms of signal intensity of
enhanced regions in the pseudo ground truth, presented
as SDs above the mean blood pool signal were computed.

These histograms can be seen in Figure 9 and was sep-
arately quantified for each imaging centre. In both pre-
and post-ablation images, the quality of enhancement did
not vary greatly, except for Utah in post-ablation: pre-
ablation (BIDMC, Utah, KCL-IM) = (2.2 ± 0.9, 2.5 ±
0.9, 2.1 ± 0.9), and post-ablation: (BIDMC, Utah, KCL-
IM) = (3.5 ± 1.1, 4.7 ± 1.3, 3.5 ± 1.2). These values
provided the basis for selecting 2-SD, 3-SD, 4-SD and
6-SD cut-offs in the fixed models used for establish-
ing the reference standard. However, even with select-
ing optimal cut-offs: 2- to 3-SD for pre-ablation and
3- to 4-SD for post-ablation images, results from Section
‘Segmentation accuracy with pseudo ground truth’ sug-
gest that these settings may not yield the best segmenta-
tions. This can be explained by the amount of variation

Figure 5 Performance on post-ablation LGE CMR images. Dice overlap scores on post LGE CMR scans. An asterix(*) denotes challengers who did
not submit segmentations on all patients. Note that the figure also displays results from the 2-SD, 3-SD, 4-SD, 6-SD and FWHM methods.
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Figure 6 Sample segmentations from post-ablation data. Segmentations from a post scan. Clockwise from top-left: original LGE CMR scan,
consensus segmentation, IC, MV, SY, UTA, UTB, KCL, YL, HB. Abbreviations: L- left side, R- right side, LA - left atrium, AO - aorta.

in enhancement quality of images from a particular cen-
tre: 36-42% for pre-ablation and 27-32% for post-ablation
images. Thus a fixed model was found to suffer for these
reasons.

The LGE CMR images were qualitatively classified
based on enhancement quality and classified into three
categories: good, average and poor. A good scan had both

Table 4 Segmentation accuracy with
root-mean-squared-error (RMSE) and volume difference
(δV) on pre and post data for both submitted algorithms
(IC to UTB) and fixed-models

Pre data Post data

RMSE (mm) |δV | (ml) RMSE (mm) |δV | (ml)

IC 0.72 (0.5) 2.87 (2.0) 9.52 (8.2) 4.79 (2.9)

MV 1.42 (0.7) 38.08 (6.7) 9.20 (8.8) 4.15 (5.7)

SY†∗ 0.17 (0.1) 12.87 (2.8) 9.22 (9.3) 10.19 (3.9)

HB∗ n.a. n.a. n.a. 20.16 (10.3)

YL†∗ 1.03 (0.4) 0.62 (0.7) 6.34 (8.2) 2.77 (2.3)

KCL 1.33 (0.6) 2.24 (2.2) 9.20 (8.3) 3.10 (2.3)

UTA 0.36 (0.3) 3.24 (2.6) 10.72 (8.0) 3.54 (2.5)

UTB 0.52 (0.5) 3.10 (2.2) 8.91 (8.2) 1.25 (1.5)

2-SD n.a. 7.51 (3.6) n.a. 17.7 (10.1)

3-SD n.a. 12.73 (8.3) n.a. 7.64 (3.7)

4-SD 0.15 (0.1) 12.74 (8.3) 11.69 (7.5) 11.98 (8.5)

6-SD n.a. n.a. n.a. 15.47 (8.5)

FWHM n.a. 70.52 (38.4) 7.67 (8.2) 6.61 (5.9)

The standard deviation of each metric is quoted in brackets. Symbols (†∗) for pre
and (∗) for post denote algorithms that could only be tested on a subset of the
complete set of images. Abbreviations: n.a. data not available or could not be
computed.

reasonably good signal-to-noise ratio and contrast ratio
for enhanced areas. The algorithms’ accuracy were eval-
uated based on image quality, the Dice metric was com-
puted separately for post scans in each category. Results
are given in Table 5. No significant drop in performance
was found with any of the methods (WilCoxon rank-sum
test). For most algorithms, a marginally higher Dice is seen
on better quality scans but this was not significant. The
fixed-model methods (2-SD to FWHM) performed pre-
dictably with slight reduction in accuracy going from good
to poor quality scans.

