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Abstract

Toll-like receptors (TLRs) recognize the conserved molecular patterns in microorganisms

and trigger myeloid differentiation primary response 88 (MyD88) and/or TIR-domain-con-

taining adapter-inducing interferon-β (TRIF) pathways that are critical for host defense

against microbial infection. However, the molecular mechanisms that govern TLR signaling

remain incompletely understood. Regulator of calcineurin-1 (RCAN1), a small evolutionarily

conserved protein that inhibits calcineurin phosphatase activity, suppresses inflammation

during Pseudomonas aeruginosa infection. Here, we define the roles for RCAN1 in P. aeru-

ginosa lipopolysaccharide (LPS)-activated TLR4 signaling. We compared the effects of P.

aeruginosa LPS challenge on bone marrow-derived macrophages from both wild-type and

RCAN1-deficient mice and found that RCAN1 deficiency increased the MyD88-NF-κB-

mediated cytokine production (IL-6, TNF and MIP-2), whereas TRIF-interferon-stimulated

response elements (ISRE)-mediated cytokine production (IFNβ, RANTES and IP-10) was

suppressed. RCAN1 deficiency caused increased IκBα phosphorylation and NF-κB activity

in the MyD88-dependent pathway, but impaired ISRE activation and reduced IRF7 expres-

sion in the TRIF-dependent pathway. Complementary studies of a mouse model of P. aeru-

ginosa LPS-induced acute pneumonia confirmed that RCAN1-deficient mice displayed

greatly enhanced NF-κB activity and MyD88-NF-κB-mediated cytokine production, which

correlated with enhanced pulmonary infiltration of neutrophils. By contrast, RCAN1 defi-

ciency had little effect on the TRIF pathway in vivo. These findings demonstrate a novel

regulatory role of RCAN1 in TLR signaling, which differentially regulates MyD88 and TRIF

pathways.
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Introduction

Toll like receptors (TLRs) are a family of transmembrane receptors that recognize diverse

molecular patterns derived from microbes [1]. Upon binding of ligands, TLRs dimerize and

recruit adapter proteins to their cytoplasmic Toll/IL-1 receptor domain to initiate downstream

signaling [2]. TLR4 binding to lipopolysaccharide (LPS) activates two distinct signalling path-

ways; the myeloid differentiation primary response 88 (MyD88) pathway, and the Toll/IL-1R

domain—containing adapter inducing IFN-β (TRIF) pathway [3]. MyD88-dependent signal

transduction activates NF-κB via phosphorylation and ubiquitin-mediated degradation of its

inhibitory protein IκBα, which allows NF-κB nuclear translocation and transactivation of a

multitude of proinflammatory cytokines and chemokines, including IL-6, TNF and macro-

phage inflammatory protein (MIP)-2 [2, 4]. In the parallel TRIF-dependent pathway, LPS

activates tank-binding kinase-1 (TBK1) and I-kappa-B kinase epsilon (IKKε), leading to phos-

phorylation and activation of interferon regulatory transcription factor 3 (IRF3) and IRF7

[5, 6]. Activated IRF3 and IRF7 drive transcription of interferon-α (IFNα) and interferon-β
(IFNβ), and the chemokines RANTES (Regulated on Activation, Normal T cell Expressed and

Secreted) and IP-10 (Interferon γ-inducible Protein 10) [7, 8]. Both MyD88- and TRIF-depen-

dent pathways have been found to contribute to host defense against the microbial infection

[9–12].

TLR signaling is tightly regulated. Unrestrained production of proinflammatory mediators

through TLR signaling can disrupt the balance between pro- and anti-inflammatory responses

and cause severe inflammatory and autoimmune diseases [13, 14]. Many negative regulators of

TLR signaling have been identified in the past decade [15]. We previously identified regulator

of calcineurin 1 (RCAN1) as a central negative regulator of inflammation during P. aeruginosa
infection in vivo; RCAN1-deficient mice displayed aberrant NF-κB activation and increased

levels of inflammatory cytokines, which correlated with increased mortality [16]. RCAN1 has

not yet been linked to regulation of TLR signaling.

The RCAN1 gene is located on chromosome 21 in the Down syndrome critical region, and

is highly expressed in various tissues including brain, heart, muscle, liver, kidney, lung and tes-

tis [17–19]. It has seven exons which can be alternatively spliced to render 4 different transcript

isoforms (RCAN1-1, RCAN1-2, RCAN1-3 and RCAN1-4) [18]. RCAN1 was previously shown

to inhibit calcineurin phosphatase activity by direct interaction with the catalytic subunit of

calcineurin, leading to suppression of nuclear factor of activated T cells (NFAT) activation and

signaling axis [20].

In this study, we used LPS from P. aeruginosa, a potent activator of TLR4, to examine the

role of RCAN1 in both MyD88- and TRIF-dependent signaling in vivo and in vitro. We found

that RCAN1 deficiency significantly enhances MyD88-NF-κB-mediated cytokine production

(IL-6, TNF and MIP-2) and NF-κB activity both in vivo and in vitro. Moreover, we found that

RCAN1-deficient macrophages display increased IκBα phosphorylation and no significant

change on IκB kinase (IKK) α/β phosphorylation compared to wild-type macrophages. By

contrast, RCAN1 deficiency downregulates the interferon-stimulated response elements

(ISRE)-mediated cytokine production (IFNβ, RANTES, IP-10) and TRIF-IRF7-ISRE

pathway activation in vitro. Interestingly, RCAN1 deficiency has limited effects on the TRI-

F-IRF-ISRE pathway in vivo. These findings suggest that RCAN1 is a negative regulator of the

TLR-MyD88-NF-κB signaling pathway through targeting IκBɑ, and to our knowledge, pro-

vide the first line of evidence that RCAN1 plays a role in mediating TLR-TRIF-IRF7-ISRE sig-

naling pathway activation.

RCAN1 controls TLR-dependent MyD88 and TRIF signaling
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Materials and methods

Animals

RCAN1-deficient mice were generated as described previously with a deletion of exons 5 and

6 leading to deficiency of Rcan1 products (Rcan1-1 and Rcan1-4) [21], and were provided by J.

Molkentin (Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincin-

nati, OH). C57BL/6 mice were purchased from Charles River Laboratories and were used as

wild-type controls. All animal protocols were approved by the University Committee on Labo-

ratory Animals, Dalhousie University, in accordance with guidelines of the Canadian Council

on Animal Care.

Antibodies

Antibodies for phospho-IκBα (2859), total IκBα (9242), phospho-IKKα/β (2697), total IKKα
(2682), total IKKβ (2684), phospho-ERK (9101), total ERK (9102) and phospho-p38 (9211)

were purchased from Cell Signaling. Antibody for IRF7 (ab109255) was purchased from

Abcam. Antibodies for total p38 (sc-535), IRF3 (sc-9082), IRF7 (sc-9083), actin (sc-1616) and

all secondary antibodies were purchased from Santa Cruz Biotechnology.

