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Visual Abstract
Perineuronal nets (PNNs) are specialized
complexes of extracellular matrix molecules
that surround the somata of fast-spiking neu-
rons throughout the vertebrate brain. PNNs
are particularly prevalent throughout the audi-
tory brainstem, which transmits signals with
high speed and precision. It is unknown
whether PNNs contribute to the fast-spiking
ability of the neurons they surround. Whole-
cell recordings were made from medial nu-
cleus of the trapezoid body (MNTB) principal
neurons in acute brain slices from postnatal
day 21 (P21) to P27 mice. PNNs were de-
graded by incubating slices in chondroitinase
ABC (ChABC) and were compared to slices
that were treated with a control enzyme (pen-
icillinase). ChABC treatment did not affect the
ability of MNTB neurons to fire at up to 1000
Hz when driven by current pulses. However,
f–I (frequency–intensity) curves constructed
by injecting Gaussian white noise currents su-
perimposed on DC current steps showed that
ChABC treatment reduced the gain of spike

output. An increase in spike threshold may have contributed to this effect, which is consistent with the observation
that spikes in ChABC-treated cells were delayed relative to control-treated cells. In addition, parvalbumin-

Significance Statement

Perineuronal nets (PNNs) are extracellular matrix specializations that surround the somata of fast-spiking
inhibitory neurons in most areas of the brain. Although PNN development correlates with the restriction of
plasticity and their disruption causes enhancement of plasticity in vivo, it is unclear how PNNs affect the
neurons they surround. In the present study, mature neurons were stimulated with fluctuating currents to
measure their input/output functions after degradation of PNNs with the enzyme chondroitinase. Both the
medial nucleus of the trapezoid body principal neurons and parvalbumin-expressing fast-spiking cortical
interneurons treated with chondroitinase exhibited reduced excitability compared with control-treated cells.
Increased spike threshold may underlie this change in gain. Thus, PNNs increase the evoked activity of
fast-spiking neurons and could control plasticity by enhancing synaptic inhibition.
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expressing fast-spiking cortical neurons in �P70 slices that were treated with ChABC also had reduced
excitability and gain. The development of PNNs around somata of fast-spiking neurons may be essential for fast
and precise sensory transmission and synaptic inhibition in the brain.
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Introduction
Perineuronal nets (PNNs) are specialized complexes of

extracellular matrix molecules that form around the so-
mata of neurons throughout the brain (Brückner et al.,
1993; Bertolotto et al., 1996; Celio et al., 1998). PNNs are
made up of an array of proteoglycans and polysaccha-
rides that give the cell surface a strong negative charge
(Seeger et al., 1994; Morawski et al., 2004, 2015). In
particular, PNNs tend to surround fast-spiking neurons
(Blosa et al., 2013; Sonntag et al., 2015). Whether this
negatively charged PNN coat contributes to fast-spiking
activity is unclear.

Current understanding of how PNNs contribute to brain
processes comes largely from studies in which PNNs are
degraded enzymatically. Disruption of PNNs reactivates
plasticity in the adult visual cortex (Pizzorusso et al., 2002,
2006; Carulli et al., 2010; Vorobyov et al., 2013), promotes
collateral sprouting in the denervated brainstem (Massey
et al., 2006), and allows the recovery of spinal cord func-
tion after injury (Galtrey et al., 2007; García-Alías et al.,
2009). There are several hypothesized mechanisms through
which the degradation of PNNs may control plasticity in
mature brains. PNNs may prevent structural remodeling
of dendrites (Mataga et al., 2004; McGee et al., 2005;
Fawcett, 2009; Shen et al., 2009; Giger et al., 2010) or
neurotransmitter receptor mobility and plasticity (Bukalo
et al., 2001; Frischknecht et al., 2009; Kochlamazashvili
et al., 2010). Given the important role that PNNs play in
plasticity, surprisingly little is known about what PNNs
contribute to the physiology of the neurons that they
surround. It is possible that the disruption of PNNs in vivo
caused a change in neuronal excitability, in addition to
known structural and molecular changes that occur.

PNNs surround fast and precisely spiking neurons
throughout the vertebrate brain (Härtig et al., 1992, 1999;
Murakami et al., 1994; Balmer et al., 2009). PNNs are
common in the auditory brainstem (Bertolotto et al., 1996;

Härtig et al., 2001; Blosa et al., 2013), which contains
some of the fastest and most precisely firing neurons. The
auditory brainstem circuit transmits signals from the pe-
riphery with precision and speed in order to compare the
timing and loudness of sounds between the two ears
(Trussell, 1997, 1999; Oertel, 1999; Ashida and Carr,
2011). Differences in spike timing are used to compute the
location of a sound in the environment of the animal.
Principal neurons in the medial nucleus of the trapezoid
body (MNTB) can follow extremely fast afferent stimula-
tion (�1000 Hz) with incredible accuracy (Kim et al.,
2013). The development of reliable fast spiking in MNTB
occurs after postnatal day 14 (P14; Taschenberger and
von Gersdorff, 2000), which correlates with the formation
of PNNs around the principal neurons (Myers et al., 2012).
The increase in spike reliability has been attributed to
changes to the anatomy of the large axosomatic calyx of
Held synapse, which is the main input to MNTB principal
neurons (Taschenberger et al., 2002). PNN development
may provide additional optimization for fast-spiking activ-
ity.

