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Abstract: We previously reported the potential anti-obesity effects of the water extract of Hydrangea
serrata (Thunb.) Ser. leaves (WHS) in high-fat diet-induced obese mice. As an extension of our previ-
ous study, we investigated the anti-adipogenic and anti-obesity effects of WHS and its underlying
molecular mechanisms in 3T3-L1 preadipocytes and genetically obese db/db mice. WHS attenuated
the gene expression of adipogenic transcription factors, CCAAT/enhancer binding protein (C/EBP)α,
peroxisome proliferator-activated receptor (PPAR)γ, and sterol regulatory element binding protein
(SREBP)-1. Moreover, WHS inhibited the mitotic clonal expansion of preadipocytes by inducing G1

cell cycle arrest. Oral administration of WHS alleviated body weight gain and body fat accumulation
in vivo. In addition, adipocyte hypertrophy and liver steatosis were ameliorated by WHS treatment.
WHS reduced C/EBPα, PPARγ, and SREBP-1 expression and activated AMPKα phosphorylation in
both white adipose tissue (WAT) and liver tissue. WHS also mildly upregulated the expression of
thermogenic proteins, including uncoupling protein-1, PPARs, PPARγ coactivator-1α, and sirtuin-1,
in brown adipose tissue (BAT). Furthermore, WHS altered the gut microbiota composition to resemble
that of wild-type mice. Taken together, our findings suggest that WHS could alleviate adiposity by
inhibiting adipogenesis in WAT and the liver and modulating the gut microbiota.
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1. Introduction

Obesity is a notable health problem worldwide, which can lead to several diseases
including type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), cardiovascular
disease (CVD), stroke, dyslipidemia, and various types of cancer [1]. It is mainly caused
by an imbalance between energy intake and expenditure, resulting from high-calorie food
intake and decreased physical activity. Evidence indicates that an individual’s genetic
factors also contribute to obesity [2,3]. Obesity is characterized by an excessive accumu-
lation of body fat, which is known as white adipose tissue (WAT). The growth of WAT is
mediated by two mechanisms, hyperplasia and hypertrophy, which signify the formation
of new adipocytes from precursor cells and an increase in the size of mature adipocytes,
respectively [4]. Therefore, regulating both the size and number of adipocytes is a key
strategy for inhibiting adipogenesis and obesity.

Mitotic clonal expansion (MCE) is an important process during the differentiation of
3T3-L1 preadipocytes that mimics adipocyte hyperplasia [5]. Once cells are fully prolif-
erated and packed, cell growth is inhibited at the G1 phase of the cell cycle by physical
contact with neighboring cells, cells need to be fully proliferated and packed to induce
adipocyte differentiation. When treated with an adipogenic hormonal cocktail containing
3-isobutyl-1-methylxanthine (IBMX), dexamethasone (DEX), and insulin, cells can re-enter
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the S and G2/M phases, which is regarded as MCE. Upon activation of insulin signal-
ing, Akt is activated and subsequently induces downstream target protein, mammalian
target of rapamycin (mTOR). The Akt/mTOR pathway plays a crucial role in adipocyte
differentiation, especially in the regulation of cell cycle progression [6–9]. In contrast,
the AMP-activated protein kinase (AMPK) pathway inhibits adipocyte differentiation by
inducing G1 cell cycle arrest and suppressing mTOR phosphorylation [10]. Following
MCE, early differentiation is initiated by CCAAT/enhancer-binding proteins (C/EBPs),
i.e., C/EBPβ and C/EBPδ. These proteins stimulate terminal differentiation by increas-
ing the expression of C/EBPα, peroxisome proliferator-activated receptor (PPAR)γ, and
sterol regulatory element-binding protein (SREBP)-1, transcription factors that regulate
lipogenic genes, including fatty acid synthase (FAS), fatty acid-binding protein 4 (FABP4),
acetyl-CoA carboxylase (ACC), and stearoyl-CoA desaturase 1 (SCD1) [11]. The AMPK
pathway plays a crucial role in adipogenesis by downregulating the expression of these adi-
pogenic transcription factors and genes. Therefore, the activation of AMPK and inhibition
of Akt/mTOR are both therapeutic approaches for ameliorating obesity.

WAT stores energy as triacylglycerols (TGs) and is expanded by adipogenesis, whereas
brown adipose tissue (BAT) dissipates energy via thermogenesis [12]. In contrast to WAT,
BAT is characterized by an abundance of mitochondria. BAT mitochondria contain a unique
cellular protein, uncoupling protein-1 (UCP-1), which converts energy in the form of TGs to
heat [13,14]. In BAT, PPARs are deacetylated by sirtuin-1 (SIRT-1) and interact with PPARγ
coactivator-1α (PGC-1α); thus, they are involved in the regulation of lipid oxidation and
thermogenesis [15,16]. Therefore, activating thermogenesis in BAT is a potential strategy
for combating obesity.

