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Abstract: A scheme is proposed to generate maximally entangled states of two Λ-type atoms trapped
in separate overdamped optical cavities using quantum-jump-based feedback. This proposal can
stabilize not only the singlet state, but also the other three triplet states by alternating the detuning
parameter and relative phase of the classical fields. Meanwhile it is convenient to manipulate atoms,
and much more robust against spontaneous emission of atoms. The parameters related to the potential
experiment are analyzed comprehensively and it is confirmed that the quantum feedback technology
is a significant tool for entanglement production with a high fidelity.
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1. Introduction

It is well known that quantum dissipation is a notorious obstacle for various quantum information
processing tasks, such as quantum algorithms [1,2], generation of entanglement [3,4], and quantum
communication [5–9], which results from the inevitable interaction between the quantum system
and the surrounding environment. However, by virtue of the quantum dissipation, more and
more triumphs of quantum computation and quantum information have come, such as dissipative
preparations of quantum entanglement [10–17], autonomous quantum error correction [18–25],
directional quantum state transfer [26–28], and so on. These efforts reveal the spectacular promise
of quantum dissipation. In particular, Plenio et al. [10] proposed a scheme to generate entangled
states with a model consisting of an atom coupled to two distinct leaky, white-noise-field driven
optical cavities, and proved the requisite of noise can play a constructive role in certain tasks.
Tacchino et al. [16] showed that a bipartite quantum system can be optically pumped into a maximally
entangled steady state by exploiting purely incoherent resources, with the largest concurrence
reaching the limiting value of 0.5 if one of the two Bell states is coupled to a bath at a negative
effective temperature.

On the other hand, the realization of a purely steady entangled state cannot be ensured by
the dissipation alone. Therefore, various manners are combined with the disspation to improve
the purity of target state such as purification and feedback control [29–35]. For instance, based
on continuous monitoring of quantum jumps, Wang et al. [29] and Mancini [30] showed that the
Markovian feedback scheme is able to increase the steady-state entanglement for two two-level atoms
coupled to a single Bosonic mode that is driven and heavily damped. Additionally, Carvalho et al. [31]
presented a strategy that is insensitive to detection inefficiencies and robust against errors in the
control Hamiltonian. Its model consists of a pair of two-level atoms equally, and resonantly, coupled
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to a single cavity mode in the limit of where cavity decay rate κ is very large. In [32], they also
investigated the effects of different control Hamiltonians and detection processes on entanglement
production and showed that the quantum-jump-based feedback can protect highly entangled states
against decoherence. Nevertheless, in the above schemes, only the singlet state can be prepared as
the restriction on the symmetry of the system and the fidelity of the entangled state is significantly
reduced by atomic spontaneous emission. Furthermore it is inconvenient to achieve the local feedback
control on a single atom since all atoms are trapped into a cavity.

In this work, we present a flexible scheme to generate different Bell states by suitable regulation of
relevant parameters, where two Λ-type atoms are respectively trapped in an array of coupled cavities.
The photon hopping rate G between two cavity provides an additional controllable parameter to
realize different Bell states. The atomic spontaneous emission is drastically suppressed by the adiabatic
elimination of the excited states. And we will execute a local feedback control to improve the fidelity of
the target state as the leakage of photon from the local cavity modes is detected. Ultimately, the system
can be stabilized into the target state and needs no requirement of precise control on the time of
evolution. We also make a systemic analysis of the relevant parameters in the current experiment and
confirm that the quantum-jump-based feedback is reliably useful in stabilization of all kinds of Bell
entangled states with high fidelities.

2. Effective Master Equation of the Coupled-Cavity Array System

In Figure 1, the system consists of a pair of identical atoms with a Λ-type configuration trapped in a
coupled-cavity array and simultaneously driven by classical fields. The transition |g〉 ↔ |r〉 is coupled
to a single-mode cavity with a coupling constant g and detuning δ + ∆, and the transition |e〉 ↔ |r〉 is
driven by a classical field with Rabi frequency Ω and detuning ∆. Additionally, the microwave field is
applied to drive the transition |g〉 ↔ |e〉 with Rabi frequency ω. The photon can hop between adjacent
cavities with coupling strength G. The atoms are assumed to spontaneously radiate from the excited
state |r〉 to the ground states |g〉 and |e〉 with an equal decay rate γ/2 and the decay rate of each cavity
mode is κ. In a rotating frame, the Hamiltonian of the system reads (h̄ = 1).