Lung stimulation with P. aeruginosa LPS and collection of lung and

bronchoalveolar lavage fluid (BALF)

P. aeruginosa LPS (L8643) was purchased from Sigma-Aldrich. Mice were intranasally admin-

istered with 1 μg P. aeruginosa LPS per gram of body weight for 4 h or 24 h. After stimulation,

BALF was obtained by lavage of lungs with 1 ml phosphate-buffered saline (PBS) containing

soybean trypsin inhibitor (100 μg/ml). Lung tissues were obtained for histology study, detec-

tion of cytokines and myeloperoxidase (MPO) assay. Briefly, lung tissues were homogenized

in 50 mM HEPES buffer (4 μl/mg lung) containing soybean trypsin inhibitor (100 μg/ml).

Lung homogenates were centrifuged at 4˚C for 20 min at 18,000 x g. The supernatants were

stored at −80˚C for later cytokine analysis. The pellets were resuspended and homogenized in

0.5% cetyltrimethylammonium chloride (4 μl/mg lung) and centrifuged as described above.

The cleared extracts were used for MPO assay.

For detection of cytokines and MPO activity, BALF was centrifuged at 480 X g for 5 min at

4˚C, and supernatants were recovered for cytokine analysis. The pellets were resuspended in 1

ml NH4Cl (0.15 M) and centrifuged at 480 X g for 5 min to lyse red blood cells. The superna-

tants were discarded, and the pellets were resuspended in 0.5% cetyltrimethylammonium chlo-

ride (250 μl/mouse) and centrifuged as before. The cleared extracts were used for MPO assay.

Macrophage cell culture and LPS stimulation

Bone marrow cells were flushed from femurs and tibias of wild-type (+/+) and RCAN1-defi-

cient (-/-) mice. Cells were cultured in DMEM media supplemented with 10% fetal bovine

serum, 1% penicillin/streptomycin and 30% L929 supernatant. Media were changed every 2–3

days by replacing half of the initial volume. After 7 days, cells were treated with 200 ng/ml P.

aeruginosa LPS for various time points or left untreated. After macrophage and P. aeruginosa
LPS co-incubation, cell-free supernatants were collected for measuring cytokine and chemo-

kine production. Cell pellets were used for determining RNA transcript, protein expression,

and transcription factor activation levels.
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BALF alveolar macrophage collection and LPS stimulation

Alveolar macrophage collection from BALF was described previously [22]. Briefly, BALF was

obtained by lavage of lungs with 1 ml of PBS for 3 times. BALF cells were spun down and

resuspended in DMEM media containing 10% FBS and 1% penicillin/streptomycin. Cells

were incubated at 37 ˚C for 1 h, which allowed alveolar macrophages to adhere to the plate;

poorly attached and unattached cells were removed by washing with PBS. The purity of alveo-

lar macrophage preparations was examined using a Diff-Quik stain set (Siemens Healthcare

Diagnostics, DE). Subsequently, wild-type and RCAN1-deficient alveolar macrophages were

stimulated with 200 ng/ml P. aeruginosa LPS for 6 h or left untreated, and supernatants were

subjected to ELISA for determining cytokine and chemokine production.

Cytokine production

Concentrations of IL-6, TNF, MIP-2, RANTES and IP-10 in lungs, BALF and culture superna-

tants were determined by enzyme-linked immunosorbent assay (ELISA) as described previ-

ously using antibody pairs from R&D Systems (Minneapolis, MN) [23]. IFNβ levels were

measured using VeriKine-HS Mouse IFNβ ELISA Kits (PBL Assay Science, Piscataway, NJ)

according to the manufacturer’s instructions.

Myeloperoxidase (MPO) assay

The MPO assay was used to determine the infiltration of neutrophils into the lungs of the mice

as described previously [24]. Briefly, samples in duplicate (75 μl) were mixed with equal vol-

umes of the substrate (3,3’,5,5’-tetramethyl-benzidine dihydrochloride, 3 mM; Resorcinol,

120 μM; and H2O2, 2.2 mM) for 2 minutes. The reaction was stopped by adding 150 μl of 2 M

H2SO4. The optical density was measured at 450 nm.

Western blotting

Cells were lysed in radioimmunoprecipitation assay buffer supplemented with a mixture of

protease and phosphatase inhibitors. Cleared lysates (30 μg protein) were electrophoresed in

10% SDS polyacrylamide gels. Gels were transferred to polyvinylidene difluoride membrane,

blocked with 5% nonfat milk powder, probed with primary and secondary antibodies, and

detected by an ECL-detection system (Western Lightning Plus-ECL; PerkinElmer) on BioMax

film (Kodak). Blots were scanned and quantified using ImageJ software.

Real-time quantitative PCR

Cells were processed using Trizol (Invitrogen) and purified using RNeasy kit (Qiagen). The total

RNA was reverse transcribed into cDNA using Reverse Transcriptase (Clontech). RCAN1-1
primer sequences, Forward 5'- GTTCGTGGACGGCCTGTG -3' and Reverse 5'- AAGGGG
TTGCTGAAGTTTATCC -3'. RCAN1-4 primer sequences, Forward 5'- TGCTTGTGTGGCA
AACGATG -3' and Reverse 5'- AGGAACTCGGTCTTGTGCAG -3'. IL-6 primer sequences,

Forward 5'- TAGTCCTTCCTACCCCAATTTCC -3' and Reverse 5'- TTGGTCCTTAGCC
ACTCCTTC -3'. TNF primer sequences, Forward 5'- CATCTTCTCAAAATTCGAGTGACAA
-3' and Reverse 5'- TGGGAGTAGACAAGGTACAACCC -3'. MIP2 primer sequences, For-

ward 5'- CCACTCTCAAGGGCGGTCAA -3' and Reverse 5'- GGTACGATCCAGGCTTCC
CG -3'. IFNβ primer sequences, Forward 5'- GCCTTTGCCATCCAAGAGATGC -3' and

Reverse 5'- ACACTGTCTGCTGGTGGAGTTC -3'. RANTESprimer sequences, Forward

5'- CCTGCTGCTTTGCCTACCTCTC -3' and Reverse 5'- ACACACTTGGCGGTTCCTT
CGA -3'. IP-10 primer sequences, Forward 5'- ATCATCCCTGCGAGCCTATCCT -3' and

RCAN1 controls TLR-dependent MyD88 and TRIF signaling
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Reverse 5'- GACCTTTTTTGGCTAAACGCTTTC -3'. IRF3 primer sequences, Forward 5'-
CGGAAAGAAGTGTTGCGGTTAGC -3' and Reverse 5'-CAGGCTGCTTTTGCCATTGGTG
-3'. IRF7 primer sequences, Forward 5'- ACAGGGCGTTTTATCTTGCG -3' and Reverse

5'- TCCAAGCTCCCGGCTAAG- 3'. Primers were designed by Primer-BLAST (NCBI).

