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Abstract

Background: Depression and overweight/obesity often cooccur but the underlying

neural mechanisms for this bidirectional link are not well understood.

Methods: In this functional magnetic resonance imaging study, we scanned 54 individ-

uals diagnosedwithdepressivedisorders (DD) and48healthy controls (HC) to examine

how diagnostic status moderates the relationship between bodymass index (BMI) and

brain activation during anticipation and pleasantness rating of food versus nonfood

stimuli.

Results:Wefounda significantBMI-by-diagnosis interaction effect on activation in the

right inferior frontal gyrus (RIFG) and anterior cingulate cortex (ACC) during food ver-

sus nonfood anticipation (p < .0125). Brain activation in these regions was greater in

HCwith higher BMI than in HCwith lower BMI. Individuals with DD showed an oppo-

site pattern of activation. Structural equation modeling revealed that the relationship

between BMI, activation in the RIFG and ACC, and participants’ desire to eat food

items shown in the experiment depended on the diagnostic status.

Conclusions: Considering that food anticipation is an important component of appeti-

tive behavior and that the RIFG and ACC are involved in emotion regulation, response

inhibition and conflict monitoring necessary to control this behavior, we propose that

future clinical trials targeting weight loss in DD should investigate whether adequate

mental preparation positively affects subsequent food consumption behaviors in these

individuals.
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1 INTRODUCTION

Depressive disorders (DD) (Judd et al., 2000) and overweight/obesity

(Afshin et al., 2017) are important personal and public health problems.

Over 264 million people worldwide suffer from depression (https://

www.who.int/news-room/fact-sheets/detail/depression), and over 1.9

billion adults are overweight (https://www.who.int/news-room/fact-

sheets/detail/obesity-and-overweight). DD and overweight/obesity

often cooccur (Jantaratnotai et al., 2017) and may share common bio-

logical pathways (Milaneschi et al., 2019). Being overweight/obese

increases the risk of developingmood and anxiety disorders (Antoniou

et al., 2017; Luppino et al., 2010; Mannan et al., 2016) and predicts

more severe mood symptoms (Opel et al., 2015), while weight loss is

associatedwith improvements in depression symptoms (Burgmer et al.,

2014; Mitchell et al., 2014). In the opposite direction, current mood

state is found to influence motivation for food reflected by increased

subjective appetite and attentional bias toward food cues (Hepworth

et al., 2010). Thebidirectional linkbetweendepressionandobesitymay

be explained by factors including inflammatory and metabolic mech-

anisms (Patist et al., 2018) as well as functioning of systems involved

in homeostatic adjustments (Pariante & Lightman, 2008) and inte-

gration of homeostatic responses and emotion regulation (Milaneschi

et al., 2019). Understanding the neurobiological factors that con-

tribute to the bidirectional relationship between DD and unhealthy

weight is critical for development of prevention and intervention

treatments.

It was shown that cognitive function is reduced in individuals with

DD relative to HC (Clark et al., 2009), more so in individuals with DD

and obesity than in those with DD and normal weight (Hidese et al.,

2018). This effect may be related to aberrant brain structure and func-

tion in individuals with overweight/obesity and those with DD. For

example, lower grey matter volume was found in both individuals with

higher BMIs (García-García et al., 2019;Hamer&Batty, 2019) and indi-

viduals with DD (Wise et al., 2016). Noteworthy, grey matter volume

in the prefrontal and temporal cortices was lower in individuals with

DD who had higher BMI (Hidese et al., 2018; Opel et al., 2015) and in

those with more severe course of DD (Opel et al., 2015). The findings

regarding the differences between obese and lean individuals for food

versus nonfood pictures are inconsistent. One meta-analysis did not

identify significant differences between these two groups (Morys et al.,

2020); however, the other meta-analysis determined that individuals

with obesity, compared to those with normal weight, had greater acti-

vation in the left dorsomedial prefrontal, right inferior frontal (RIFG),

superior frontal, anterior cingulate cortices (ACC), and parahippocam-

pal gyri, but lower activation in the left dorsolateral prefrontal and

insular cortices for food versus nonfood stimuli (Brooks et al., 2013).

Greater activation in the insula, striatum, and fusiform gyrus predicted

less successful longitudinal outcome in the weight maintenance pro-

gram (Murdaugh et al., 2012). Many of these same regions (e.g., the

ACC, insula, amygdala, prefrontal cortices) showed aberrant activa-

tion patterns in individuals with DD versus HC (Hamilton et al., 2012;

Li & Wang, 2020) with the insula showing distinct activation patterns

as a function of appetite decrease/increase in individuals with DD

in response to the pictures of food (Simmons et al., 2016; Simmons

et al., 2020). The precuneus and ACC showed stronger activation in

obese individuals with DD and obese HC during word pleasantness

judgments (Restivo et al., 2020).