H = geiδt(a|r〉1〈g|+ b|r〉2〈g|) + ∑
j=1,2

Ω|r〉j〈e|+ ∑
j=1,2

ω|e〉j〈g|+ H.c.

+ ∑
j=1,2

∆|r〉j〈r|+ G(a†b + ab†), (1)

where a (a†) and b (b†) denote the annihilation (creation) operators of the local cavities, respectively.
In the regime of the large detuning ∆� {g, Ω}, we can adiabatically eliminate the excited states |r〉
and then the Hamiltonian is simplified as

H = − gΩ
∆

eiδt(a|e〉1〈g|+ b|e〉2〈g|) + ∑
j=1,2

ω|e〉j〈g|+ H.c.

− ∑
j=1,2

Ω2

∆
|e〉j〈e| −

g2

∆
(a†a|g〉1〈g|+ b†b|g〉2〈g|) + G(a†b + ab†). (2)

The Stark-shift terms of ground states |g〉 and |e〉 can be canceled via introducing other ancillary
levels, thence the reduced Hamiltonian could be reexpressed as

H = − gΩ
∆

eiδt(a|e〉1〈g|+ b|e〉2〈g|) + ∑
j=1,2

ω|e〉j〈g|+ Ga†b + H.c.. (3)

In order to achieve a further simplification of the system, we introduce two normal boson models
A = (a + b)/

√
2 and B = (a− b)/

√
2, which are not coupled to each other but interact with atoms,
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due to the contributions of the cavity fields. Then we have a = (A + B)/
√

2 and b = (A− B)/
√

2 and
substitute the relations into Equation (3). The corresponding Hamiltonian is

H = − gΩ√
2∆

eiδt[A(|e〉1〈g|+ |e〉2〈g|) + B(|e〉1〈g| − |e〉2〈g|)] + ∑
j=1,2

ω|e〉j〈g|+ H.c. + G(A† A− B†B). (4)

We further utilize the formula HI = iU̇†
0 U0 + U†

0 HU0 to reformulate the Hamiltonian H in a
rotation with respect to U0 = exp[−itG(A† A− B†B)], and

HI =
g̃√
2
[Aei(δ−G)t|e〉1〈g|+ Bei(δ+G)t|e〉1〈g|] +

g̃√
2
[Aei(δ−G)t|e〉2〈g|

−Bei(δ+G)t|e〉2〈g|] + ∑
j=1,2

ω|e〉j〈g|+ H.c., (5)

where g̃ = −gΩ/∆. Under the assumption of δ = G and g̃/
√

2 � 2G, the non-local mode B is
decoupled to the system, and we have

Heff = ∑
j=1,2

g̃√
2
(A|e〉j〈g|+ A†|g〉j〈e|) + ω(|e〉j〈g|+ |g〉j〈e|). (6)

Figure 1. Schematic view of the atom-cavity system. The transition |e〉 ↔ |r〉 is driven by a classical
field with a time-independent Rabi frequency Ω; the transition |g〉 ↔ |r〉 is coupled to the cavity with
coupling constant g; δ and ∆ are corresponding detuning parameters. κ is the decay rate of each cavity
mode. The transition |g〉 ↔ |e〉 is additionally driven by a microwave field with a Rabi frequency ω

and the hopping rate between neighbouring cavities is G.