According to manufacturer’s instruction, q-PCR arrays were conducted in triplicate and the

mRNA levels were quantified using SYBR Green method on a sequence detection system (ABI

Prism 7000; Applied Biosystems). Hypoxanthine-guanine phosphoribosyltransferase (HPRT)

was used as a housekeeping control mRNA. Data were analyzed using relative standard curve

method according to the manufacturer’s protocol.

Nuclear extract preparation and electrophoresis mobility shift assay

(EMSA)

An electrophoretic mobility shift assay (EMSA) was performed as previously described [25].

Briefly, nuclear protein extracts were prepared using a nuclear extract kit (Active Motif, Carls-

bad, CA), following the manufacturer’s protocol. Probe labeling was accomplished by treat-

ment with T4 kinase (Life Technologies, Burlington, ON, Canada) in the presence of 32P

adenosine triphosphate (Perkin Elmer, Waltham, MA). Labeled oligonucleotides were purified

on a Sephadex G-25M column (GE Healthcare, Pittsburgh, PA). Nuclear protein (10 μg) was

added to a 10 μl volume of binding buffer supplemented with 1 μg poly(dI:dC) (GE Health-

care) for 15 minutes at room temperature. Labeled double-stranded oligonucleotide was

added to each reaction mixture that was incubated at room temperature for 30 minutes and

separated by electrophoresis on a 6% polyacrylamide gel in 0.5 X Tris-boric acid-EDTA buffer.

Gels were vacuum-dried and subjected to autoradiography. The following synthesized double-

stranded oligonucleotides were used: ISRE-binding consensus sequence on mouse IFN-β pro-

moter, 5’-GAAAACTGAAAGGGAGAACTGAAA-3’ [26]; and NF-κB consensus sequence on

the IL-6 promoter, 5’-AGTTGAGGGGACTTTCCCAGGC-3’ (Promega, Madison, WI).

Supershift assay was performed as described previously [27]. Briefly, samples were prepared

as described above and then incubated with 2 μg of the indicated antibody on ice for 45 min-

utes prior to incubation with 32P-labeled double-stranded DNA probes. Samples were resolved

and developed as described above. The antibodies for IRF3 (sc-9082x) and IRF7 (sc-9083x)

from Santa Cruz Biotechnology were applied in supershift assay.

Measurement of IRF7 activation by ELISA

IRF7 activity in cell nuclear extracts was determined using transcription factor ELISA

(TransAM IRF7 kit, Active Motif, Carlsbad, CA), according to the manufacturer’s instruction.

Briefly, nuclear extracts were added into a 96-well plate pre-coated with oligonucleotides con-

taining the IRF7 consensus binding sites, followed by sequential incubations with IRF7 anti-

body and HRP-labeled secondary antibody. Results were read on a spectrophotometer at 450

nm.

Statistical analysis

Data are presented as means ± SEM of the indicated number of experiments. Statistical signifi-

cance between multiple treatments was determined by one-way analysis of variance and post

hoc Tukey’s honest significance test. Alternatively, when two independent variables were ana-

lyzed, a two-way analysis of variance and a Bonferroni multiple-comparison test were used.

Statistical analysis was performed using GraphPad Prism software version 5.04 (GraphPad

Software Inc., La Jolla, CA).
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Results

RCAN1 deficiency upregulates MyD88-NF-κB-mediated cytokine and

chemokine production but downregulates TRIF-IRF-ISRE-mediated

cytokine and chemokine production in macrophages following P.

aeruginosa LPS stimulation

Macrophages play an important role in host defense and mediation of inflammatory

responses, and they express a variety of TLRs to detect invading microbial pathogens [28, 29].

Treatment of macrophages with P. aeruginosa LPS led to a significant induction of RCAN1-4

mRNA at 2 h. By contrast, RCAN1-1 mRNA expression was not induced by P. aeruginosa
LPS. This finding suggests that the upregulated RCAN1-4 may be involved in regulation of

TLR signaling (S1 Fig). Deletion of exons 5 and 6 from mouse RCAN1 gene leads to deficiency

of all RCAN1 products. To assess the effect of RCAN1 on the cytokine production regulated

through the MyD88-NF-κB pathway, we stimulated wild-type and RCAN1-deficient bone

marrow-derived macrophages (BMMs) with 200 ng/ml of P. aeruginosa LPS for 3 h, 6 h, 12 h,

24 h. Cell supernatants were collected to detect the production of cytokines and chemokines

including IL-6, TNF and MIP-2, which are largely regulated through MyD88-NF-κB pathway

during P. aeruginosa infection [30]. We found that the P. aeruginosa LPS-induced production

of IL-6 (Fig 1A), TNF (Fig 1B) and MIP-2 (Fig 1C) was significantly enhanced in RCAN1-

deficient BMMs compared to wild-type BMMs, suggesting that RCAN1 negatively regulates

MyD88-NF-κB-mediated cytokine and chemokine production. To confirm this finding, the P.

aeruginosa LPS-induced mRNA levels of IL-6, TNF and MIP-2 in wild-type and RCAN1-defi-

cient BMMs were examined by RT-qPCR. We discovered that RCAN1-deficient BMMs dis-

played elevated mRNA expression of IL-6 (Panel A in S2 Fig), TNF (Panel B in S2 Fig) and

MIP-2 (Panel C in S2 Fig) compared to wild-type BMMs in response to P. aeruginosa LPS

stimulation.

IRF3 and IRF7 are transcription factors that translocate to the nucleus upon activation of

the TRIF-dependent pathway, and stimulate transcription of IFNβ, RANTES and IP-10, as

well as other cytokine genes [31]. The supernatants from wild-type and RCAN1-deficient

BMMs challenged with P. aeruginosa LPS were collected to measure the production of IFNβ,

RANTES and IP-10. In contrast to IL-6, TNF and MIP-2, RCAN1-deficient BMMs displayed

impaired production of IFNβ (Fig 1D), RANTES (Fig 1E) and IP-10 (Fig 1F), suggesting a pos-

itive role of RCAN1 in the regulation of these cytokines and chemokines in vitro. Furthermore,

the levels of P. aeruginosa LPS-induced IFNβ (Panel D in S2 Fig), RANTES (Panel E in S2 Fig)

and IP-10 (Panel F in S2 Fig) mRNAs were significantly reduced in RCAN1-deficient BMMs

compared to wild-type BMMs.

To examine how lung-resident macrophages respond to P. aeruginosa LPS, the alveolar

macrophages were collected from the BALF of wild-type and RCAN1-deficient mice and stim-

ulated with 200 ng/ml of P. aeruginosa LPS for 6 h or left untreated. Cell supernatants were

collected for determining the cytokine and chemokine production. We discovered that the

cytokine production pattern of alveolar macrophages was similar to BMMs except IL-6 (S3

Fig).