The role of PNNs in the physiology of fast-spiking neu-
rons was tested by recording from mature mouse MNTB
principal neurons and parvalbumin-expressing cortical in-
terneurons in acute brain slices. Chondroitinase-treated
cells had a marked decrease in evoked activity and a
consistent delay relative to control-treated cells. The de-
velopment of PNNs around somata of fast-spiking neu-
rons may tune fast sensory transmission and inhibition in
the brain.

Materials and Methods
Slice preparation

C57BL/6 mice of both sexes between P21 and P28
were used for MNTB recordings. CB6-Tg(Gad1-EGFP)
G42Zjh/J (RRID:IMSR_JAX:007677; Chattopadhyaya et al.,
2004) mice of both sexes �P70 were used for cortical
neuron recordings. Mice were anesthetized with isoflu-
rane and decapitated following the standards of humane
care developed by the National Institutes of Health and
the Society for Neuroscience, and procedures were ap-
proved by the Marine Biological Laboratory Institutional
Animal Care and Use Committee. The brain was rapidly
extracted into ice-cold high-sucrose artificial cerebrospi-
nal fluid (ACSF) containing the following (in mM): 230
sucrose, 25 glucose, 2.5 KCl, 3 MgCl2, 0.1 CaCl2, 1.25
NaH2PO4, 25 NaHCO3, 0.4 ascorbic acid, 3 myo-inositol,
and 2 Na-pyruvate, pH 7.4, saturated with 95% O2 and
5% CO2 (Huang and Trussell, 2011). Coronal sections 200
�m thick for MNTB and 300–400 �m thick for cortex were
prepared using a vibratome (VT1200S, Leica). Immedi-
ately after cutting, slices were incubated in 35°C record-
ing ACSF containing either chondroitinase ABC (ChABC)
or penicillinase (P-ase) for 1 h, followed by storage at
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room temperature. Recording ACSF contained the follow-
ing (in mM): 125 NaCl, 25 glucose, 2.5 KCl, 1 MgCl2, 2 CaCl2,
1.25 NaH2PO4, 25 NaHCO3, 0.4 ascorbic acid, 3 myo-
inositol, 2 Na-pyruvate, and �305 mOsm, pH 7.4, saturated
with 95% O2 and 5% CO2 (Huang and Trussell, 2011).

Enzymatic degradation of PNNs
Immediately after slicing, brain slices were incubated in

0.2 U/ml ChABC (catalog #2905, Sigma-Aldrich) or con-
trol enzyme P-ase (catalog #P0389, Sigma-Aldrich) in
recording ACSF for 1 h at 35°C in a small slice chamber
(BSK2, Scientific Systems Design). ChABC is a well char-
acterized enzyme that degrades PNNs by removing
glycosaminoglycan (GAG) side chains from chondroitin
sulfate proteoglycans, reduces PNN labeling in acute
slices (Bukalo et al., 2001), and reduces cell surface
charge (Morawski et al., 2015).

Whole-cell current-clamp recordings
Slices were transferred to a submerged recording

chamber and superfused with ACSF heated to 33–35°C at
3–4 ml/min. Slices were viewed using infrared differential
interference contrast (IR-DIC) and a 63� water-immersion
objective (AxioExaminer, Zeiss) and camera (Flash4-LT,
Hamamatsu). Pipettes were pulled from thick-walled
borosilicate glass capillaries (1.5 mm outside diameter;
WPI) to a tip resistance of 2–4 M�. The internal pipette
solution contained the following (in mM): 113 K-gluconate,
4.8 MgCl2, 4 ATP, 0.5 Tris-GTP, 14 Tris-phosphocreatine,
0.1 EGTA, and 10 HEPES, pH 7.25 with KOH, �290
mOsm. Reported voltages are corrected for a �10 mV
liquid junction potential. Whole-cell recordings were am-
plified and low-pass filtered (6 kHz; Multiclamp 700B,
Molecular Devices) and digitized using pClamp software
(50–100 kHz; Digidata 1550, Molecular Devices). MNTB
neurons were verified by their physiological properties
(low input resistance, transient firing pattern, and outward
rectification) and in some cases were filled with a fluoro-
phore (20 �M Alexa Fluor 594; catalog #A10438, Life
Technologies) and recovered post hoc. Parvalbumin-
expressing (PV�) cortical neurons were identified by
EGFP expression and fast-spiking activity during positive
current steps. Bias current was not used to maintain
resting membrane potential in any cells.

White noise current stimulation
The Gaussian noise current stimulus was synthesized in

Matlab (MathWorks) by passing Gaussian white noise
through an exponential filter with a correlation time of 0.5
ms (2 kHz; Bryant and Segundo, 1976; Slee et al., 2005;
Mease et al., 2013). This 500 ms frozen noise stimulus
was multiplied to create four noise levels [measured as
the SD of the noise (0, 200, 400, and 600 pA SD) and
superimposed on seven current steps (0–600 pA)]. Each
cell was stimulated with all 28 levels of noise and a DC
step five times in a pseudorandom order with 750 ms
interstimulus intervals.