Discussion
We presented a standardised evaluation framework,
accessible via a web-based interface, that allows the effec-
tive comparison of scar segmentation algorithms in the
LA for pre- and post-ablation fibrosis and scar. The frame-
work has been used to compare eight algorithms as part of
the cDEMRIS challenge, a workshop organised at ISBI in
2012. The data is publicly available via the website: http://
www.isd.kcl.ac.uk/cdemris/.

Evaluation framework
The usefulness and effectiveness of an evaluation frame-
work is important. The evaluation framework presented
in this work comprised thirty pre-ablation and thirty post-
ablation image database from three separate imaging cen-
tres (KCL-IM, Utah and BIDMC) acquired using scanners
of two different vendors (Siemens Healthcare and Philips
Healthcare). Further, images differed in slice-thickness
(1.25 - 2.0 mm reconstructed) and acquisition time-point
(1-7 days for pre- and 30 - 180 days for post-ablation).
This ensured that algorithms would not be biased towards

http://www.isd.kcl.ac.uk/cdemris/
http://www.isd.kcl.ac.uk/cdemris/
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Figure 7 Non-scar enhancing structures in LGE CMR images. Images show examples of regularly enhancing structures (first row) and
enhancement due to the navigator beam (second row). Arrows indicate enhanced sections of interest. Abbreviations: LA - left atrium, Ao - aorta,
L - left, R - right.

a specific acquisition protocol. The selection of images
for the framework was not random. They were carefully
chosen to include images that exhibited artefacts (naviga-
tor, aortic wall, valve fibrosis), poor contrast-noise ratio
and poor enhancement. Thus the presented framework

Figure 8 Artefact analysis. Amount of artefact (navigator beam
artefact in the right superior pulmonary vein and enhancement in
aortic wall) included in segmentations of each challenger. An
asterix(*) denotes challengers which could not be assessed on all
artefact samples.

provides a wide spectrum of data suitable for testing
algorithms.

Two reference standards are established within the
framework: the algorithms were tested against consen-
sus segmentations of multiple observers and established
techniques n-SD and FWHM. The task of creating a ref-
erence standard from multiple observers is complex and
tedious. The observers were provided with set guide-
lines. Although, their delineations were approximately
consistent, some differences remained. It was thus impor-
tant to merge the segmentations with STAPLE [31]. For
instance in images with poor contrast enhancement ratio,
observers may differ in their opinion of the level of
enhancement that is likely to be scar. When generating
consensus segmentations, such disagreement problems
are solved by establishing some common ground.

The second reference standard of obtaining locations of
enhanced regions with fixed models, n-SD and FWHM
methods, was performed by fixed thresholding on the
atrial wall. The wall was approximated by dilating the
endocardial LA segmentation by three pixels. Both the
SD and FWHM require a region of normal myocardium
and results can vary with a different selection. The region
within normal myocardium was thus carefully selected
to exclude any enhanced pixels. The FWHM was imple-
mented as described in [12] with manual selection of
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Figure 9 Enhancement quality at imaging centres. Variation in enhancement quality: Enhancement normalisation in images (n = 60) from all
three centres supplied for the challenge in pre-ablation (left) and post-ablation (right) LGE CMR. The histograms plot enhanced pixels in the
consensus segmentation. Intensities are normalised to atrial blood pool mean. Horizontal axes represents intensity in enhancement as standard
deviations (SD) from blood-pool mean. Increasing enhancement corresponds to increasing SD.

an enhanced region and 50% of the maximum inten-
sity in this region used as a threshold. In some rare
instances the 50% cut-off was re-adjusted. Note region-
growing was used to obtain the final segmentation result
and this ensured pixel connectivity and coherence in the
result.