Now we obtain an effective model as in Reference [31], where a pair of two-level atoms are
simultaneously driven by a quantum field and a classical field. The difference is that |g〉 and |e〉 are
the ground states and mode A is non-local. It should be noted that Stevenson et al. have also derived a
similar model with two Raman three-level systems in the same cavity [36], but we will see below that
the coupled-cavity array system is much useful for stabilizing different Bell states. The dissipative
dynamics of the whole system is characterized by the Markovian master equation

ρ̇ = −i[Heff, ρ] +
κ

2
(2AρA† − A† Aρ− ρA† A), (7)

where the terms characterizing the spontaneous emission of atom has been neglected, since the atom is
restricted in the subspace spanned by {|g〉, |e〉}. By virtue of the standard adiabatic elimination of the
non-local cavity mode A in the regime of κ � g̃, the master equation of the reduced density operator
for the atomic degrees of freedom becomes (the detail has been shown in the Appendix A)

ρ̇ = −iω[(J+ + J−), ρ] + ΓD[J−]ρ, (8)
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where J− = J†
+ = ∑j=1,2 |g〉j〈e| = ∑j=1,2 σ

j
− represents the cavity-loss induced collective decay

operator of atoms with decay rate Γ = 2g̃2/κ, and the superoperaterD is defined asD[O] = (2OρO† −
O†Oρ− ρO†O)/2.

3. Stabilization of Different Bell States via Quantum Feedback Control

Quantum feedback control is a compelling method to make the system evolve to the desired state
by suitable regulation of relevant parameters. In our scheme, the loss of cavities equivalent to the
collective decay of atoms can be monitored by a photondetector D. Once the photons out of cavities are
detected by the photondetector, a feedback operator Ufb = exp [−iλ(|g〉1〈e|+ |e〉1〈g|)] = exp (−iλσ1

x)

will be applied to the first atom. In this situation the master equation Equation (8) can be modified
to [31]

ρ̇ = −iω[(J+ + J−), ρ] + ΓD[Ufb J−]ρ. (9)

In the following numerical simulations, we will characterize the long-time dynamics of system by
solving Equation (9) from different initial states instead of direct solving the steady master equation,
because there is not always a unique steady solution to Equation (9).

In Figure 2a, we first plot the concurrence of the evolution of the system governed by Equation (9)
from an initial state |φ1〉 = |g〉1|g〉2. We find that the concurrence is equal to unity in most of the region
except for the point ω/Γ = 0 or λ = nπ, and it is also consistent with the result of Reference [31].
A simple inspection shows that the final density matrix ρ is:

ρ =


0 0 0 0
0 0.5 −0.5 0
0 −0.5 0.5 0
0 0 0 0

 , (10)

which just corresponds to the density matrix of entanglement |ϕ−〉 = (|ge〉 − |eg〉)/
√

2.
In order to produce other Bell states, we now change the phase of the microwave field acting on

the second atom and the corresponding master equation for this case is derived as:

ρ̇ = −iω[(σ1
x − σ2

x), ρ] + ΓD[Ufb J−]ρ, (11)

where σ
j
x = |g〉j〈e|+ |e〉j〈g|.

Then we plot the concurrence of the system governed by Equation (11) in Figure 2b.
The concurrence is almost vanished except for the particular point λ = ±0.5π with a large ω/Γ,
where the concurrence is near to unity, and the final density matrix ρ is described as:

ρ =


0.5 0.0248i −0.0248i 0.4950

−0.0248i 0.0025 −0.0025 −0.0248i
0.0248i −0.0025 0.0025 0.0248i
0.4950 0.0248i −0.0248i 0.4950

 . (12)

According to Equation (12), we find that the state of system is not pure at this time but it is
similar to the density matrix of entanglement |ψ+〉 = (|gg〉 + |ee〉)/

√
2, where the fidelity of the

state |ψ+〉 is
√
〈ψ+|ρ|ψ+〉 = 0.9926. Thus the final state can be regarded as |ψ+〉. This state has not

been created using quantum dissipation before and the mechanism of our scheme can be explained
in the following. In the absence of the feedback Ufb, the steady state of the system is mixed by
{|ee〉, |gg〉, |eg〉, |ge〉}. The state |ee〉 may radiate to the state |eg〉 and |ge〉, which will be further
transferred to |gg〉. When a feedback operation Ufb = exp (−iλσ1

x) with λ = ±0.5π is introduced,
the transitions of |eg〉 → |gg〉 and |ge〉 → |ee〉 will occur, which means that |eg〉 or |ge〉 is unstable
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in the presence of feedback. Therefore a non-equilibrium mixed state is generated which has a large
overlap with the Bell state |ψ+〉.