Immunohistochemistry and microscopy
After recording, slices were fixed for 2 h overnight in 4%

paraformaldehyde in 0.1 M phosphate buffer and rinsed in

0.1 M PBS. Slices were incubated in biotinylated Wisteria
floribunda agglutinin (WFA; 20 �g/ml; catalog #L1516,
Sigma-Aldrich) for 1 h. After rinsing in PBS, slices were
incubated in streptavidin-Alexa Fluor 488 (20 �g/ml; cat-
alog #S11223, Life Technologies; RRID:AB_2336881) for
1 h. Slices were mounted to microscope slides and cov-
erslipped with 90% glycerol and 10% PBS, pH 9.0. Slices
were imaged with an epifluorescence microscope (Imag-
er.Z2 with Colibri LED System, Zeiss). For quantification
of PNN brightness a 20�/0.8 numerical aperture objective
(Plan Apochromat, Zeiss) was used, and consistent LED
brightness (25%) and exposure time (150 ms) were main-
tained across all sections imaged. All immunohistochem-
istry was performed in parallel with the same reagents,
and imaging was performed blinded to the treatment
condition in the same imaging session. PNN labeling was
quantified by measuring pixel intensities within an outlined area
circumscribing MNTB (ImageJ; RRID:SCR_003070; Schneider
et al., 2012).

Data analysis
Clampfit (pClamp, Molecular Devices) was used to

measure spike shape properties. Matlab was used for the
analysis of pulse trains, voltage threshold, and white noise
stimulation. Statistical analyses were performed in Mat-
lab, Sigmaplot (SyStat), and Excel (Microsoft).

Spike shape analysis
Depolarizations that crossed �30 mV and had the

shape of an action potential were considered to be
spikes. Spike amplitudes were measured as the peak
membrane potential relative to the preceding resting
membrane potential. Spike widths were measured at half
the spike amplitude. Rising slopes were based on 30–
90% peak measurements, and falling slopes were based
on 10–90% peak measurements. Input resistance was
calculated as the slope of the linear portion of the current–
voltage (I–V) curve (�150 to 0 pA, 500 ms steps). Inward
rectification was estimated as the difference between
the transient hyperpolarization and the steady-state
membrane potential during a �500 pA step. Outward
rectification was estimated as the difference between
the steady-state response during a 450 pA step and an
extrapolation of the linear portion of the I–V curve to
450 pA. This measure indicates the difference between
the measured membrane potential during a 450 pA step
and the predicted membrane potential, given a linear
increase in membrane potential. Afterhyperpolarization
(AHP) was measured as the difference between the
resting membrane potential preceding the spike and
the minimum membrane potential after the spike (or
train of spikes).

Spike threshold
Spike voltage thresholds were calculated using a

phase-plane analysis, plotting the membrane potential
versus the dV/dt and measuring the voltage where dV/dt
crossed an empirically defined level of 40 mV/ms. Other
methods including 30–100 mV/ms, 2–3 SDs above the
mean, and the peak of the first or second time derivative
of voltage were also used, and the results were similar.
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Relative spike delay
To quantify the difference between spike times in

ChABC-treated cells vs P-ase-treated cells, a peristimu-
lus time histogram (PSTH) was made by combining the
first trial of each cell. Calculations were triggered every
time at least 25% of the P-ase-treated cells spiked within
a 0.25 ms bin. For each of these “spike events,” the mean
time of spike peaks that occurred in the ChABC or P-ase-
treated group within 1 ms were compared. A positive
delay represents P-ase spikes leading the ChABC spikes.

Results
ChABC treatment effectively degraded PNNs in
acute brain slices

To test how PNNs affect the physiology of the cells that
they surround, PNNs were either degraded or left intact in
acute mouse brain slices. Slices were incubated in either
ChABC, an enzyme that digests the GAG chains of the
PNN, or P-ase as a negative control treatment. The slices
were maintained in these solutions for 1 h at 35°C with
constant 95% O2 and 5% CO2 saturation. In P-ase-
treated control slices, there were many PNNs labeled in
MNTB by the lectin WFA, which labels GAG chains (Fig.
1A). PNN labeling was greatly reduced by the 1 h ChABC
treatment, although it was not completely abolished (Fig.
1B). The maximum pixel intensities within MNTB were
significantly reduced by ChABC treatment (t test, p �

0.0007, N � 15 slices; Fig. 1C). The distribution of pixel
intensities within MNTB was negatively shifted by ChABC
treatment (two-sample Kolmogorov–Smirnov test, p 	
0.008, N � 15 slices; Fig. 1D).

PNN degradation did not affect passive properties,
spike shape, or spike failures
Whole-cell current clamp recordings were made from
MNTB-containing slices that were treated with ChABC or
P-ase. Slices treated with either enzyme were indistin-
guishable in appearance from untreated slices under IR-
DIC imaging. The presence of PNNs did not affect the
ability to make low-resistance whole-cell recordings.
There was no effect of treatment condition on resting
membrane potential, input resistance, or inward or out-
ward rectification (t tests, p � 0.05; Fig. 2A–C; Table 1),
suggesting that ChABC treatment did not alter the viability
of the neurons. Moreover, any differences observed in
spiking activity are unlikely to be caused by changes in
passive membrane properties.