Appetitivebehavior starts before foodencounters and consumption

and includes a food anticipation phase when no sensory information

about food (visual image, smell, etc.) is yet available. For example, one

might think “I wish I could eat a steak right now” in the middle of a

meeting despite the absence of direct food cues. Cognitive and neural

processes associated with food anticipation can motivate participants

to obtain and consume food even when they are not hungry (Colagiuri

& Lovibond, 2015). While motivational processes elicited during food

anticipationmay benefit cognitive functioning—anticipating food prior

to performing on a cognitive test improved test performance in over-

weight/obese but not lean individuals (Segovia et al., 2019)—they can

also lead to food overconsumption (Colagiuri & Lovibond, 2015) and

eventual weight gain. Anticipation of food-related reward was linked

to greater activation in the ACC and parahippocampal gyrus in emo-

tional eaters (Bohon et al., 2009) and in the ventral striatum in hungry

individuals (Simon et al., 2017). Lower ventral striatal activation dur-

ing anticipation of food-related reward was associated with greater

weight loss duringdieting (Simonet al., 2018). In addition tohunger and

weight status, mood disorders also may affect anticipatory process-

ing. For example, activation patterns in the ACC, prefrontal, parietal,

and ventral striatal regions distinguished individuals with mood disor-

ders from HC during anticipation of emotional stimuli (Manelis et al.,

2016;Manelis et al., 2020). Taken together, these findings suggest that

both participants’ diagnostic status (DDvs.HC) and their BMImay con-

tribute to neurobiology underlying food anticipation. Although brain

responses during food anticipation could be an important predictor of

subsequent appetitive behavior, it remains unclear howdepression and

BMI are linked to anticipatory brain activation.

We examined the interaction effect of diagnostic status and BMI

on anticipatory brain activation in a task involving anticipation of food

and nonfood items and then, judging the pictures of food and non-

food items as pleasant or unpleasant. Inclusion of nonfood items was

necessary to establish an activation baseline for visual and cognitive

processing. While the World Health Organization provides standard

BMI categories, the threshold to label individuals as overweight/obese

is subjective, “ill-defined” (Nuttall, 2015), and may change over time

to reflect current BMI distributions in the population, mortality rates

associated with obesity, and other factors (Ahima & Lazar, 2013;

Hothorn et al., 2017; Nuttall, 2015). To avoid potential biases of BMI

categorization, we followed the Research Domain Criteria approach

(Insel et al., 2010) and examined BMI as a continuous variable. We

hypothesized that, during anticipation of food versus nonfood pictures,

diagnostic status would moderate the relationship between BMI and

brain activation in the regions sensitive to food versus nonfood stimuli

in normalweight versus obese individuals (Brooks et al., 2013). Consid-

ering impaired emotion regulation in individuals with DD (Joormann

& Gotlib, 2010), anticipating food stimuli might be more distressing

for individuals with DD and high BMI than to other participants due

to their reduced ability to inhibit food consumption. This may result

https://www.who.int/news-room/fact-sheets/detail/depression
https://www.who.int/news-room/fact-sheets/detail/depression
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
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in reduced activation in prefrontal cortical brain regions responsible

for emotion regulation. The relationship between anticipatory brain

responses associated with food picture processing, BMI and ratings

of how much participants liked and wanted to eat food items pre-

sented in the study was examined using structural equation modeling.

Thesemodels provided additional insight into brain-behavior response

to food versus nonfood stimuli in individuals with DD and HC along

BMImeasures.

2 METHOD AND MATERIALS

2.1 Participants

The study was approved by the University of Pittsburgh Institu-

tional Review Board. Participants were recruited from the community,

local universities, and medical centers. Written informed consent was

obtained from all participants. HC had no personal or family history of

psychiatric disorders. Symptomatic individuals met DSM-5 criteria for

major depressive or persistent depressive disorders that are referred

here collectively as depressive disorders (DD). Individualswith depres-

sive disorderswere recruited acrossmood states. All participantswere

right-handed and fluent in English. The groups were matched on age,

sex, and BMI. We scanned 113 participants (53 HC and 60 DD). Of

them, 5HCand6DDwere removed from the analyses due to excessive

motion (>4 mm between the fMRI volumes in any direction), scan-

ning artifacts, or more than 20% of missing responses on the task, thus

leaving 102 participants (48 HC and 54 DD) in the analyses. Partici-

pants were schedule to arrive to the University of Pittsburgh/UPMC

Magnetic Resonance Research Center 60–90 min before the scan to

complete practice trials, change to the MRI compatible clothes, and

complete the set up for the scan. During this time, participants were

not allowed to eat or drink anything but water.

2.2 Clinical assessment

All diagnoses were made by a trained clinician and confirmed by a

psychiatrist according to DSM-5 criteria using SCID-5 (First et al.,

2015). We also assessed current depression symptoms (Hamilton Rat-

ing Scale for Depression; HRSD-25; Hamilton, 1960), current mania

symptoms (Young Mania Rating Scale; YMRS; Young et al., 1978), and

lifetime dimensional symptoms of depression (Moods Spectrum self-

report questionnaire; MOODS-SR; Dell’Osso et al., 2002). A total psy-

chotropic medication load was calculated for each participant (Hassel

et al., 2008;Manelis et al., 2016). Exclusion criteria included ahistory of

head injury, metal in the body, pregnancy, claustrophobia, neurodevel-

opmental disorders, systemic medical illness including any metabolic

or endocrine disorders (e.g., diabetes, hypo/hyperthyroidism, hyper-

tension), premorbid IQ < 85 per the National Adult Reading Test

(NART; Nelson, 1982), current alcohol/drug abuse, YMRS scores > 10

at scan, meeting criteria for any psychotic-spectrum disorder. Partici-

pants were excluded from the study if they were on steroid, opioid, or

thyroid medications as well as the medications for high blood pressure

or cholesterol.

2.3 Behavioral assessments

Participants rated their feelings toward food (i.e., hunger, fullness, urge

to eat) prescan using a 6-question Visual Analogues Scale (VAS) rang-

ing from 0 (“Not at all”) to 100 (“Extremely”). These data were only

available for 33HC and 36DD.