Figure 2. The concurrence of the system at the time Γt = 2000 as a function of λ/π and ω/Γ as initial
state is |φ1〉 = |g〉1|g〉2, without (a,b) or with (c,d) a large decay rate of atomic spontaneous emission
(γ = 0.1g).

Then we consider the effect of atomic spontaneous emission. The formula for the damping
operators of the effective atomic spontaneous emission takes the form of

Rj =

√
γΩ2

2∆2 |g〉j〈e|+
√

γΩ2

2∆2 |e〉j〈e|, (13)

and the corresponding master equations reads

ρ̇ = −iω[(σ1
x ± σ2

x), ρ] + ΓD[Ufb J−]ρ + ∑
j=1,2
D[Rj]ρ (14)

with different phases (0 and π) of microwave field for the second atom. We then plot the concurrence
of |ϕ−〉 = (|ge〉 − |eg〉)/

√
2 in Figure 2c and |ψ+〉 = (|gg〉+ |ee〉)/

√
2 in Figure 2d with γ = 0.1g.

In Figure 2c, the maximum value of concurrence can reach cmax = 0.97 in the region of |λ/π| ∈
[0.15, 0.85], |ω/Γ| ∈ (0, 5]. Similarly, in Figure 2d, when |λ/π| = 0.5, |ω/Γ| ∈ [3.5, 5], the concurrence
may achieve at cmax = 0.96. It adequately demonstrated the robustness of the scheme against the
atomic spontaneous emission.

In Figure 3, we consider another initial state |φ2〉 as |g〉1|e〉2, and illustrate the concurrence of
the system with atomic spontaneous emission effects (Figure 3c,d) and without atomic spontaneous
emission (Figure 3a,b), respectively. For Figure 3a (or Figure 3c), in the region of |λ/π| ∈ [0.25, 0.75],
|ω/Γ| ∈ (0, 5], the fidelity of |ϕ−〉 = (|ge〉 − |eg〉)/

√
2 arrives at

√
〈ϕ−|ρ|ϕ−〉 = 1 (or

√
〈ϕ−|ρ|ϕ−〉 =

0.97). Similarly, in Figure 3b (or in Figure 3d), the fidelity of |ψ+〉 = (|gg〉+ |ee〉)/
√

2 is
√
〈ψ+|ρ|ψ+〉 =

1 (
√
〈ψ+|ρ|ψ+〉 = 0.96) for |λ/π| = 0.5, |ω/Γ| ∈ [3.5, 5]. Combined with the previous analysis, we can
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conclude that the preparation of entangled state of our current proposal is independent of the initial
state. It is also worth mentioning that in Figure 3b (or Figure 3d), when removing the classical driving
field ω/Γ = 0 and the feedback coefficient satisfies λ = 0.5π, we get the density matrix different from
Equation (12):

ρ =


0 0 0 0
0 0.5 −0.5 0
0 −0.5 0.5 0
0 0 0 0

 . (15)

It means that when the microwave field is absent and we select |φ2〉 = |g〉1|e〉2 and Ufb =

exp(−iσ1
x π/2), the entangled state |ϕ−〉 = (|ge〉 − |eg〉)/

√
2 can also be produced. Furthermore,

the present scheme can be also used to prepare the states |ϕ+〉 = (|ge〉 + |eg〉)/
√

2 and |ψ−〉 =

(|gg〉 − |ee〉)/
√

2, which has been discussed in the Appendix B in detail.

Figure 3. The concurrence of the system in the case of changing the initial state only (|φ2〉 = |g〉1|e〉2)
without (a,b) or with (c,d) a large decay rate of atomic spontaneous emission (γ = 0.1g).