RCAN1 deficiency leads to increased P. aeruginosa LPS-induced IκBα
phosphorylation in vitro
In canonical MyD88-NF-κB signal transduction, the tripartite IKK complex liberates the NF-

κB transcription factor by phosphorylating IκBα, thereby stimulating IκBα poly-ubiquitina-

tion and degradation by the 26S proteasome; following IκBα degradation, NF-κB translocates

RCAN1 controls TLR-dependent MyD88 and TRIF signaling
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Fig 1. RCAN1 deficiency upregulates MyD88-NF-κB-mediated cytokine and chemokine production but downregulates TRIF-IRF-ISRE-mediated

cytokine and chemokine production in BMMs during P. aeruginosa LPS stimulation. Wild-type (+/+) and RCAN1-deficient (-/-) BMMs were

stimulated with 200 ng/ml P. aeruginosa LPS for 3 h, 6 h, 12 h, 24 h or left untreated (NT). Cell supernatants were collected for the determination of IL-

6 (A), TNF (B), MIP2 (C), IFNβ (D), RANTES (E) and IP-10 (F) secretion by ELISA (n = 3 ± SEM, �p<0.05, ��p<0.01, ���p<0.001 ����p<0.0001).

https://doi.org/10.1371/journal.pone.0197491.g001
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to the nucleus where it transactivates genes that regulate immunity, inflammation and cell fate

[32]. To understand the molecular mechanisms of RCAN1 regulation of the MyD88-depen-

dent pathway, we characterized the phosphorylation levels of IKK complex subunits IKKα and

IKKβ, as well as IκBα, in wild-type and RCAN1-deficient BMMs following P. aeruginosa LPS

challenge at various time points (3 h, 6 h, 12 h and 24 h) by Western blotting (Fig 2A). The P.

aeruginosa LPS-induced phosphorylation of IκBα was markedly enhanced in RCAN1-defi-

cient BMMs compared to wild-type BMMs, whereas no significant differences of IKKα and β
phosphorylation levels were observed between wild-type and RCAN1-deficient BMMs (Fig

2B, 2C and 2D), suggesting that IκBα is a potential target site of RCAN1 in P. aeruginosa LPS-

induced MyD88 pathway.

RCAN1-deficient BMMs display enhanced NF-κB activity in response to P.

aeruginosa LPS stimulation

The transcription factor NF-κB is a master regulator of inflammatory responses [33]. To deter-

mine whether RCAN1 deficiency has an impact on NF-κB activation in vitro, nuclear extracts

from P. aeruginosa LPS-challenged or untreated wild-type and RCAN1-deficient BMMs

Fig 2. RCAN1 deficiency elevates IκBα phosphorylation in vitro following P. aeruginosa LPS challenge. Wild-type (+/+) and RCAN1-deficient (-/-)

BMMs were stimulated with 200 ng/ml P. aeruginosa LPS for 3 h, 6 h, 12 h and 24 h or left untreated (NT). Cell lysates were subjected to Western blot

analysis for phospho- and total IKKα, IKKβ and IκBα, as well as actin as a loading control. Blots are representative of three independent experiments

(A). Densitometry analysis of phosphorylated IKKα (B), IKKβ (C) and IκBα (D) was normalized to their total protein respectively (n = 3 ± SEM,
�p<0.05, ���p<0.001).

https://doi.org/10.1371/journal.pone.0197491.g002
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were subjected to EMSA to analyze NF-κB activity. NF-κB activity was greatly enhanced in

RCAN1-deficient BMMs compared to wild-type BMMs (Fig 3). This finding corroborates our

observation of increased IκBα phosphorylation in RCAN1-deficient BMMs, and suggests that

RCAN1 negatively regulates the P. aeruginosa LPS-induced NF-κB activity in vitro.

RCAN1 deficiency impairs TRIF-IRF-ISRE pathway activation in

macrophages in response to P. aeruginosa LPS stimulation

To further demonstrate the regulatory role of RCAN1 in TRIF-IRF-ISRE pathway, we analyzed

the P. aeruginosa LPS-induced mRNA and protein expression of IRF3 and IRF7 in wild-type

and RCAN1-deficient BMMs by RT-qPCR and Western blot respectively. There were no signif-

icant differences observed in the P. aeruginosa LPS-induced IRF3 mRNA levels between wild-

type and RCAN1-deficient BMMs (Fig 4A). By contrast, RCAN1-deficient BMMs displayed

diminished IRF7 mRNA levels compared to the wild-type BMMs following P. aeruginosa LPS

challenge (Fig 4B). Similarly, the IRF3 protein was found to be constitutively expressed during

LPS treatment, whereas the IRF7 protein levels were significantly elevated at 3 h and RCAN1-

deficient BMMs displayed reduced IRF7 protein expression compared to wild-type BMMs

(Fig 4C, 4D and 4E). These results suggest that RCAN1 facilitates IRF7 expression in vitro.

Fig 3. RCAN1 deficiency enhances NF-κB activity in vitro following P. aeruginosa LPS challenge of mouse BMMs. Wild-type (+/+) and

RCAN1-deficient (-/-) BMMs were treated with 200 ng/ml P. aeruginosa LPS for 2 h, 4 h, 6 h, 8 h or left untreated (NT). Nuclear proteins were

extracted and subjected to EMSA by incubation with 32P-labeled NF-κB DNA probe (A). Data are representative of three individual experiments. Scan

densitometry was performed for analysis of NF-κB activity (B), and data are expressed as fold change (n = 3 ± SEM, �p<0.05).

https://doi.org/10.1371/journal.pone.0197491.g003
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After nuclear translocation, IRF3 and IRF7 induce transcription through binding to ISRE

sites in the promoters of target genes [6]. Using EMSA, we tested the P. aeruginosa LPS-

induced ISRE binding activity in wild-type and RCAN1-deficient BMMs. Wild-type and

RCAN1-deficient BMMs were treated with 200 ng/ml P. aeruginosa LPS for 2, 4, 6 and 8 h

Fig 4. RCAN1-deficient BMMs display diminished IRF7 mRNA and protein expression. Wild type (+/+) and RCAN1-deficient (-/-) BMMs were

treated with 200 ng/ml P. aeruginosa LPS for various time points or left untreated (NT). The total RNA isolated from these cells was reverse transcribed

to cDNA and subjected to real-time quantitative PCR for IRF3 (A), and IRF7 (B) gene expression. The gene expression was normalized to housekeeping

control gene HPRT. Cell lysates were immunoblotted to measure IRF3, IRF7 and actin protein levels. Immunoblots are representative of three

independent experiments (C). Densitometry analysis of IRF3 and IRF7 levels was normalized to actin (D, E), and data are presented as fold change

(n = 3 ± SEM, ��p<0.01, ����p<0.0001).

https://doi.org/10.1371/journal.pone.0197491.g004
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or left untreated. ISRE binding activity was significantly reduced but not abolished in the

RCAN1-deficient BMMs at 2 h, compared to wild-type BMMs (Fig 5A and 5C). Because both