Inside the scanner, participants performed a Food and Object Cued

Encoding Task (Figure 1). Each trial of this task started with a 4-s antic-

ipation phase during which participants were presented with either

a triangle predicting food or a circle predicting object categories of

pictures. During practice trials, participants learned the association

between abstract shapes and stimulus categories aswell as the instruc-

tions to mentally prepare for the category of items predicted by the

cue. After the cue, a stimulus from the predicted category was pre-

sented for the length of the response time but no longer than 1.5 s. All

stimuli were taken from the Food-pics image database (Blechert et al.,

2014). Participants rated the stimulus as pleasant or unpleasant by

pressing a corresponding button with the index finger on one hand for

pleasant images andon theother hand for unpleasant images. Thehand

assignment for pleasantness rating was counterbalanced across sub-

jects. A total of 48 trials (50% of food stimuli) were presented over two

4-min runs. The rest periods between the trials ranged from3.3 to4.9 s.

After the scan, participants completed a questionnaire regard-

ing the strategies that they used during mental preparation. Based

on a pilot study that used an open-end questions about anticipa-

tion strategies, we generated a list of six strategies: verbal, visual,

rule-related, sensory, memory, and suppression. Specifically, a verbal

strategy involved verbalizing the cued category (e.g., repeated the

words “food” or “object” when presented with the cues), a visual strat-

egy involved visualizing specific items from the category (e.g., pictured

a burger or a baseball bat), a rule-based strategy involved trying to

remember or repeat task-related rules, a sensory strategy involved

imagining a related experience (e.g., imagined the taste of a burger

or swinging a baseball bat), a memory strategy involved thinking of a

related memory (e.g., getting a burger with friends last week or hitting

a home run in 7th grade), and a suppression strategy involved trying to

ignore or suppress cued categories of items. Participants could select

asmany strategies from the list as theywished. If theydidnot use anyof

these strategies, participants were given options to indicate that they

did not try to prepare themselves for the cued categories of items, or

that they did not use any strategies from the list. In the latter case,

participants were asked to describe their own strategy in the space

provided for each category of items.

After completing the questionnaire regarding anticipation strate-

gies, participants were shown food pictures they had seen during the

scan andwere asked to indicate on a 9-point scale (1—do not like/want

it, 9—like/want it very much) howmuch they normally like to eat those

items (“LIKE” condition) and howmuch they wanted to eat them “right

now” at the time of the assessment (“WANT” condition).
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F IGURE 1 An example of the food and object trials in the Food andObject Cued Encoding Task

2.4 Neuroimaging data acquisition

The neuroimaging data were collected at the University of Pitts-

burgh/UPMC Magnetic Resonance Research Center using a 3T

Siemens Prisma scanner with a 64-channel head coil and named

according to the ReproIn convention (Visconti di Oleggio Castello

et al., 2020). The EPI data were collected in the anterior-to-posterior

direction using a multiband sequence (factor = 8, TR = 800 ms, reso-

lution = 2 × 2 × 2 mm, FOV = 210, TE = 30 ms, flip angle = 52◦, 72

slices, 315 volumes). High-resolution T1w images were collected using

theMPRAGEsequence (TR=2400ms, resolution=0.8×0.8×0.8mm,

208 slices, FOV = 256, TE = 2.22 ms, flip angle = 8◦). Field maps were

collected in the AP and PA directions using the spin echo sequence

(TR = 8000, resolution = 2 × 2 × 2 mm, FOV = 210, TE = 66 ms, flip

angle= 90◦, 72 slices).

2.5 Data analyses

2.5.1 Clinical data analysis

Demographic and clinical characteristics were compared between

groups using t- and chi-square tests. A total psychotropic medication

load was calculated for each participant (Hassel et al., 2008; Manelis

et al., 2016).

2.5.2 Behavioral data analysis

The available VAS data were compared between groups using a t-test.

A mean percent of “pleasant” responses, the differences in the percent

of food versus object pictures judged as pleasant, and reaction time

(RT) in the encoding task as well as the “LIKE” and “WANT” ratings of

food were calculated for each subject. All repeated measures analy-

ses were conducted using a mixed effects model (“lme4” [Bates et al.,

2015], “lmerTest” [Kuznetsova et al., 2017], and “psycho” [Makowski,

2018] packages in R). Chi-square tests were used to determine if the

choice of anticipatory strategies depended on participants diagnos-

tic status (DD vs. HC) and BMI category (normal weight, overweight,

obese).

2.5.3 Neuroimaging data analysis

Preprocessing

The DICOM images were converted to a BIDS (Gorgolewski et al.,

2016) dataset using heudiconv version 0.5.4 (Halchenko et al., 2019).

Data quality was examined using mriqc 0.15.1 (Esteban et al., 2017).