Then it is significant to discuss the experimental feasibility of our program. The atomic
configuration involved can be realized with Cs atoms. Since the achievement of trapping atoms
in cavities has been demonstrated by several groups [37–40], we can accurately manipulate trapped
atoms [37], microwave fields [38] and laser beams [39] to achieve the desired Rabi frequency and
atom-cavity coupling. The full master equation of the system is written as

ρ̇ = −i[HI , ρ] +
1
2

κD[Ufba]ρ +
1
2

κD[Ufbb]ρ + ∑
j=1,2
D[Rj]ρ, (16)

where the feedback control is carried out once the photon leaking out of the cavities is detected. In an
optical cavity with a coupling coefficient g/2π = 10 MHz, the cavity mode and atomic decay rate
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can be chosen as (κ, γ)/2π = (0.4, 2.6) MHz [36,41]. Substituting these parameters and ∆ = 200g
into Equation (16), we acquire the time evolution for fidelities of the target states with different initial
states in Figure 4. The purple dashed lines and dotted triangle lines represent the fidelities of the
state |ψ+〉 = (|gg〉+ |ee〉)/

√
2 with and without atomic spontaneous emission, respectively. The other

two curves describe the fidelity of state |ϕ−〉 = (|ge〉 − |eg〉)/
√

2 with (signed empty circles line) and
without (blue dashed line) atomic spontaneous emission. Although the atomic dissipation is chosen
as γ = 2π × 2.6 MHz, the fidelities still arrive at 96.01% for |ψ+〉 and 98.21% for |ϕ−〉 in a short time
Γt = 6. It manifests the robustness of our protocol against decoherence once again.
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Figure 4. The fidelities for the states |ϕ−〉 = (|ge〉 − |eg〉)/
√

2 and |ψ+〉 = (|gg〉+ |ee〉)/
√

2 under
different initial states (a) |φ1〉 = |g〉1|g〉2, (b) |φ1〉 = |g〉1|e〉2 with the full master equation. The selection
of related parameters is Ω = g, G = g, ∆ = 200g, ω/Γ = ±5 and the driving frequency is set at
λ = 0.5π.

4. Summary

In summary, we have put forward an efficient scheme to generate different maximal entanglements
by two Λ-type atoms trapped into an array of cavities. After a systematic analysis with the relevant
parameters, we confirm the availability of quantum-jump-feedback control to improve the fidelity of
entangled states. And our approach is robust against atomic spontaneous emission since the excited
states are adiabatically eliminated. In addition, we can obtain all kinds of Bell states by changing the
detuning parameter and the relative phase of microwave field operated on two atoms. We hope that
our scheme will inspire the future preparation of entangled states with quantum feedback.
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Appendix A. Derivation of the Effective Master Equation

The dissipative dynamics of the whole system is characterized by the Markovian master equation

ρ̇ = −i[Heff, ρ] +
κ

2
(2AρA† − A† Aρ− ρA† A). (A1)

The density operator in the photon number representation is given by [42]

ρ =
∞

∑
m,n=0

ρmn|m〉〈n|, (A2)

where ρmn are the density matrix elements based on photon number states. When the relation κ � g̃ is
achieved, the highly excited mode of the cavities can be neglected. So the cavity is in the single-photon
state at most and the density matrix ρ can be expressed in a small low-photon-number condition to a
good approximation, i.e.,

ρ = ρ00|0〉c〈0|+ ρ01|0〉c〈1|+ ρ10|1〉c〈0|+ ρ11|1〉c〈1|, (A3)

where |n〉c represents the state of the cavity mode with n photons. Substituting Equation (A3) into
Equation (A1), we can get a series of coupled equations:

ρ̇00 = Lρ00 +
ig̃√

2
(ρ01 J− − J+ρ10) + κρ11, (A4)

ρ̇10 = Lρ10 +
ig̃√

2
(ρ11 J− − J−ρ00)−

κ

2
ρ10, (A5)

ρ̇11 = Lρ11 +
ig̃√

2
(ρ10 J+ − J−ρ01)− κρ11. (A6)