To investigate the effect of PNNs on spike shape, a
single action potential was evoked by a 450 pA, 500 ms
step or a 4 nA, 0.1 ms pulse, which lead to different spike
shapes (Johnston et al., 2009). Properties of action po-
tential shape and timing were not significantly different
between ChABC- and P-ase-treated groups for either
protocol (t tests, p � 0.05; Table 2; Fig. 3). Trains of action
potentials were elicited by a series of 50 4 nA, 0.1 ms
pulses at rates of 100, 300, 500, 800, and 1000 Hz. All
cells spiked in response to every current pulse at 100,
300, and 500 Hz. Some cells failed at 800 and 1000 Hz,
but there were no statistically significant differences be-
tween the treatment groups (�2 tests, p � 0.05). Example
traces for 1000 Hz stimulation are shown in Figure 2D.
Spike properties including the measurements that were
used for single spikes in Figure 3 were quantified across
the 50 spikes in the train. None of these properties were
significantly affected by ChABC treatment at any of the
tested frequencies. The action potential amplitude tended
to be 5–10 mV shorter in the ChABC-treated cells, al-
though this difference did not reach statistical signifi-
cance. In addition, the afterhyperpolarization at the end of
the train (of 50 successful spikes) and the interspike po-
tential were not different between treatment groups at any
stimulation frequency (t tests, p � 0.05). Thus, PNNs were
not necessary for MNTB neurons to spike at up to 1000
Hz in response to large square currents.

ChABC treatment reduced the excitability of MNTB
neurons
To investigate whether PNNs have an effect on the spike
output of MNTB neurons in response to fluctuating cur-
rents, cells were stimulated with currents that contained a
range of amplitudes and frequencies (Bryant and Se-
gundo, 1976; Slee et al., 2005; Street and Manis, 2007;
Mease et al., 2013). A Gaussian distributed “white noise
current” was synthesized and filtered such that it would
contain frequencies up to 2 kHz (see Materials and Meth-
ods). The same current was injected with varying gain
(noise level), measured as the SD of the current (0-600 pA
SD) and varying positive bias current (0-600 pA DC steps).

Figure 1. ChABC effectively degrades PNNs in acute brain slices
during slice recovery. A, WFA-labeled PNNs are visible sur-
rounding MNTB neurons after P-ase treatment (negative control).
Scale bars: 200 �m; inset, 20 �m. B, ChABC-treated slices had
reduced PNN labeling. C, Maximum pixel intensities in MNTB
were reduced by ChABC (t test, p � 0.0007). Error bars are the
mean and SEM. D, Cumulative plot of pixel intensities shows that
ChABC-treated MNTB regions have reduced brightness (two-
sample Kolmogorov–Smirnov, p 	 0.008). Slices were labeled in
parallel with the same reagents and imaged with the same
microscope settings.
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Figure 4A shows an example white noise current with 400
pA noise level superimposed on four of the seven DC
steps, and with an expanded time base in Figure 4B. All
cells were stimulated with the same synthesized currents.

ChABC-treated cells fired markedly less in response to
white noise current stimulation. Over all trials and levels of
the white noise currents, the ChABC-treated cells fired on
average 67.6% the number of spikes that P-ase-treated
cells fired (mean 
 SD; P-ase cells: 10,031 
 2775, n �
11; ChABC: 6783 
 3108, n � 9; t test, p � 0.024). Figure
4A shows an example trace from a P-ase-treated (black)
and a ChABC-treated neuron (red) at the 400 pA SD noise
level superimposed on four DC steps. This approach
produced high-quality frequency–intensity (f–I) curves for
these cells, which are not possible with DC steps alone
due to their transient firing behavior (Fig. 4C). ChABC-
treated cells spiked significantly less at noise levels of 400

and 600 pA compared with P-ase-treated cells [two-way
repeated-measures (RM) ANOVAs, interaction p 	 0.05;
Fig. 4C]. The maximum slope of the f–I curves, which
indicates the gain of firing as the DC steps increase, was
lower in ChABC-treated cells at all noise levels (two-way
RM ANOVA, p � 0.03; Fig. 4D). The distribution of the
instantaneous spike rates was shifted to lower frequen-
cies in ChABC-treated cells, but the overall shape of the
distribution was similar to P-ase-treated cells (Fig. 4E).
This suggests that the change in firing rate was not due to
a change in spiking pattern. For example, if the ChABC-
treated cells started firing in bursts with large interburst
intervals, the distribution would show an increase in high
instantaneous firing rates and a decrease in low rates. In
sum, ChABC-treated cells were less excitable than P-ase-
treated cells.

Importantly, these differences in firing rate were not due
to differences in membrane potential depolarization dur-
ing the steps, which was measured by filtering out the
spikes (two-way RM ANOVA, p � 0.05; Fig. 5A,B). This
agrees with the finding that the input resistance of
ChABC-treated cells was not different than P-ase-treated
cells (Table 1). The resting membrane potential measured
between the steps was also not different between groups
(two-way RM ANOVA, p � 0.05; Fig. 5C). Thus, the re-
duced excitability of MNTB neurons treated with ChABC
is not due to changes in passive membrane properties.