The data were preprocessed using fmriprep 20.1.1 (Esteban et al.,

2019). Specifically, T1w images were skull-stripped, brain surfaces

were reconstructed using recon-all (FreeSurfer 6.0.1;Dale et al., 1999),

and brain masks were generated. Preprocessing steps included gener-

ating a reference volume and its skull-stripped version using a custom

methodology of fmriprep, estimating head-motion parameters with

respect to the BOLD reference before any spatiotemporal filtering

using mcflirt (FSL 5.0.9; Jenkinson et al., 2002; RRID:SCR_002823),

and applying slice-time correction using 3dTshift (Cox & Hyde, 1997;

AFNI 20160207; RRID:SCR_005927). Fieldmaps were estimated with

3dQwarp (Cox & Hyde, 1997; AFNI 20160207) based on two spin

echo images collected with opposing phase-encoding directions (i.e.,

anterior-to-posterior and posterior-to-anterior). Based on estimated

susceptibility distortion, a corrected EPI (echo-planar imaging) ref-

erence was calculated for more accurate coregistration with the

anatomical reference. The BOLD reference was coregistered to

the T1w reference using bbregister (FreeSurfer) (Dale et al., 1999;

RRID:SCR_001847) which implements boundary-based registration

(Greve & Fischl, 2009). Coregistration was configured with six degrees

of freedom. The BOLD time-series were resampled onto the fsaver-

age surfaces (FreeSurfer reconstruction nomenclature) and onto their

native space by applying a single, composite transform to correct

for head-motion and susceptibility distortions. The BOLD time-series

were resampled into standard space, generating a preprocessed BOLD

image inMNI152NLin2009cAsymspace. Automatic removal ofmotion

artifacts using independent component analysis (ICA-AROMA; Pruim

et al., 2015) was performed on the preprocessed BOLD after removal

of nonsteady state volumes and spatial smoothing with an isotropic,
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Gaussian kernel of 6mmFWHM (full-width half-maximum). After that,

global signals within the CSF and WM were extracted and regressed

out from preprocessed BOLD data and high-pass temporal filter (90-

s cutoff) was applied. All resamplings were performed with a single

interpolation step by composing all the pertinent transformations (i.e.,

head-motion transform matrices, susceptibility distortion correction

when available, and coregistrations to anatomical and output spaces).

Gridded (volumetric) resamplings were performed using antsApply-

Transforms (ANTs), configured with Lanczos interpolation to minimize

the smoothing effects of other kernels (Lanczos, 1964).

Subject-level analysis

Subject-level statistical maps were computed using FSL 6.0.3 installed

system-wide on the workstation with GNU/Linux Debian 10 operat-

ing system with NeuroDebian repository (Halchenko & Hanke, 2012).

A hemodynamic response was modeled using a gamma function. A

subject-level model included 4 explanatory variables: food cues, object

cues, food pictures, and object pictures. To account for individual dif-

ferences in visual stimuli anticipation, perception, andprocessing, brain

activation during anticipation and pleasantness rating of objects was

used as the baseline for the analyses of anticipation and pleasantness

rating of food. The contrasts of interest included food versus objects

during anticipation and food versus objects during pleasantness rating.

Positive differences (increases) showgreater activation for food versus

objects (food > objects), while negative differences (decreases) show

lower activation for food versus objects (food< objects).

Group-level analysis

Primary analyses. Based on the previous meta-analysis (Brooks et al.,

2013) that examined the differences in brain responses to food versus

nonfood stimuli in normal weight and overweight/obese individuals,

we generated a region of interest (ROI) mask composed of the bilat-

eral regions in the superior frontal gyrus, middle frontal gyrus, inferior

frontal gyrus pars triangularis, inferior frontal gyrus pars opercularis,

precentral gyrus, medial frontal cortex, anterior cingulate and paracin-

gulate gyri, juxtapositional lobule cortex, insular cortex, posterior and

anterior portions of parahippocampal gyrus, as well as caudate, puta-

men, pallidum, andaccumbens. To generate theROImask,weextracted

images of the regions described above from theHarvard-Oxford Prob-

abilistic cortical and subcortical structural atlases and then combined

them into one binarizedmask.

The group-by-BMI interaction during anticipation and pleasantness

rating of food versus object stimuli was examined using the swe (Sand-

wich Estimator) approach (Guillaume et al., 2014) in the ROI mask

described above using nonparametric permutation inference with

5000 permutations, Threshold-Free Cluster Enhancement (TFCE) cor-

rection, and the FWE-corrected p values threshold setup to p = .0125

(or 0.05/4) to Bonferroni correct for the two conditions of interest

(anticipation and pleasantness rating) and 2-tailed test (i.e., activation

increase/decrease). Age, gender, and IQ were used as covariates to

account for potential individual differences associated with these

variables. Functional localization was determined using the Harvard-

Oxford cortical and subcortical structural atlases and visualized using

fslviewer. The mean percent signal changes were extracted from the

clusters of voxels showing a significant interaction effect and used in

the follow-up analyses.

Exploratory analyses

The effect of clinical variables on brain activation. Weexplored the effect

ofmedication load, age of illness onset, number of depressive episodes,

and appetite during the past week (as indicated in the HDRS-25) on

the primary findings in the DD group. Appetite was ranked on the

scale between “−2” and “2” with “−2” showing significant decrease in

appetite base on the HDRS-25, “−1” mild decrease in appetite, “0” no

change in appetite, “1” mild increase in appetite, and “2” significant

increase in appetite.

Graph modeling approach. To characterize the relationship between

BMI, food versus object anticipation and pleasantness rating, as well

as the “LIKE” and “WANT” ratings of food and the percent of pleas-

ant items in food versus object categories in individuals with DD and

HC, we employed a graph modeling approach using the TETRAD soft-

ware suite version 6.9.0 (https://github.com/cmu-phil/tetrad; Ramsey

et al., 2010). We used an optimized and parallelized version of the

FastGreedyEquivalence Search (FGES;Chickering, 2002;Meek, 1997;

Ramsey et al., 2017) to discover a completed partially directed acyclic

graph (DAG) that qualitatively characterizes the data. The FGES uses

the input data and background knowledge to search a set of causal

Bayesian networks to return the model with highest Bayesian score.