IRF3 and IRF7 can contribute to ISRE binding activity, supershift assays for IRF3 and IRF7

were performed on nuclear extracts from 2 h LPS-stimulated wild-type BMMs, using IRF3

and IRF7 antibodies to determine whether the two proteins contribute to ISRE binding. The

IRF3 and IRF7 antibodies employed in these supershift assays were previously validated by us

and others [34, 35]. Both IRF3 and IRF7 antibodies blocked ISRE binding activity, and the

IRF7 antibody resulted in a greater reduction of ISRE binding activity than the IRF3 antibody

(Fig 5B and 5D). Moreover, the binding specificity of nuclear proteins to ISRE DNA sequence

was verified through competitive binding by 50 X non-radioisotope labeled ISRE probes (Fig

5B). These findings suggest that RCAN1 contributes to ISRE binding activity and IRF7 is pre-

dominant in binding of ISRE in response to P. aeruginosa LPS stimulation. To further demon-

strate RCAN1-regulated IRF7 activation, the nuclear extracts from NT and 2 h LPS-stimulated

wild-type and RCAN1-deficient BMMs were examined by transcription factor ELISA for

IRF7. Consistent with the EMSA results, reduced IRF7 activation at 2 h was observed in

RCAN1-deficient BMMs compared with wild-type BMMs (Fig 5E).

RCAN1 differentially regulates the activation of mitogen-activated protein

kinases

TLR signaling is able to activate mitogen-activated protein kinases (MAPKs), including p38,

ERK, and JNK, which are important for mediation of inflammatory gene expression [2]. To

determine whether RCAN1 plays a role on MAPK activation, cell lysates from P. aeruginosa
LPS-activated wild-type and RCAN1-deficient BMMs were subjected to Western blotting

to assess the phosphorylation levels of ERK, JNK, and p38 (S4 Fig). Interestingly, RCAN1-

deficient BMMs displayed significantly increased phosphorylation of ERK but reduced phos-

phorylation of JNK compared to wild-type BMMs (Panel B and C in S4 Fig). Moreover, no sta-

tistically significant differences in p38 phosphorylation were observed between wild-type and

RCAN1-deficient BMMs (Panel D in S4 Fig). These findings suggest that RCAN1 differentially

regulates MAPK signaling pathways in our system.

RCAN1-deficient mice display enhanced MyD88-NF-κB-mediated cytokine

and chemokine production in vivo during P. aeruginosa LPS stimulation

To investigate the role of RCAN1 in TLR-MyD88-dependent pathway in vivo, we incorporated

RCAN1-deficient mice into a model of P. aeruginosa LPS-induced acute pneumonia. Wild-

type and RCAN1-deficient mice were intranasally administered with 1 μg P. aeruginosa LPS

per gram of body weight for 4 h or 24 h. Lung tissues and BALF were collected to determine

the MyD88-NF-κB-mediated production of IL-6 (Fig 6A and 6B), TNF (Fig 6C and 6D) and

MIP-2 (Fig 6E and 6F) by ELISA. RCAN1-deficient mice displayed enhanced production of

IL-6, TNF and MIP2 in lungs and BALF compared to wild-type mice, which was consistent

with the pattern of in vitro cytokine production.

The in vivo products of the TRIF-ISRE pathway including IFNβ (Fig 7A and 7B), RANTES

(Fig 7C and 7D) and IP-10 (Fig 7E and 7F) were analyzed by ELISA. Compared to the in vitro
data, RCAN1 deficiency only partially affected these cytokine and chemokine production.

In the lungs, there are no significant differences in IFNβ, RANTES, and IP-10 production

observed between wild-type and RCAN1-deficient mice following P. aeruginosa LPS adminis-

tration. In the BALF, there is an increased production of IFNβ at 4 h and RANTES at 24 h

in RCAN1-deficient mice, and no significant difference in IP-10 between wild-type and

RCAN1-deficient mice.
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Fig 5. RCAN1 deficiency impairs TRIF-IRF-ISRE activity in vitro during P. aeruginosa LPS stimulation. Wild-type (+/+) and RCAN1-deficient

(-/-) BMMs were treated with 200 ng/ml P. aeruginosa LPS for 2 h, 4 h, 6 h, 8 h or left untreated (NT). Nuclear proteins were extracted and subjected

to EMSA by incubation with 32P-labeled ISRE DNA probe (A). Data are representative of three individual experiments. Nuclear extracts from wild-

type (+/+) BMMs treated with 200 ng/ml P. aeruginosa LPS for 2 h were incubated with or without specific antibodies to IRF3 and IRF7 for 1 h or 50

X unlabeled ISRE probe for 30 min at room temperature before EMSA experiment using the 32P-labeled ISRE probe (B). Data are representative of

three individual experiments. Scan densitometry was performed for analysis of ISRE activity (C, D), and data are expressed as fold change. Cell
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nuclear extracts from NT and LPS 2 h stimulated wild-type and RCAN1-deficient BMMs were subjected to transcription factor ELISA for

determining IRF7 activity (E). (n = 3 ± SEM �p<0.05, ��p<0.01).

https://doi.org/10.1371/journal.pone.0197491.g005

Fig 6. RCAN1-deficient mice display enhanced MyD88 pathway-mediated proinflammatory cytokine and chemokine production in response to

P. aeruginosa LPS stimulation in vivo. Wild-type (+/+) and RCAN1-deficient (-/-) mice were treated intranasally with 1 μg P. aeruginosa LPS per gram

of body weight, or an equivalent volume of saline as a control (NT) for 4 h or 24 h. After 4 h or 24 h, lung tissues and BALF were collected for

determination of IL-6 (A, B) and TNF (C, D), MIP2 (E, F) production by ELISA. (n = 9 ± SEM, �p<0.05, ��p<0.01, ���p<0.001, ����p<0.0001).

https://doi.org/10.1371/journal.pone.0197491.g006
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Fig 7. RCAN1 deficiency has minor effects on TRIF-IRF-ISRE-regulated cytokine and chemokine production following P. aeruginosa LPS

stimulation in lung. Wild-type (+/+) and RCAN1-deficient (-/-) mice were administered intranasally with 1 μg P. aeruginosa LPS per gram of body

weight, or an equivalent volume of saline as a control (NT) for 4 h or 24 h. After 4 h or 24 h, lung tissues and BALF were collected for the determination

of IFNβ (A, B), RANTES (C, D) and IP-10 (E, F) production by ELISA (n = 9 ± SEM, �p<0.05).

https://doi.org/10.1371/journal.pone.0197491.g007
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RCAN1-deficient mice display increased NF-κB activity and reduced ISRE

binding activity in vivo following P. aeruginosa LPS challenge

To determine the TLR-mediated activities of transcription factors in vivo, nuclear extracts

from the lungs of P. aeruginosa-challenged wild-type and RCAN1-deficient mice were sub-

jected to EMSA for NF-κB and ISRE activity. P. aeruginosa LPS-induced NF-κB activity

was significantly enhanced in the lungs of RCAN1-deficient mice at 4 h compared to wild-

type mice (Fig 8A and 8B). By contrast, a trend of decreased ISRE binding activity at 4 h

in RCAN1-deficient mice was observed. However, this result failed to reach statistical

significance (Fig 9A and 9C). Moreover, we also determined the binding specificity of LPS-

induced ISRE to IRF3 and IRF7 by performing a supershift assay. Consistent with in vitro
results, anti-IRF3 antibody and anti-IRF7 antibody reduced LPS-induced ISRE binding

activity (Fig 9B and 9D). Additionally, the IRF3 mRNA expression in the lungs of wild-

type and RCAN1-deficient mice was not induced in response to P. aeruginosa LPS stimula-

tion, whereas a trend of decreased IRF7 mRNA level at 4 h was observed in the lungs of

RCAN1-deficient mice compared to the wild-type mice, which did not reach statistical sig-

nificance (S5 Fig). These results demonstrate that RCAN1 plays a negative regulatory role in

NF-κB activity in vivo and RCAN1 deficiency has a limited impact on ISRE binding activity

in vivo.