A range of different metrics for measuring algorithm
performance were explored. The Dice metric was selected
for measuring volumetric overlap. It was computed
regionally on carefully selected enhanced areas where the
consensus segmentation was in agreement for scar or
not scar (i.e. artefact). A surface metric was also selected
for measuring the amount of overlap in segmentations.
All segmentations were projected onto their LA surfaces

Table 5 Analysis of segmentation accuracy based on
image quality (good, average and poor) on post-scans

Challengers
Good Average Poor

Mean (SD) Mean (SD) Mean (SD)

IC 64 (26) 64 (27) 69 (23)

MV 83 (20) 80 (21) 79 (20)

SY* 70 (21) 64 (26) 71 (22)

HB* 76 (17) 71 (21) 74 (16)

YL* 80 (20) 73 (25) 74 (24)

KCL 78 (18) 77 (25) 73 (26)

UTA 64 (29) 70 (29) 71 (28)

UTB 63 (28) 67 (28) 67 (24)

2-SD 56 (27) 53 (29) 53 (27)

4-SD 17 (19) 21 (27) 17 (15)

6-SD 38 (21) 35 (25) 34 (20)

FWHM 68 (30) 66 (27) 56 (34)

The mean and standard deviation (SD) of the Dice metric is given for each
challenger (IC to UTB) and fixed-model methods (2-SD to FWHM).

and the cumulative Euclidean distance between the cor-
responding scar labels on the surface was represented as
RMSE error. Furthermore, a third measure looked at com-
puting the difference of fibrosis/scar volumes in segmen-
tations. This assessed the quantifiable infarct reported by
each method.

Segmentation of scar from LGE CMR images poses vari-
ous challenges and thus an overlap assessment is not alone
sufficient. To detect which false positives and negatives
are more prevalent, regional assessments of aortic wall
and navigator beam artefacts were provided. Regions con-
taining these artefacts were carefully chosen and an over-
lap assessment was made for each method. This highlights
how algorithms fare with regularly enhancing features of
LGE CMR images. Further, the framework provided a
grading for each post-ablation image in its database. Algo-
rithms can select images of a specific quality when using
the framework through the web-based interface.

A limitation of the framework is the size of the image
database. It is sufficient for most purposes, for instance
assessing an algorithm initially against different proto-
cols and acquisition parameters. The website hosting the
image database is scalable and can easily be scaled to
include additional images when they become available.
A second limitation is the performance metrics. Dice is
known to be highly sensitive to mismatch of small struc-
tures and thus can disproportionately penalise algorithms
in some instances. The surface based metric (i.e. RMSE)
also has an important limitation; images with a large
amount of false-positive scar detected yield a very low
RMSE error. This is because there are false positive points
in the vicinity of most surface points labelled by raters as
scar making the distance error small. However, this limita-
tion can be overcome if the surface measure is combined
and read with the volume difference measure. This gives a
truer picture of the segmentation.
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Evaluated algorithms
Some methods make assumptions about the intensity dis-
tribution of enhanced pixels within atrial myocardium.
Modelling the distribution with a statistical distribution
such as a Gaussian is a common technique. Prior to mod-
elling, some normalise atrial myocardium intensities to
the easily observable atrial blood pool by taking its average
(see Eq. 1). Table 6 summarises the approaches under-
taken by each method. To compare the proposed models
with the true intensity distribution of scar, the distri-
bution of intensities in the consensus segmentation was
investigated in Section ‘Image quality on segmentation’
and shown in Figure 9. A limitation with the Gaussian
approach is that the Gaussian function diminishes at its
tail with increasing enhancement; greater enhancement is
more likely to be scar. The sigmoid curve has an open-
end and can overcome this limitation. Normalisation can
be important as intensities in CMR do not correspond
to tissue types as they do in computed tomography (CT)
imaging. However, modelling enhancement and normal-
ising it is not alone sufficient given the dynamic range
and using other modes of information might be necessary.
Examples within the evaluated methods include extract-
ing contextual information from a pixel neighbourhood
(KCL, SY), exploiting pixel connectivity (IC), adjusting the
fixed model for every slice (YL, UTA), utilising a feature
space (SY, UTB).

All the methods outperformed the FWHM and n-SD
methods in our evaluation. There was also significant
improvement offered in some: pre-ablation (YL vs. 4-SD,
paired t-test: p < 0.05) and post-ablation (KCL vs. 2, 4,
6-SD, paired t-test: p < 0.05). This suggests that a fixed
model for scar is not a viable solution and improvements
can be made. There is further evidence for this as evalu-
ated methods YL and UTA using simple thresholding find
it necessary to adjust thresholds for each slice and achieve
significant improvements over fixed models (paired t-test
p < 0.05).