Spike-triggered average shows ChABC-treated cells
required more current to spike
The currents that were injected immediately prior to each
spike were averaged within each level of noise and DC
step. Figure 6A shows example spike-triggered averages
(STAs) for a cell treated with P-ase (black) and for another
cell treated with ChABC (red) across four DC steps. The
peak of the STAs was significantly higher during the 200,
400, and 600 pA noise levels in the ChABC-treated cells
(two-way RM ANOVAs, p 	 0.05; Fig. 6B). This indicates
that the ChABC-treated cells required larger currents to

A B C

D

Figure 2. Passive membrane properties
were not affected by ChABC treatment.
A, Response to current steps show that
hyperpolarization activated transient,
outward rectification and a single spike
on depolarizing steps. Inset shows a
spike with an extended time base. Inset
calibration: 20 mV, 1 ms. B, ChABC
treatment did not affect the I–V curve
measured when the membrane reached
steady state (as indicated by the open
circle in A), or C, size of the hyperpolar-
izing transient, measured at the peak
(filled circle in A). Error bars are the
mean and SEM. D, Both P-ase-treated
(left) and ChABC-treated (right) neurons
were able to fire at 1000 Hz in response
to a train of 4 nA, 0.1 ms pulses.

Figure 3. Spikes evoked by 450 pA, 500 ms current step were
not affected by ChABC treatment. Data points are individual
cells. Error bars are the mean and SEM.
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spike. The slopes of the STA currents were not different
between groups, nor were their preceding troughs.

Spike threshold was more depolarized in ChABC-
treated cells
ChABC treatment did not affect passive properties that
might explain the observed reduction in spiking, such as
input resistance or resting membrane potential (Table 1,
Fig. 5). A change in the voltage threshold for spikes could
underlie the change in spike rate. Spike thresholds were
calculated by making a phase-plane plot of the membrane

potential and measuring the voltage at which the dV/dt
crossed an empirically defined level of 40 mV/ms (Fig. 7A;
see Materials and Methods). The variance of the voltage
thresholds during each noise current injection was high,
but did not differ between treatment groups. Because the
firing rate can affect voltage thresholds (Henze and Buz-
sáki, 2001), comparisons between treatment groups were
made across DC steps that evoked comparable firing
rates. Voltage thresholds of ChABC-treated cells were
significantly depolarized at firing rates of 0–50, 50–100,
and 100–150 Hz during the 400 pA SD noise level, and at

A

B

C

D E

Figure 4. ChABC-treated MNTB neu-
rons exhibited lower gain. A, Example
white noise currents with noise level of
400 pA SD at four levels of DC step
(top), spiking response in a P-ase-
treated cell (middle, black), and spiking
response in a ChABC-treated cell (bot-
tom, red). B, Expanded time base
showing spiking responses from the
traces in A at the time indicated by
underlining in A in the 600 pA DC step
condition. C, f–I curves indicate signifi-
cantly lower firing rates in ChABC-
treated cells compared with P-ase-
treated cells (�two-way RM ANOVA, p
	 0.05). D, Maximum gain calculated
from the f–I curves was significantly
lower in ChABC-treated cells, indicating
reduced excitability (�two-way RM
ANOVA, p 	 0.05). E, The distribution of
instantaneous firing rates was shifted to
lower frequencies and did not indicate a
change in spiking pattern.
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150–200 Hz during the 600 pA noise level, compared with
P-ase-treated cells (t tests, p 	 0.05; Fig. 7B).

Spike amplitude of ChABC-treated cells were also re-
duced at firing rates of 0–50 Hz during the 200 pA SD
noise level, 50–100 and 100–150 Hz during the 400 pA
noise level, and 150–200 Hz during the 600 pA SD noise
level, compared with P-ase-treated cells (t tests, p 	 0.05;
Fig. 7C). The speed of the upstroke of the spikes evoked
by white noise stimulation was slower in the ChABC-
treated cells (Fig. 7D). The acceleration of the membrane
potential was significantly slower in ChABC-treated cells
at firing rates of 50–100 Hz during the 400 pA SD noise
level, and 150–200 and 200–250 Hz during the 600 pA
noise level (t tests, p 	 0.05). These observations are
consistent with a change in a Na� conductance after PNN
degradation.

A

B

C

Figure 5. Input resistance and resting
membrane potential were not different
between treatment groups. A, Traces
were low-pass filtered to calculate the
membrane potential during white noise
current stimulation. Thick dark line is
the filtered trace plotted over the origi-
nal trace. Dashed horizontal line indi-
cates the mean membrane potential
(Vm) during the current step. These val-
ues were used to compare the mem-
brane potential during DC steps shown
in B. Examples traces are at the 400 pA
noise level and 600 pA DC step. B,
There were no significant differences
between treatment groups at any noise
level (two-way RM ANOVA, p � 0.05).
C, Resting membrane potential (Vrest)
was calculated as the membrane po-
tential before the current injection.
There were no differences between
treatment groups at any noise level
(two-way RM ANOVA, p � 0.05).

Table 1: MNTB neuron passive properties were not different
between treatment groups

Passive properties of MNTB neurons

Penicillinase
(n � 15)

Chondroitinase
(n � 10)

p values
(unpaired
t tests)

Resting membrane
potential (mV)

�64 
 2.1 �63 
 1.8 0.405

Input resistance (M�) 76 
 31.5 72 
 22.9 0.365
Inward

rectification (mV)
�24 
 9.5 �20 
 7.0 0.354

Outward
rectification (mV)

�32 
 7.9 �34 
 16.6 0.661

Values are reported as the mean 
 SD, unless otherwise indicated.