The following background knowledge was specified to constrain some

connectivity directions: BMI is a trait characteristic that cannot be

affected by brain activation during the task; therefore, the connections

could go from the node denoting BMI to any node denoting brain acti-

vation, but not the other way around. A stimulus anticipation always

preceded in time a stimulus presentation and pleasantness rating.

Therefore, the connections could go from the nodes denoting antici-

patory brain activation to the nodes denoting brain activation during

pleasantness rating, but not the other way around. While, theoreti-

cally, brain activationduringpleasantness ratingon trial “n” could affect

anticipatory brain activation on the trial “n + 1,” in practice, the order

of the trials was randomized and unique for each subject, so the effects

described abovewould reflect noise rather than systematic causal rela-

tionships. The rating of how much participants liked (“LIKE” rating) or

wanted (“WANT” rating) food items shown during the experiment as

well as thedifferences in thepercent of foodversusobject items judged

pleasant could be associated to participants general attitude toward

food, brain activation during the task, BMI, and other factors; there-

fore, we did not restrict the connectivity directions for these variables

and allowed the FGES algorithm to determine them. After the FGES

discovered the completed partially DAGs for each diagnostic group,

DAGs were selected in the equivalence class, and structural equation

modeling (SEM) parametric model was applied to quantitatively char-

acterize the DAG models. The SEM parametric model was estimated

using the regression optimizer and the full InformationMaximum Like-

lihood (FIML) score. The model coefficients, as well as the standard

errors, t-statistics, and p values were calculated. The resulting models

https://github.com/cmu-phil/tetrad
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TABLE 1 Demographic and clinical characteristics

HC DD statistics HC vs. DD

N 48 54

Gender (number females) 36 43 χ2(1)= 0.7, p= .4

DD diagnoses (MDD/PDD) na 36/18 na

Age (years); mean (SE) 28.09 (0.91) 27.9 (0.87) t(100)= 0.15, p= .88

BMI; mean (SE) 25.82 (0.65) 25.25 (0.59) t(100)= 0.66, p= .51

BMI (range) 18.3–39.5 17.7–35.8

Number of overweight/obese participants with BMI> 24.9

(total %)

15/8 (48%) 15/9 (44%) χ2(2)= 0.16, p= .9

IQ (NART); mean (SE) 106.72 (0.82) 110.12 (0.99) t(100)=−2.6, p= .01

VAS before scan; mean (SE) 24.18 (2.76) 22.11 (2.73) t(67)= 0.53, p= .6

Current depression severity (HRSD-25); mean (SE) 1.75 (0.3) 13.31 (1.01) t(100)=−10.4, p< .001

Lifetime depression (MOODS-SR); mean (SE) 2.1 (0.33) 18.56 (0.56) t(100)=−24.54, p< .001

Illness onset (year of age); mean (SE) na 15.15 (0.67) na

Number of participants taking antidepressants na 38 na

Number of participants takingmood stabilizers na 3 na

Number of participants taking antipsychotics na 3 na

Number of participants taking benzodiazepines na 7 na

Number of participants taking stimulants na 6 na

Amean number of psychotropic medications; mean (SE) na 1.15 (0.13) na

Amean total medication load; mean (SE) na 1.5 (0.17) na

Number of participants with comorbid diagnoses
∙ 1 comorbid disorder
∙ 2 comorbid disorders
∙ 3 comorbid disorders
∙ 4 comorbid disorders
∙ 5 comorbid disorders

na 33

13

10

7

2

1

na

Note. The table reports themean and standard error of mean (SE) in parenthesis.

ns, not significant; na, not applicable.

forDDandHCwere compared. Aswewere especially interested in the

factors affecting the “WANT” ratings, we tracked the path that led to

and from “WANT” ratings in each group. Below, we will indicate the

direction of the effect with arrows (“→”). For example, the statement

“A→B”means “A causes/affects B.”

3 RESULTS

3.1 Demographic and clinical

Individuals with DD had significantly higher lifetime and current

dimensional symptoms of depression than HC, but did not differ from

them in age, BMI, gender composition, or hunger/appetite level mea-

sured by the VAS prior to the scan (see Figure S1 for distribution of

the HRSD-25 scores in individuals with DD and Figure S2 for distribu-

tion of the VAS scores in individuals with DD and HC). IQ was in the

same normal range for both groups but was higher for the individuals

with DD than HC (Table 1). Of 54 individuals with DD, 33 had between

1 and 5 comorbid diagnoses (Table 1). The majority of comorbid diag-

noses were anxiety disorders (generalized anxiety disorder: n = 19,

social anxiety disorder: n = 12, panic disorder: n = 8, phobia-related

disorders: n = 4, obsessive-compulsive disorder: n = 2). Three individ-

uals had attention deficit disorder, four had binge eating disorder, and

one had unspecified eating disorder.

When we controlled age, sex, and IQ on the relationship between

BMI and lifetime depression severity, we found a significant positive

partial correlation in DD (r = 0.25, p = .001), but not HC (r = −0.13,

p = .14). More severe lifetime depression symptoms were observed in

individuals with DDwho had higher BMI, compared to their lower BMI

counterparts.