Fig 8. RCAN1-deficicent mice show increased activity of transcription factor NF-κB in vivo following P. aeruginosa LPS challenge. Wild-type

(+/+) and RCAN1-deficient (-/-) mice were challenged intranasally with 1 μg P. aeruginosa LPS per gram of body weight, or an equivalent volume of

saline as a control (NT) for 4 h or 24 h. Nuclear proteins were extracted from lung tissues and subjected to EMSA by incubation with 32P-labeled NF-κB

DNA probe (A). Data are representative of six individual experiments. Scan densitometry was performed for analysis of NF-κB activation (B), and data

are expressed as fold change versus wild-type untreated lungs (n = 6 ± SEM, ����p<0.0001).

https://doi.org/10.1371/journal.pone.0197491.g008
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RCAN1-deficent mice have increased neutrophil recruitment in vivo
following P. aeruginosa LPS stimulation

TLR signaling is essential for recruitment of neutrophils to the site of injury or bacterial infec-

tion [36, 37]. To examine the impact of RCAN1 deficiency on neutrophil infiltration in vivo,

Fig 9. RCAN1 deficiency does not significantly affect TRIF-IRF-ISRE activity in lung following P. aeruginosa LPS challenge. Wild-type (+/+) and

RCAN1-deficient (-/-) mice were challenged intranasally with 1 μg P. aeruginosa LPS per gram of body weight, or an equivalent volume of saline as a

control (NT) for 4 h or 24 h. Nuclear proteins were extracted from lung tissues and subjected to EMSA by incubation with 32P-labeled ISRE DNA probe

(A). Data are representative of six individual experiments. Nuclear proteins from the lungs of wild-type (+/+) mice treated with P. aeruginosa LPS for 4

h were incubated with or without specific antibodies to IRF3 and IRF7 for 1 h or 50 X unlabeled ISRE probe for 30 min at room temperature before

EMSA experiment using the 32P-labeled ISRE probe (B). Data are representative of five individual experiments. Scan densitometry was performed for

analysis of ISRE activity (C, D), and data are expressed as fold change. n = 6 ± SEM (C). n = 5 ± SEM �p<0.05, ��p<0.01, ���p<0.001 (D).

https://doi.org/10.1371/journal.pone.0197491.g009
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the lung and BALF lysates from LPS-challenged wild-type and RCAN1-deficient mice at 4 h

and 24 h were collected to measure the activity of the neutrophil granule-specific enzyme mye-

loperoxidase (MPO) (Panel A and B in S6 Fig). A significantly increased MPO activity was

found in the lungs of RCAN1-deficient mice compared to wild-type mice. In addition, the

lung histology data suggest that RCAN1-deficient mice have enhanced neutrophil recruitment

in response to P. aeruginosa LPS stimulation compared to wild-type counterparts (Panel C in

S6 Fig). These results indicate that RCAN1 plays an important role in LPS-induced neutrophil

recruitment in the lungs.

Discussion

TLRs are highly conserved pattern-recognition receptors that are essential for production of

proinflammatory cytokines and antimicrobial mediators in innate immunity [38]. Ligand

binding to TLRs activates two distinct pathways, MyD88-NF-κB and TRIF-IRF-ISRE, which

are tightly controlled in healthy individuals [1]. Negative regulation of TLR signaling is essen-

tial for maintaining proper homeostasis and preventing immune pathology [15]. Although

many negative regulators have been identified in the past decade, the molecular mechanisms

of how these negative regulators govern TLR signaling are incompletely understood. We

previously identified a small evolutionary conserved protein, RCAN1, as a central negative

regulator of inflammation during P. aeruginosa infection [16]. Herein, we utilized P. aerugi-
nosa LPS to directly activate TLR4 signaling and revealed a differential role of RCAN1 in regu-

lation of MyD88-NF-κB and the TRIF-IRF-ISRE pathways in vitro: RCAN1 downregulates

MyD88-NF-κB pathway through inhibition of IκBα phosphorylation, and promotes activation

of TRIF-ISRE pathway through regulation of IRF7 activation and expression (S7 Fig). The in
vivo results support an inhibitory role of RCAN1 in the MyD88-NF-κB pathway, and the

impact of RCAN1 deficiency on neutrophil recruitment suggests an important role of RCAN1

in host defense against microbial infection.

The RCAN1 gene consists of 7 exons, of which exons 1–4 can be alternatively spliced into

different transcript isoforms [39]. Alternative splicing and differential promoter usage contrib-

ute to generation of different RCAN1 isoforms. The two main isoforms, RCAN1-1 and

RCAN1-4, contain exons 1, 5, 6, 7 and exons 4, 5, 6, 7, respectively, and have been identified

in a variety of tissues. By contrast, RCAN1-2 and RCAN1-3 proteins are not detectable in tis-

sues and their functions are not clear [18]. However, the expression of the isoforms RCAN1-1

and RCAN1-4 is regulated differently. RCAN1-1 is constitutively expressed in most tissues,

whereas the transcription of RCAN1-4 is induced by several stimuli, including intracellular

Ca2+, vascular endothelial growth factor (VEGF), injury and oxidative stress [40–43]. In this

study, we found that P. aeruginosa LPS largely induced mRNA expression of RCAN1-4, but

not RCAN1-1 in macrophages, suggesting a potential involvement of RCAN1-4 in LPS-acti-

vated TLR4 signaling. Additionally, the inhibitory effects of RCAN1-1 on NF-κB activity have

also been previously identified [44]. Thus, it remains possible that the constitutively expressed

RCAN1-1 also plays a role in regulation of TLR signaling.