A

B

Figure 6. STAs of injected currents reveal higher current thresh-
old in ChABC-treated MNTB neurons. Injected currents that
triggered spikes were aligned and averaged. A, Overlaid exam-
ples of P-ase-treated (black) and ChABC-treated (red) cells at
the 400 pA SD noise level superimposed on four DC current
steps. The peaks of the action potentials were aligned with the
rightmost point of each STA. Note that in these examples the
peak of the STA is higher in the ChABC-treated cell than in
the P-ase-treated cell. B, The average STA peak across cells
was significantly higher among the ChABC-treated cells than the
P-ase-treated cells (�two-way RM ANOVA, p 	 0.05). Error bars
are the mean and SEM.
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Spikes in ChABC-treated cells had a delayed onset
If spike threshold was depolarized in ChABC-treated cells
and passive membrane properties were not affected, then
they should fire later in response to the identical sample of
white noise current, compared with P-ase-treated cells.
Indeed, when spike trains evoked by the same white noise
current were overlaid, it became apparent that the
ChABC-treated cells not only did not fire each time the
control cells did, but when they fired the spikes occurred
later. Figure 8A shows overlaid traces of every P-ase-
treated (11 cells, black) and ChABC-treaded cell (9 cells,
red). The mean spike times of the spikes that occurred
within a 1 ms time window are indicated as vertical lines
above the traces. Overall, 86% of these spike events were
later in the ChABC-treated group than the P-ase-treated

group, with an average relative delay of �70 �s (Fig.
8B,C). There was no difference in the jitter of the spikes
between groups.

Cortical inhibitory interneurons were similarly
affected by ChABC
To test the generality of these results, cortical fast-spiking
interneurons of �P70 mice were recorded. Older mice
were used for these recordings than MNTB, because
PNNs develop much later in the cortex than in the brain-
stem (Pizzorusso et al., 2002). GFP-expressing cells in the
CB6-Tg(Gad1-EGFP)G42Zjh/J mouse line are presumed
to be PV� inhibitory interneurons (Chattopadhyaya et al.,
2004).

A

B

C

D

Figure 7. Voltage threshold and spike
shape during fast spiking. A, Phase
plane plots of white noise evoked
spikes during 400 pA SD noise level
without a DC step averaged across
ChABC-treated (red) and P-ase-treated
(black) cells. The membrane potential
where the dV/dt begins to increase is
more depolarized in ChABC-treated
cells, indicating a more depolarized
voltage threshold. Also note that the
upstroke of the spike is slower (lower
peak dV/dt) and reaches a lower mem-
brane potential. B, Voltage thresholds
were significantly depolarized in
ChABC-treated cells compared with
P-ase-treated cells (see Results). Each
marker indicates a DC step (from 0 to
600 pA) plotted at the average evoked
firing rate and the average voltage
threshold during the step. C, Spike am-
plitude was significantly smaller in
ChABC-treated cells. D, The accelera-
tion of the membrane potential was sig-
nificantly lower in ChABC-treated cells.
Error bars are the mean and SEM.
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GFP-expressing cells in layers 4–6 of somatosensory
cortical slices were patched, and their fast-spiking phe-
notype was verified by injecting positive DC current steps
without noise. In some cases, GFP� cells were filled with
a fluorophore and labeled with WFA to verify that they had
PNNs in the P-ase-treated group, and had attenuated
PNNs in the ChABC-treated group (Fig. 9A). The resting
membrane potential was not different between treatment
groups (mean 
 SD; P-ase: �76 
 4.5 mV, n � 5;
ChABC: �80 
 5.7 mV, n � 7; t test, p � 0.257), nor was

input resistance (P-ase: 82 
 33.1 M�, n � 5; ChABC 73

 20.3 M�, n � 7; t test, p � 0.558).

The same white noise current that was used for MNTB
neurons (Fig. 4) was injected into the fast-spiking cortical
neurons. The ChABC-treated PV� neurons fired signifi-
cantly less in response to the white noise currents than
P-ase-treated cells (two-way RM ANOVAs, p 	 0.05; Fig.
9B,C). ChABC-treated cells fired 64.1% of the number of
spikes that P-ase-treated cells fired in response to the
white noise currents (mean 
 SD; P-ase-treated: 9074 


A

B C

Figure 8. ChABC-treated cells consis-
tently fired later than P-ase-treated
cells. A, Each overlaid trace is from a
different P-ase-treated (black) or
ChABC-treated (red) cell. A dot raster is
plotted above the spike trains, with
each row indicating a different cell. The
PSTH below indicates how spike events
were identified. When a 0.25 ms bin
reached a threshold where �25% of
P-ase-treated cells fired, a mean spike
time was calculated for spikes occur-
ring within 1 ms centered on the bin.
The vertical lines above indicate the
mean spike time of the spikes within
each 1 ms spike event. B, The proba-
bility of the ChABC-treated cells to fire
later than the P-ase-treated cells during
these spike events was high (� 50%)
across all levels of gain and DC steps.
C, The distribution of the delays of spike
events is shifted to the right, indicating
that spikes usually occurred later in
ChABC-treated cells than P-ase-
treated cells.