3.2 Behavioral

3.2.1 Pleasantness responses, RT, and “LIKE” and
“WANT” ratings

We found a main effect of stimulus type (food vs. object), but not a

group (i.e., theDD/HC status) or group-by-stimulus interaction effects,
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on percent of items identified as pleasant (F(1,100) = 88.4, p < .001)

and RT during pleasantness rating (F(1,100) = 79.6, p < .001). More

“pleasant” responses were given to food versus objects (t = 9.4, p-

FDR-corrected < .001; pleasant food: 78.15(2.17)%; pleasant objects:

58.22(2.17)%). Participants responded faster to food versus object

stimuli (t=−8.9, p-FDR-corrected< .001; food: 831.9 [17]ms, objects:

903.8 [17] ms). The mean “LIKE” or “WANT” ratings were not associ-

ated with group, BMI, or group-by-BMI interaction (estimated means

for “LIKE” ratings: DD: 6.26 [0.17], HC: 6.49 [0.17]; estimated means

for “WANT” ratings: DD: 4.32 [0.24], HC: 4.25 [0.24]).

Anticipation strategies

Across all participants, the verbal strategy was used by 69.3% par-

ticipants during both food and nonfood items anticipation; the visual

strategy was used by 58.4% participants during food anticipation and

by 50.5%during nonfood items anticipation; the rule strategywas used

by 59.4% for both food and nonfood object items; the sensory strat-

egywas used by 34.7% for food and 28.7% for objects; and thememory

strategy was used by 31.7% for food and 27.7% for objects. Less than

5% of participants tried to actively suppress thoughts about the cued

categories of items. Less than 5% of subjects responded that they did

not use anticipation strategies or did not try to mentally prepare dur-

ing the task. Importantly, there was no significant association between

the choice of a particular anticipation strategy with diagnostic status

and BMI (all p> .05).

3.3 Neuroimaging

3.3.1 Primary analyses

A significant group-by-BMI interaction effect on brain activation dur-

ing anticipation of food versus objects was found in the right inferior

frontal gyrus pars opercularis (RIFGoperc; nvox=56, z-max=4.86 [60,

16, 8]), the RIFG pars triangularis (RIFGtriang; nvox= 91, z-max= 4.51

[48, 36, 0]), and a small cluster in the right anterior cingulate cortex

(ACC; nvox= 5, z-max= 5.36 [12, 16, 30]) (Figure 2).

While the main analyses did not reveal significant group-by-BMI

interaction effect on brain activation during pleasantness rating for food

versus objects, the follow-up analyses conducted on the percent signal

changes extracted from the RIFG pars triangularis, RIFG pars opercu-

laris, and ACC showed a significant group-by-BMI interaction effect

on brain activation during pleasantness rating for food versus objects

in all these regions (RIFGoperc: F(1,95) = 8.8, p = .004; RIFGtriang:

F(1,95) = 8.6, p = .004; ACC: F(1,95) = 8.5, p = .004). However, unlike

the task anticipation condition in which HC showed positive, while DD

showed negative, correlation between BMI and anticipatory brain acti-

vation in the ROIs above for food versus objects, pleasantness rating

elicited a different pattern of activation. Specifically, a linear regression

with age, sex, and IQ as covariates showed that there was a negative

relationship betweenBMI andRIFGoperc, RIFGtriang, andACCactiva-

tionduring pleasantness rating of foodversus objects inHC (RIFGoperc:

t = −3.5, p = .001; RIFGtriang: t = −3.5, p = .001; ACC: t = −4.3,

p < .001), but no significant relationship between these variables in

individuals with DD.

Considering the opposing pattern of the relationship between

BMI and brain activation during anticipation and during pleasantness

rating, we examined the correlations between anticipation and pleas-

antness rating for different categories of stimuli across all participants.

We found a significant negative correlation between anticipatory and

pleasantness rating activation for food versus objects in all regions (RIF-

Goperc: r = −0.64, p < .001; RIFGtriang: r = −0.63, p < .001; ACC:

r = −0.84, p < .001), but no significant correlation between anticipa-

tory and pleasantness rating activation for food and objects separately

in all these regions (all p values > .1) with the exception of the posi-

tive correlation between these variables in the RIFGoperc for objects

(r = 0.23, p = .022), which did not pass the Bonferroni correction

threshold (0.05/9= 0.0056).

Exploratory analyses

The effect of clinical variables on activation in the RIFG and ACC in DD.

Of 54 individuals with DD, 4 reported having increase appetite, 19

reported decreased appetite, while 31 reported normal appetite. Of

48 HC, 3 reported having increased appetite, while 45 reported nor-

mal appetite. The food versus object differences in brain activation in

RIFG regions and ACC during anticipation and pleasantness ratingwere

not associated with medication load, age at illness onset, the num-

ber of depressive episodes, and appetite during the past week (all p

values > .1) in DD. The HRSD-25 scores measuring severity of cur-

rent depression were not significantly associated with the “LIKE” or

“WANT” ratings, or the differences in the food versus object in RT,

pleasantness ratings, or activation in either ROI.

Graph modeling approach. All FGES outputs estimated separately in

individuals with DD and HC (Figure 3) were DAGs (all edges were ori-

ented). The same set of 10 nodes (variables) was used for both models

and included BMI, activation in the ACC, RIFGtriang, and RIFGoperc

regions during anticipation of food versus objects and during pleas-

antness rating of food versus objects, the differences in the percent

of items judged as pleasant for food versus objects, and “LIKE” and

“WANT” ratings. The model fit analysis suggested that both models

were correctly specified (DD: degrees of freedom = 30, χ2 = 22.6,

p = .83, BIC = −97.1; HC: degrees of freedom = 31, χ2 = 27.7, p = .64,

BIC = −92.3). The model coefficients along with the t-statistics and p

values for each edge are reported in Table 2.