Table 6 Enhancement normalisation models adopted (if
any) in each method

Method Normalisation Model

IC Y Sigmoid

MV Y Gaussian

SY N Gaussian

HB N Gaussian

YL N None

KCL Y Gaussian

UTA N Gaussian

UTB Y Gaussian

Y = normalisation to blood pool intensity, N = no normalisation.

Segmentation of LA myocardial wall is an important
step before segmenting scar. The LA wall is much more
thin and flexible than that of the ventricle. It is known to
be 2.5 mm in thickness [35]. Also in areas of no contrast
the LA wall is impossible to visualise and thus can only
be approximated. In the evaluated algorithms, there were
several that used a fixed distance from the endocardial LA
border (IC, MV, SY, HB, KCL) of which two (IC, HB) com-
puted this distance directly using an Euclidean distance
measure and the rest (MV, SY, KCL) used morphological
dilation. However, there were three methods (YL, UTA,
UTB) that used a manual delineation of the wall. From
the artefact analysis of Figure 8 it is also YL, UTA and
UTB that have the least amount of aortic wall and navi-
gator artefacts. The aortic wall problem is very minimal
in YL, UTA and UTB, whilst there is yet some navigator
beam artefact. This is suggestive of the fact that a good
LA wall segmentation can counteract to a great extent the
aortic wall problem but also overall improves LGE CMR
segmentation.

Pre-ablation enhancement that is likely to be due
to fibrosis is more challenging to detect than post-
ablation enhancement due to scar. One reason is fibrosis
appears more diffuse with greater overlap with normal
myocardium. Algorithms IC, YL, UTA and UTB only
show reasonable overlap (Dice, RMSE and |δV |), with YL’s
results available on a smaller cohort (10 out of 30) and
both YL and UTA requiring significantly longer process-
ing times than the rest. Fixed models (4-SD an FWHM)
fare poorly in comparison. This comes as no surprise as
with greater overlap of intensities for normal myocardium
and fibrosis in pre-ablation, a fixed model is bound to
fail. Even with an optimal separation between the distri-
butions computed, further processing is needed and this
is included in IC (pixel connectivity) and SY (contextual
information) algorithms. Others have similar process-
ing steps but were developed primarily for post-ablation
enhancement and thus has a bias (MV and KCL). In
post-ablation enhancement, most evaluated algorithms
demonstrated that good segmentation is possible. This
is true in the case of automated (IC, SY, MV, HB, KCL,
UTB) and semi-automated ones (YL, UTA). Fixed mod-
els had lesser accuracy with a difference of at least 10
points on the Dice compared with some methods (MV,
KCL, YL), but their performance was better compared to
performance in pre-ablation.

Future algorithms
The aim of this work is to provide a standardised method-
ology and framework for evaluating state-of-the-art algo-
rithms that was made available to the wider community
through a web-based interface. The framework has poten-
tial that upcoming state-of-the-art algorithms can utilise
it to evaluate their performance. That would enable
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algorithms to be benchmarked against other algorithms.
Eight different algorithms were evaluated with the pro-
posed framework, three of which are published or slightly
modified versions of published techniques ([5,15,18]).
This gives the framework some standing and acceptability
and gives future algorithms a sensible ground for test-
ing. Also to our knowledge, this is the first proposed
framework of its kind for testing LGE CMR algorithms.

Conclusions
CMR continues to play an increasingly important role for
quantifying LA fibrosis and scar before and after an abla-
tion procedures for AF. LGE CMR is a challenging imaging
technique with variation often seen in image and enhance-
ment quality. Currently, algorithms have only been tested
on centre- and vendor-specific images. Their suitability
and performance in images from other centres or vendors
is not very clear. Also, algorithms cannot be tested on the
same datasets and thus they cannot be cross-compared.
The proposed framework evaluated 8 different algorithms
and measured their performance on a common scale.
Reference standards for evaluation were established. Fol-
lowing evaluation, no algorithm was deemed clearly better
than the others. This leaves scope to push for further algo-
rithmic developments in LA fibrosis and scar imaging.
Benchmarking of future scar segmentation algorithms
is important. The proposed framework remains pub-
licly available for accessing the image database, uploading
algorithm segmentations for evaluation and contribut-
ing manual segmentations for improving the reference
standard.
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