A

B

C

D E F

Figure 9. Parvalbumin-expressing fast-spiking cortical neurons were similarly affected by ChABC. A, Example of a PV� GFP-
expressing cell that was filled with a fluorophore during recording (Alexa Fluor 594; red) and labeled post hoc with WFA (cyan). Scale
bar, 10 um. B, Example traces showing responses to white noise current (400 pA SD, 300 pA DC step) in P-ase-treated cells (black)
and ChABC-treated cells (red). C, Fast-spiking cortical neurons treated with ChABC spiked significantly less than P-ase-treated cells
in response to white noise currents (�two-way RM ANOVA, p 	 0.05). D, Maximum gain calculated from the f–I curves was
significantly lower in ChABC-treated cells, indicating reduced excitability (�two-way RM ANOVA, p 	 0.05). E, Overlaid traces from
each P-ase-treated (black) and ChABC-treated (red) cell, illustrating that ChABC-treated cells fired spikes later than P-ase-treated
cells. F, Histogram showing rightward shift in delay, indicating that most spike events from ChABC-treated cells were delayed relative
to P-ase-treated cells.
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2681, n � 7; ChABC-treated: 5813 
 1845, n � 5; t test,
p � 0.031). These neurons were less sensitive to the noise
level than MNTB neurons, firing at similar rates at 200,
400, and 600 pA noise SD levels. The gain of spiking was
lower in ChABC-treated cells compared with P-ase-
treated cells (two-way RM ANOVA, p � 0.03; Fig. 9D). The
spikes that occurred in ChABC-treated cells were delayed
relative to those in P-ase-treated cells (Fig. 9E). A total of
65.5% of the spike events of ChABC-treated cells oc-
curred after those of the P-ase-treated cells during the
white noise current stimulation (Fig. 9F). Thus, both cor-
tical PV� fast-spiking interneurons and MNTB principal
neurons were affected in a similar way by PNN degrada-
tion. In both cases, the excitability of the cells was re-
duced. PNNs may be important for fast-spiking neurons in
general to tune responses to input.

Discussion
PNNs have been correlated with the maturation of fast-
spiking neurons, but their role in spiking behavior has
remained unclear (Härtig et al., 1999). In this study, enzy-
matic degradation of PNNs reduced spiking in two types
of fast-spiking inhibitory neurons. MNTB principal neu-
rons receive a single large synaptic input, are glycinergic,
and project out of MNTB. Cortical PV� neurons receive
many synaptic inputs to their dendrites, are GABAergic,
and are interneurons. PNN degradation had no observ-
able effect on passive membrane properties, but reduced
and delayed spiking in both cell types. The reason that
ChABC-treated MNTB neurons fired less was not due to
an inability to fire at high rates, because current pulses
were able to drive spikes without failures. Instead,
ChABC-treated cells had lower gain, firing less to fluctu-
ating currents than control-treated cells. Thus, PNNs may
enhance the gain of spike output in response to synaptic
input during fast-spiking activity. Because PNNs typically
surround inhibitory neurons, the development of PNNs
may be a mechanism that enhances synaptic inhibition
throughout the brain.

These results are consistent with a study that recorded
extracellular spiking activity of MNTB principal cells in
vivo in brevican knock-out mice, which have attenuated
PNNs (Blosa et al., 2015). MNTB neurons in brevican
knock-out mice fired at lower frequencies in response to
sound than wild-type mice, and the sound pressure level
threshold for evoking spikes was increased (Blosa et al.,
2015). This change in spiking could not be attributed to an
increase in transmission failures at the calyx of Held
(Blosa et al., 2015). The present study suggests that the
decrease in sound-evoked spiking in the brevican knock-
out mouse may be due to reduced excitability of the
MNTB principal neurons.

In a recent study investigating the role of PNNs in
synaptic plasticity, ChABC treatment did not affect the f–I
curves of CA2 hippocampal pyramidal neurons (Carstens
et al., 2016). In contrast to the cells studied here, ChABC
treatment significantly reduced the input resistance of
these CA2 neurons (Carstens et al., 2016). This may have
prevented the current pulses from causing the same level
of membrane depolarization in the ChABC-treated cells

and might explain why these neurons did not fire less after
PNN degradation. Alternatively, PNNs may play different
roles in neurons that do not fire at high frequencies.
Whole-cell recordings have been made in dissociated
cultures, which develop PNN-like structures (Miyata et al.,
2005; Dityatev et al., 2007). Dissociated hippocampal
interneuron cultures that were treated with ChABC had a
reduced current threshold and reduced AHP compared
with those of controls (Dityatev et al., 2007). These effects
were not observed in this study, which is not suprising
given that the PNNs likely develop differently in culture.

This is the first study to characterize frequency/intensity
input/output functions of MNTB principal neurons. MNTB
principal neurons fire a single spike in response to depo-
larizing current steps, which prevents the construction of
meaningful f–I curves. White noise stimulation was an
effective and sensitive approach to reveal the excitabilty
of these neurons. Moreover, in mice and other mammals
with high-frequency hearing, MNTB neurons are unlikely
to phase lock to physiologically relevant high-frequency
sounds (Kopp-Scheinpflug et al., 2008). A fluctuating cur-
rent that contains frequencies that are within the range of
the hearing sensitivity of a mouse (�1–100 kHz) may be
more similar to in vivo synaptic currents than traditional
stimulation protocols consisting of current pulses deliv-
ered at lower frequencies (	1 kHz).