4 DISCUSSION

In this study, we investigated how the interplay between depressive

disorders (DD) diagnosis and BMI was associated with brain activation

during anticipation and pleasantness rating of food versus object stimuli.

Consistent with previous studies (Jantaratnotai et al., 2017; Luppino

et al., 2010; Mannan et al., 2016; Mitchell et al., 2014), higher-BMI

individuals with DD had more severe lifetime depression. Activation

in the RIFG pars triangularis, RIFG pars opercularis, and ACC was
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F IGURE 2 Group by BMI interaction effect on activation in the right inferior frontal gyrus pars triangularis and pars opercularis, and anterior
cingulate cortex. The ROImask is shown on the brain images in yellow, while the regions with a significant BMI-by-diagnosis interaction are shown
in blue. The correlation coefficients and p values between BMI and brain activation for each group of participants are presented on each plot

positively associatedwith BMI in HC, but negatively in individuals with

DD, during anticipation of food versus objects. HC with higher BMI

had greater food versus object differences (food > object) than HC

with lower BMI. In contrast, among individuals with DD, those with

higher BMIs had lower food versus object differences (food < object)

than those with lower BMIs. The post hoc analyses of RIFG and ACC

activation during pleasantness rating showed that higher-BMI HC had

lower (negative) activation in the RIFG and ACC regions for food ver-

sus objects (food < objects) than lower-BMI HC. No such relationship

was observed in individuals with DD. The results described above are

not explained by participants’ level of hunger/satiation (Stockburger

et al., 2008) becauseHC andDDdid not differ in hunger/satiation level

prior to the scan in our study. Consistent with recent findings that

weight increase in mood disordered individuals was better explained

by depression status rather than the use of antidepressants (Gibson-

Smith et al., 2016), the main outcomes in our study were unrelated

to psychotropic medications load. They were also unrelated to age at

depression onset, number of depressive episodes, and an increase or

decrease in appetite (as per the HRSD-25 assessment) during the past

week.Our findings related to brain activation during pleasantness rating

of food versus nonfood pictures were inconsistent with the results

of the previous meta-analysis showing greater activation in the RIFG
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F IGURE 3 The relationship between BMI, brain, and behavior variables: graphmodels. The black solid arrows show the edges that connected
the same nodes and had the same directions in DD andHC. The yellow dotted arrows show the edges connected the same nodes but having
different directions for DD andHC. The red arrows show the edges unique for DD. The blue arrows show the edges unique for HC.
RIFGoperc—right inferior gyrus pars opercularis, RIFGtri, right inferior gyrus pars triangularis, ACC—anterior cingulate cortex

and ACC regions for obese versus normal weight individuals for food

versus nonfood stimuli (Brooks et al., 2013). This could be explained by

the differences in the experimental paradigms as well as by the lack of

formal assessment of mood disorders in participants included in that

meta-analysis.

The RIFG is involved in response inhibition and attention con-

trol (Aron et al., 2003; Garavan et al., 1999; Hampshire et al., 2010;

Sebastian et al., 2016), which are necessary to regulate appetitive

behavior. The ACC is engaged in multiple cognitive processes includ-

ing anticipatory control (Aarts et al., 2008), anticipation of conflict

monitoring (Sohn et al., 2007), prediction of future states based on

chosen actions (Akam et al., 2021), and conflict monitoring (Barch

et al., 2001; Botvinick et al., 2001). It shows greater activation in obese

individuals with major depressive disorder compared to those with-

out major depressive disorder during pleasantness rating of neutral

words (Restivo et al., 2020). Our findings of distinct activation pat-

terns in these regions for individuals with DD versus HC suggests that

different brain mechanisms may underlie behaviors leading to over-

weight/obesity in these groups. The presence of DD diagnosis must be

considered in weight loss intervention programs to improve outcomes.

Previous studies reported greater attentional bias to food stimuli in

overweight/obese individuals (Yokum et al., 2011). Our study revealed

high hedonic valence and emotional salience of food across all individ-

uals. While preparing for and making judgments about food pictures

is not necessarily more difficult than making such judgments about

nonfood pictures, cognitive processing related to food may be more

emotional. Given that processing of emotional information requires

more attentional resources (Schupp et al., 2007; Vuilleumier, 2005),

cognitive and neural mechanisms of mental preparation for processing

of food stimulimay resemble themechanismsofmental preparation for

difficult tasks. In our study, HC with normal weight showed decreased

activation in the RIFG and ACC regions during food versus objects

anticipation but increased activation in these regions during pleasant-

ness rating. This activation pattern resembles that observed during

anticipation of and performance on the working memory task in which

the prefrontal and paracingulate cortices decreased in activation dur-

ing anticipation of a difficult versus easy working memory task, but

increased in activation during performance on a difficult versus easy

working memory task (Manelis & Reder, 2015; Manelis et al., 2020).

Decreasing brain activation during anticipation of a more difficult task

could be related to redistributing available cognitive resources by

decreasing interference from the sources irrelevant to the current task

during anticipation (Manelis & Reder, 2015). HC perhapsmaintain nor-

mal weight by effectively preparing for food-related stimuli processing

thus controlling food consumption. In contrast, higher-BMI HC might

face greater cognitive challenge when anticipating an encounter with

food: they engage the RIFG and ACC regions when no food stimuli are

yet available but fail to engage these regions when encountering food

stimuli, thus diminishing their ability to control appetitive behavior.