In the MyD88-NF-κB pathway, we discovered an enhanced phosphorylation level of IκBα,

but not IKKα and IKKβ, in P. aeruginosa LPS-stimulated RCAN1-deficient BMMs. This led to

increased NF-κB activation and upregulated IL-6, TNF and MIP2 production. Previous studies

have shown that RCAN1 is able to inhibit NF-κB activation by affecting IκBα phosphorylation,

and the regulation of IκBα by RCAN1 can be achieved through calcineurin-dependent [45–

48] or -independent mechanisms [44, 49]. Calcineurin is a Ca2+/calmodulin-dependent serine/

threonine phosphatase that consists of a catalytic subunit, calcineurin A, and a regulatory sub-

unit, calcineurin B [50]. RCAN1 interacts with calcineurin A and inhibits the calcineurin-
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dependent phosphatase activity [20]. Calcineurin was previously shown to facilitate NF-κB

activation [46–48, 51, 52]. A study reported that calcineurin synergizes with protein kinase C-

dependent pathway to enhance NF-κB DNA binding activity by inducing phosphorylation

and degradation of IκBα in T-cell lines [47]. Moreover, constitutively active expression of cal-

cineurin in muscle C2C12 cells is associated with increased phosphorylation level of IκBα
[48]. Additionally, calcineurin has been identified to upregulate TCR-induced NF-κB activity

through interaction with Carma1-Bcl10-Malt1 complex and dephosphorylation of Bcl10 in T-

cells [51, 52]. By contrast, RCAN1 has also been found to inhibit NF-κB activation indepen-

dent of calcineurin activity [44, 49]. A recent study found that the N-terminal domain

RCAN1 directly interacts with IκBα and affects the phosphorylation of IκBα at tyrosine 42 in

HEK293 cells [44]. Therefore, it is possible that RCAN1 suppresses P. aeruginosa LPS-induced

MyD88-NF-κB pathway indirectly through inhibition of calcineurin or directly interacts with

IκBα.

RCAN1 inhibits the NFAT pathway by limiting calcineurin activity [20]. Many studies have

demonstrated cooperation between NF-κB and NFAT pathways. NF-κB and NFAT can recog-

nize similar DNA binding sites in target gene promoters, and coordination between them

mediates maximal production of cytokines and chemokines [53, 54]. Physical interactions

between NF-κB and NFAT have been found in cardiomyocytes, which promote the gene

expression for cardiac hypertrophic responses [55]. Moreover, we recently identified that

inhibition of NFAT reduced NF-κB DNA binding activity and NF-κB inhibition diminished

NFAT DNA binding activity during P. aeruginosa lung infection [56]. In light of these facts, it

is likely that increased NFAT activity contributes to increased P. aeruginosa LPS-induced NF-

κB activation in RCAN1-deficient systems.

There is accumulating evidence for RCAN1’s role in pathway activation; RCAN1 enhances

cAMP-induced CREB phosphorylation and CREB-mediated gene transcription in neuronal

PC12 cells [57], and mediates neuronal apoptosis by activation of caspase-3 and caspase-9

responsible for apoptotic signaling [58]. Furthermore, the positive role of RCAN1 has previ-

ously discovered to depend on post-translational modifications such as phosphorylation and

expression level of RCAN1 [59, 60]. Our data provide the first evidence that RCAN1 contrib-

utes to the activation of the TRIF-IRF7-ISRE pathway. RCAN1 deficiency impedes P. aerugi-
nosa LPS-induced ISRE binding activity and TRIF-IRF-ISRE-mediated mRNA and protein

expression of IFNβ, RANTES and IP-10 in vitro. Impaired IRF7 mRNA and protein expres-

sion, but not IRF3, were shown in RCAN1-deficient BMMs, suggesting that RCAN1 facilitates

the TRIF-ISRE pathway by targeting IRF7. A study reported that calcineurin negatively regu-

lates the TRIF pathway-mediated IFNβ production in LPS-activated mouse macrophage cell

line RAW 264.7 [61]. Thus, RCAN1 may promote TRIF-IRF7-ISRE pathway activation by

inhibition of calcineurin. However, considering the ability of RCAN1 to modulate protein

phosphorylation, it remains formally possible that RCAN1 directly modulates phosphorylation

of IRF7 or related proteins in the pathway.

The TRIF-dependent pathway plays a well-characterized role in host antiviral defense by

increasing production of type-I IFN production [62]. Moreover, it also defends against bacte-

rial infection by mediating MyD88-independent activation of NF-kB and production of

inflammatory mediators [63]. However, the mechanisms involved in TRIF-mediated host pro-

tection against bacterial pathogens are not fully understood. Recent studies have shown that

TRIF deficiency reduces production of proinflammatory cytokines and chemokines, such as

IFNβ, TNFα, KC, RANTES and IP-10, and diminished neutrophil recruitment, leading to

increased bacterial burden and decreased survival [11, 64, 65]. In this study, we dissected the

differential roles of the RCAN1 in regulating the production of chemoattractants of neutro-

phils and how this affected neutrophil recruitment triggered by LPS. We found that the LPS-
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activated RCAN1-deficient BMMs displayed reduced, but not abolished, RANTES and IP-10

production via the TRIF-IRF-ISRE pathway. By contrast, the MyD88-mediated production of

chemokine MIP-2 was greatly enhanced in RCAN1-deficient BMMs. Furthermore, neutrophil

recruitment in the lungs of RCAN1-deficient mice was not affected by impaired production of

RANTES and IP-10 mediated through TRIF pathway by BMMs. These findings suggest that

the role of MyD88-dependent pathway is dominant over TRIF-dependent pathway in bacterial

infection. A previous study showed that MyD88-deficient mice manifested a much more

remarkable phenotype, including reduced survival and impaired bacterial clearance, compared

with TRIF-deficient mice [65]. Thus, our findings support the established model for a domi-

nant role of the MyD88-dependent pathway in response to bacterial infection.

The in vivo pattern of TRIF-ISRE-regulated IFNβ, RANTES and IP-10 production in lungs

and BALF following P. aeruginosa LPS stimulation was not consistent with the in vitro data.

Furthermore, the in vivo ISRE binding activity was not significantly impaired in RCAN1-defi-

cient mice, whereas RCAN1 deficiency greatly reduced ISRE binding activity in macrophages.

This could be explained by the fact that lung tissues consist of different kinds of immune cells

and non-immune cells other than macrophages, and RCAN1 may function differently in these

other cell types. Previous reports have described diverse roles of RCAN1 in calcineurin activ-

ity, which depends on cell types and cellular context [21, 59, 60, 66, 67]. Phosphorylation of

RCAN1 by TAK1 at serine 94 and 136, switches RCAN1 from an inhibitor to a facilitator of

calcineurin-NFAT signaling in cardiomyocytes [59]. In cardiac hypertrophic model in mice,

RCAN1 promotes calcineurin activity [21]. In contrast, in T cells [67] and many other cell

types, RCAN1 inhibits calcineurin activity. Similarly, CpG DNA-induced TLR signaling stim-

ulates IFNβ production in dendritic cells, but not in macrophages [68]. Many cell types have

the TRIF pathway capacity including dendritic cells, neutrophils, natural killer (NK) cells, T-

cells, lung epithelial cells, lung endothelial cells and fibroblasts in bacterial or viral infection

[69–77]. It is possible that these cell types participate in the in vivo model of P. aeruginosa
infection. However, how RCAN1 and TRIF function in each one of these cell types is not clear.