This study focused on the effect of PNNs on nonsyn-
aptic physiology because PNNs generally surround the
soma and, in some cases, the axon initial segment and
proximal dendrite. Other extracellular matrix molecules
surround synapses, but generally these components are
less dense than the PNN around the soma. The calyx of
Held is a notable exception and is an attractive synapse to
study the effect of PNNs, because PNN components are
both inside and outside the cleft (Blosa et al., 2013). This
study refuted the hypothesis that PNNs are necessary for
fast spiking, at least in response to trains of 4 nA current
pulses. These current pulses were smaller than the initial
excitatory postsynaptic current at the calyx of Held during
a train, but were larger than currents at the end of a train,
which are reduced by short-term synaptic depression.
Spontaneous activity that occurs in vivo may reduce the
synaptic currents further (Hermann et al., 2007). It is
possible that PNNs reduce transmission failures due to
depressed synaptic currents during ongoing physiological
activity.

ChABC injection into the brain in vivo has been reported
to enhance plasticity in adulthood in the visual cortex,
perirhinal cortex, and amgdala (Pizzorusso et al., 2002,
2006; Gogolla et al., 2009; Romberg et al., 2013), but the
mechanism by which this occurs remains quite unclear.
The results reported here may shed light on how ChABC
could enhance plasticity. For example, ocular dominance
plasticity is reactivated by ChABC injections into the vi-
sual cortex (Pizzorusso et al., 2002, 2006) and by genetic
manipulations of PNNs (Carulli et al., 2010). A variety of
treatments that alter the excitatory/inhibitory balance of
the visual cortex has been reported to control ocular
dominance plasticity (Takesian and Hensch, 2013). Spe-
cific pharmacogenetic inhibition of PV� neurons in visual
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cortex extends the critical period for ocular dominace
plasticity (Kuhlman et al., 2013). Reducing PV� neuron
activity may affect ocular dominance plasticity by shifting
the ability for synapses to undergo synaptic plasticity
(Kirkwood and Bear, 1994; Harauzov et al., 2010; Kuhl-
man et al., 2010). The present study suggests that ChABC
injections into the visual cortex may reduce PV� cell
spiking in vivo and thereby allow the synaptic plasticity
that shapes binocular visual responses.

How might PNN degradation affect neuronal excit-
ability? PNNs may prevent the diffusion of ion channels
along the plasma membrane. AMPA receptors have
been shown to diffuse more after the degradation of
PNN-like structures that form around cultured hip-
pocampal neurons (Frischknecht et al., 2009). Perhaps
voltage-dependent Na� and K� channels that underlie
spiking are maintained in clusters or prevented from
being endocytosed by interactions with PNNs. Indeed,
the voltage-dependent Na� Channel NaV1.2 interacts
with tenascin-R (Srinivasan et al., 1998), a major com-
ponent of the PNN, although the function of this inter-
action has not been investigated.

It is possible that the voltage dependence of ion chan-
nels is affected by the PNN. PNNs are highly negatively
charged (Morawski et al., 2015). Removal of this negative
charge at the membrane could affect the local electric
field sensed by the gating subunits of ion channels. This
could have an effect that is similar to the extracellular
application of high divalent cation solutions, which neu-
tralize the membrane surface charge, shift channel gating
to more depolarized membrane potentials, and reduce
spiking (Frankenhaeuser and Hodgkin, 1957; Hille, 2001).
The removal of PNNs could thus shift the activation of
voltage-dependent ionic currents to higher voltages. In
this case, PNNs may increase excitability by increasing
the negative charge of the membrane and shift channel
gating of one or more channel species to more hyperpo-
larized potentials.

Another way that neuronal excitability could be affected
by ChABC is by reducing electrostatic interactions be-
tween the PNNs and cations. PNNs have been proposed
to be a buffering system to maintain a stable microenvi-

ronment of Na� and K� ions (Härtig et al., 1999). Although
not further investigated here, this proposed buffering sys-
tem may explain why ChABC treatment affected spike
shape during fast spiking (evoked by the white noise
currents; Fig 7), but not spikes evoked by current pulses
(Table 2; Fig 3). Whether PNNs attract these Na� and K�

ions is unclear. However, ChABC increases the diffusion
of calcium ions in cortical and hippocampal brain slices,
but not the monovalent cation tetramethylammonium
(Hrabetová et al., 2009). Increased diffusion of calcium
ions could have an effect similar to the application of
extracellular high divalent solutions. Future work is nec-
essary to test these hypotheses.

PNNs are complex structures and are likely to have
diverse roles in neuronal physiology and plasticity (Tsien,
2013). The present study shows that PNNs increase the
gain of the inhibitory neurons they surround and could
therefore increase synaptic inhibition in the brain. In the
auditory system, neurons must fire rapidly, reliably, and
precisely in order to process small differences in timing
between the two ears. It is not surprising then, that so
many neurons in the auditory brainstem are coated with
PNNs. It remains to be seen whether the disruption of
PNNs that can occur in disease underlies auditory pathol-
ogy.
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