Individuals with DD had an opposite pattern of relationship between

BMI and activation during anticipation than HC and showed no sig-

nificant relationship between BMI and activation during pleasantness

rating. This suggests that individuals with DD need to establish atten-

tional control and choose the course of actions prior to encounter with

food by engaging the RIFG and ACC. Involving these regions during

encounter with food is challenging for these individuals.

The exploratory graph theory analyses revealed similarities and

differences between HC and DD graph models. We found that

in both groups, BMI affected activation in the RIFGoperc during

anticipation of food versus nonfood objects. However, higher BMI
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was associated with lower RIFGoperc activation during food versus

object anticipation (negative association) in DD, but greater RIF-

Goperc activation during food versus object anticipation (positive

association) in HC. In both groups, increases in anticipation-related

activation for food versus objects caused decreases in food ver-

sus object activation in the same region during pleasantness rating.

However, the causal relationship between the RIFGoperc, RIFGtriang

and ACC during anticipation and pleasantness rating was unique for

each diagnostic group: in HC, the ACC influenced the RIFG regions

(ACC→RIFGoperc→RIFGtriang) during both anticipation and pleas-

antness rating of food versus objects, while in DD, the changes in

RIFGoperc caused the changes in RIFGtriang and ACC activation

(RIFGoperc→RIFGtriang and RIFGoperc→ACC).

Using a graph theory approach in this study helps identify fac-

tors related to the “WANT” ratings as they might be a driving force

for overeating. Making pleasantness judgments involves deep stimu-

lus encoding (Richardson-Klavehn, 2010; Schott et al., 2013), so the

responses and brain activation during pleasantness rating of food items

could be related to how much participants wanted to eat those food

items. As we did not have a specific hypothesis about the causal rela-

tionship between “WANT” ratings and other variables and believed

that participants could decide how much they wanted a particular

food item either when they saw the item for the first time during the

scan or during the post-scan task, we allowed the FGES to discover

connections between the “WANT” ratings and other variables. In HC,

“WANT” ratings were regulated through the BMI→ ACC: anticipation

→ “WANT” rating path aswell as through the BMI→ACC: anticipation

→ percent of pleasant food versus object responses→ “WANT” ratings

path. The first path leads HCwith higher BMI to report lower “WANT”

ratings, while the second path leads them to report higher “WANT” rat-

ings. Thus, a realization that food ismorepleasant thannonedible items

may result in increased drive to eat that food in HC. Remarkably, the

“WANT” ratings did not affect any brain or other variables.

In DD, the “WANT” ratings were regulated through the BMI→ RIF-

Goperc: anticipation→ RIFGoperc: rating→ “WANT” ratings path, so

that higher-BMI individuals with DD reported lower “WANT” ratings.

Importantly, the “WANT” ratings affected activation in the RIFGtriang

during foodversusobject pleasantness ratingeitherdirectly or through

the “LIKE” ratings. The direct path would lead to decreases in food

versus object activation in the RIFGtriang if the “WANT” ratings were

low. However, if participants did not want and like food items, then the

RIFGtriang activation increased. The increases in brain activation in

this region for food versus objects might indicate an attempt to exhibit

attentional control during processing of food stimuli.

One may think that because anticipatory periods always pre-

ceded pleasantness ratings, the two regressors would always anti-

correlate. We indeed found a strong negative correlation between

anticipation and pleasantness ratings activations for food versus

objects differences. However, there was no significant relationship

between anticipatory and pleasantness rating activation when food

and objects were analyzed separately. This suggests that observed

effects for food-object differences are unlikely due to some artifactual

anticorrelation.

Comparing brain activation for the food stimuli rated as pleasant

versus unpleasant would be potentially informative, but we were not

able to examine this question: there were many more pleasant than

unpleasant responses to food stimuli, with many participants rating all

food items as pleasant. Future studies should address this limitation by

presenting both appealing and nonappealing pictures of food as well

as replicate the findings from graphmodel analyses. Another limitation

concerns using self-reported height andweight to calculateBMI.While

overweight/obese people tend to underestimate the weight status of

self and other people (Oldham & Robinson, 2018; Robinson, 2017),

this bias is more pronounced in older than in younger adults (Kucz-

marski et al., 2001). In addition, the participants in our study were not

asked to estimate their weight status, and, instead, theywere informed

that height and weight are collected to determine MRI eligibility and

safety. Considering that self-reported height and weight were previ-

ously successfully used in the epidemiological studies (Carpenter et al.,

2000; Simon et al., 2006), were shown to correlate with physical mea-

surements (Cash et al., 1989), and were reliably used with participants

younger than 60 years of age (Kuczmarski et al., 2001), we believe

that self-reported body size accurately reflected actual body size in

our study. Finally, we were not able to recruit individuals with extreme

obesity (BMI > 40) due to the scanner weight limit and the size of the

radio frequency coil. These limitations can be overcome by employing

functional near infrared spectroscopy (fNIRS) that has recently been

successfully implemented in studies of obesity (Huang et al., 2019;

Rösch et al., 2021) and depression (Manelis et al., 2019).

In summary, this study showed that the interplay between diag-

nostic status and BMI affects activation patterns in the RIFG and

ACC regions during anticipation and pleasantness rating of food versus

nonfood objects. Importantly, different neurobiological mechanisms

underlying participants’ desire to eat food itemspresented in the study.

Future clinical trials targetingweight loss in individualswith depressive

disorders should investigate whether weight loss programs designed

for these individuals should differ from those designed for HC by

focusing on food anticipation in the former.
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