A combination of the possible inhibitory, stimulatory or no effect of RCAN1 on TLR signaling

in different cell types in vivo likely contributes to the results that we observed in RCAN1-defi-

cient mice in vivo. Although the in vivo data in RCAN1-deficient mice could not specifically

reveal the role of macrophages, they provide the valuable information of how MyD88-depen-

dent and TRIF-dependent cytokine/chemokine profile changes in RCAN1-deficient animals.

Future studies should focus on the investigation of RCAN1 deficiency in macrophages in vivo.

In this study, we also identified a differential role of RCAN1 in regulation of MAPK activa-

tion, whereby RCAN1 deficiency leads to enhanced ERK phosphorylation and reduced JNK

phosphorylation in response to P. aeruginosa LPS stimulation in vitro, supporting the notion

that RCAN1 can differentially regulate signal transduction pathways. The enhanced ERK

phosphorylation in P. aeruginosa LPS-stimulated RCAN1-deficient macrophages is consistent

with our previous observation of ERK hyperphosphorylation in RCAN1-deficient macro-

phages during P. aeruginosa infection [16]. ERK and NF-κB p65 interactions have been previ-

ously described [78], and enhanced ERK phosphorylation upregulates NF-κB activity [79–81].

JNK plays a critical role in inducing the expression of pro-apoptotic proteins [82]. Multiple

studies have demonstrated crosstalk between NF-κB and JNK activation. NF-κB was found to

suppress JNK activation by mediating production of JNK inhibitors [83–85]. In addition, LPS

is able to induce apoptosis in macrophages through autocrine secretion of TNFα [86]. There-

fore, it is possible that the enhanced NF-κB activation by RCAN1 deficiency would inhibit the

P. aeruginosa LPS-induced JNK phosphorylation and pro-apoptotic events.

Altogether, our findings demonstrate a novel regulatory mechanism of RCAN1 in TLR sig-

naling, which differentially regulates MyD88-NF-κB and TRIF-IRF7-ISRE signaling pathways.
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This study broadens our understanding of regulation of TLR signaling in innate immunity

and suggests that RCAN1 could be a potential therapeutic target in many inflammatory and

autoimmune diseases with dysregulation of TLR signaling.

Supporting information

S1 Fig. Rcan1-4 transcription is induced by P. aeruginosa LPS in macrophages. Wild-type

(+/+) BMMs were treated with 200 ng/ml P. aeruginosa LPS for 1 h, 2 h, 4 h or left untreated

(NT). Total RNA isolated from these cells was reverse transcribed to cDNA and subjected to

real-time quantitative PCR for Rcan1-1 and Rcan1-4. The Rcan1-1 and Rcan1-4 gene expres-

sion was normalized to housekeeping control gene HPRT (n = 3 ± SEM, �p<0.05).

(TIFF)

S2 Fig. RCAN1-deficient BMMs display enhanced cytokine gene expression in MyD88-de-

pendent pathway and reduced cytokine gene expression in TRIF-dependent pathway dur-

ing P. aeruginosa LPS stimulation. Wild type (+/+) and RCAN1-deficient (-/-) BMMs were

treated with 200 ng/ml P. aeruginosa LPS for 1 h, 2 h, 4 h or left untreated (NT). Total RNA

isolated from these cells was reverse transcribed to cDNA and subjected to real-time quantita-

tive PCR for determining IL-6 (A), TNF (B), MIP2 (C) IFN-β (D), RANTES (E) and IP-10 (F)

gene expression. The gene expression was normalized to housekeeping control gene HPRT
(n = 3 ± SEM, �p<0.05, ���p<0.001 ����p<0.0001).

(TIFF)

S3 Fig. RCAN1 deficiency upregulates MyD88-mediated cytokine and chemokine produc-

tion but downregulates TRIF-IRF-ISRE-mediated cytokine and chemokine production in

BALF alveolar macrophages during P. aeruginosa LPS stimulation. Wild-type (+/+) and

RCAN1-deficient (-/-) alveolar macrophages were stimulated with 200 ng/ml P. aeruginosa
LPS for 6 h or left untreated (NT). Cell supernatants were collected for the determination of

IL-6 (A), TNF (B), MIP2 (C), IFNβ (D), RANTES (E) and IP-10 (F) secretion by ELISA.

(n = 3 ± SEM, �p<0.05).

(TIFF)

S4 Fig. RCAN1 differentially regulates MAPK kinase activation in vitro in response to P.

aeruginosa LPS challenge. Wild-type (+/+) and RCAN1-deficient (-/-) BMMs were chal-

lenged with 200 ng/ml P. aeruginosa LPS for 3 h, 6 h, 12 h and 24 h or left untreated (NT). Cell

lysates were subjected to Western blot analysis for phospho- and total ERK, JNK and p38, as

well as actin as loading control. Blots are representative of three independent experiments (A).

Densitometry analysis of phosphorylated ERK (B), JNK (C) and p38 (D) was normalized to

their total protein respectively (n = 3 ± SEM, �p<0.05, ��p<0.01).

(TIFF)

S5 Fig. RCAN1 deficiency does not significantly impair IRF7 mRNA expression in lung in

response to P. aeruginosa LPS stimulation. Wild-type (+/+) and RCAN1-deficient (-/-) mice

were administered intranasally with 1 μg P. aeruginosa LPS per gram of body weight, or an

equivalent volume of saline as a control (NT) for 4 h. The total RNA extracted from lungs was

reverse transcribed to cDNA and subjected to real-time quantitative PCR for IRF3 (A) and

IRF7 (B) gene expression. The gene expression was normalized to housekeeping control gene

HPRT (n = 3 ± SEM).

(TIFF)

S6 Fig. RCAN1-deficient mice display enhanced neutrophil infiltration in lung following

P. aeruginosa LPS stimulation. Wild-type (+/+) and RCAN1-deficient (-/-) mice were
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stimulated intranasally with 1 μg P. aeruginosa LPS per gram of body weight, or an equivalent

volume of saline as a control (NT) for 4 h or 24 h. Lungs and BALF were collected after 4 h

or 24 h. MPO activities were measured in the Lung (A) and BALF (B) lysate (n = 9 ± SEM,
���p<0.001). The upper lobe of the left lung was collected for H&E staining (original magnifi-

cation X 20 or X 100) (C). Pictures are representative of 6 mice.
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S7 Fig. Schematic representation of RCAN1-regulated MyD88- and TRIF-dependent sig-

naling pathways. Binding of P. aeruginosa LPS to TLR4 activates MyD88- and TRIF-depen-

dent signaling pathways. RCAN1 downregulates MyD88-NF-κB pathway through inhibition

of IκBα phosphorylation, and promotes activation of TRIF-ISRE pathway through regulation

of IRF7 activation and expression.
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