The photon-independent items are included in the superoperator Lρmn, where Lρmn is written
as Lρmn = iω[ρmn(J+ + J−)− (J+ + J−)ρmn]. In the regime of κ � g̃, it is reasonable to suppose that
ρ10 = 0 and then get the value of the operator as

ρ10 = ρ†
01 ≈

√
2ig̃
κ

(ρ11 J− − J−ρ00). (A7)

By substituting Equation (A7) into the representation of ρ00 and ρ11, we can get a diagonal density
matrix whose matrix elements are:

ρ̇00 = Lρ00 −
g̃2

κ
(ρ00 J+ J− − 2J+ρ11 J− + J+ J−ρ00) + κρ11, (A8)

ρ̇11 = Lρ11 −
g̃2

κ
(ρ11 J− J+ − 2J−ρ00 J+ + J− J+ρ11)− κρ11. (A9)

Because of ρ00 + ρ11 = ρatom, these two terms explain the evolutionary nature of the atomic
dynamics. We add these two terms together and adiabatically eliminate the term of ρ11, the master
equation of the simplified density operator for the atomic degrees of freedom becomes:

ρ̇ = −iω[(J+ + J−), ρ] + ΓD[J−]ρ, (A10)

where Γ = 2g̃2/κ denotes the collective decay rate of atoms.
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Appendix B. Generation of the Other Two Triplet States

In order to generate the state |ϕ+〉 = (|ge〉+ |eg〉)/
√

2, we can choose the δ of Equation (5) as
−G, which leads to the non-local mode B preserved and A dropped. Then we have

H
′
eff = ∑

j=1,2

g̃√
2
[(−1)j−1B|e〉j〈g|+ B†|g〉j〈e|] + ω(σx

1 ± σx
2). (A11)

Defining J̃+ = |e〉1〈g| − |e〉2〈g|, J̃− = |g〉1〈e| − |g〉2〈e|, the corresponding master equation of the
system becomes

ρ̇ = −iω[( J̃+ + J̃−), ρ] + ΓD[Ufb J̃−]ρ, (A12)

and the final density matrix ρ is described as:

ρ =


0 0 0 0
0 0.5 0.5 0
0 0.5 0.5 0
0 0 0 0

 . (A13)

It is equal to the density matrix of the target state |ϕ+〉〈ϕ+| and the preparation of state |ϕ+〉
is finished.

Similarly, we can set δ = −G of Equation (5) and change the phase of the microwave field for the
second atom to generate the state |ψ−〉 = (|gg〉 − |ee〉)/

√
2. The associated master equation can be

rewritten as

ρ̇ = −iω[( J̃+ − J̃−), ρ] + ΓD[Ufb J̃−]ρ, (A14)

and the final density matrix is

ρ =


0.5 0.0248i 0.0248i −0.4950

−0.0248i 0.0025 0.0025 0.0248i
−0.0248i 0.0025 0.0025 0.0248i
−0.4950 −0.0248i −0.0248i 0.4950

 . (A15)

The overlap between this density operator and the ideal state |ψ−〉 is F =
√
〈ψ−|ρ|ψ−〉 = 0.9926,

which means we have successfully obtained the state |ψ−〉.
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42. Ficek, Z.; Tanaś, R. Entangled states and collective nonclassical effects in two-atom systems. Phys. Rep. 2002,
372, 369–443. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevA.96.012340
http://dx.doi.org/10.1140/epjd/e2010-10442-2
http://dx.doi.org/10.1103/RevModPhys.75.281
http://dx.doi.org/10.1063/1.2132066
http://dx.doi.org/10.1038/442151a
http://dx.doi.org/10.1103/PhysRevA.76.022331
http://dx.doi.org/10.1103/PhysRevLett.103.123006
http://www.ncbi.nlm.nih.gov/pubmed/19792433
http://dx.doi.org/10.1016/S0370-1573(02)00368-X
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Effective Master Equation of the Coupled-Cavity Array System
	Stabilization of Different Bell States via Quantum Feedback Control
	Summary
	Derivation of the Effective Master Equation
	Generation of the Other Two Triplet States
	References