Various species of Hydrangea, including H. macrophylla, H. paniculata, and H. ser-
rata, contain several bioactive components, including coumarins, terpenoids, and iridoids
[17–19]. Hydrangea extracts and their active compounds have been reported to exert protec-
tive effects against liver injury and renal injury [19,20], improve insulin resistance [21], and
maintain skeletal muscle mass and function [22]. We previously examined the therapeutic
effects of the water extract of H. serrata (Thunb.) Ser. (WHS) using high-fat diet (HFD)-
induced obese mice and found that WHS may exert anti-obesity effects [23]. In addition
to poor diet, genetic factors can contribute to the development of obesity [24]; thus, we
further expanded our investigation on the weight loss effect of daily intake of WHS and
the underlying molecular mechanisms in genetically obese db/db mice in this study.

2. Materials and Methods
2.1. Materials

WHS was prepared and standardized as described previously [25]. IBMX, DEX, in-
sulin, oil red O, propidium iodide (PI), sodium orthovanadate, sodium fluoride (NaF),
phenylmethylsulfonyl fluoride (PMSF), and protease inhibitor cocktail (PIC) were obtained
from Sigma Aldrich Inc. (St Louis, MO, USA). Total RNA extraction kit (easy-BLUE™) and
protein lysis buffer (PRO-PREP™) were purchased from iNtRON Biotechnology (Seong-
nam, Korea). Antibodies of ACC, p-AMPKα, AMPKα, p-Akt, p-Akt2, p-mTOR, mTOR,
C/EBPα, p27, and SIRT-1 were purchased from Cell Signaling Technology Inc. (Danvers,
MA, USA). Akt, cyclin D1, cyclin E, cyclin B1, CDK2, FAS, FABP4, p21, PPARα, PPARγ,
UCP-1, and β-actin antibodies were purchased from Santa Cruz Biotechnology Inc. (Dallas,
TX, USA). SREBP-1 antibody was obtained from Thermo Fisher Scientific Inc. (Waltham,
MA, USA).

2.2. Cell Culture and Adipocyte Differentiation

3T3-L1 cells were cultured in growth medium (GM) supplemented with 10% bovine
serum (BS) and penicillin-streptomycin (PS) (100 U/mL and 100 µg/mL). For differentia-
tion, cells were seeded at 6 × 105/cells in 6-well plates and incubated for 3 days (Day 0).
After confluences, cell culture media was replaced with differentiation medium (DM)
supplemented with 10% fetal bovine serum (FBS), 1% PS, and MDI (0.5 mM IBMX, 0.5 µM,
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and 10 µM insulin), and cells were treated with WHS (50, 100, or 200 µg/mL). After 3 days
(Day 3), media was replaced with DM containing insulin (1 µM) with or without WHS
every 2 days. 3T3-L1 preadipocytes were fully differentiated into adipocytes on day 9.

2.3. Total RNA Extraction and Quantitative Real-Time RT-PCR (qRT-PCR)

Total cellular RNA was extracted by using easy-BLUE™ kit according to the manufac-
turer’s instruction. The extracted RNA was amplified by RT-PCR using TOPscript™ RT
DryMIX (Enzynomics Inc., Daejeon, Korea) to synthesize cDNA. Using cDNA, TB Green®

Premix Ex Taq™, and specific primers, the relative mRNA expression of C/EBPα, PPARγ,
and SREBP-1 were quantified by QuantStudio™ 1 System (Thermo Fisher Scientific Inc.,
Waltham, MA, USA)

2.4. Protein Extraction and Western Blot

Total cellular and tissue protein were extracted as previously described [23]. The pro-
tein concentration was quantified by Bradford assay (Bio-Rad Laboratories, Inc., Hercules,
CA, USA) according to the manufacturer’s instructions. Whole protein lysates (25 µg) were
resolved by SDS-PAGE and electrotransferred to a PVDF membrane. The blots were incu-
bated with specific primary and secondary antibodies. The immunoblots were detected on
Amersham hyperfilm ECL (GE Healthcare Life Sciences, Chicago, IL, USA) using an ECL
chemiluminescent substrate (Santa Cruz Biotechnology Inc., Dallas, TX, USA).

2.5. Oil Red O Staining

Oil Red O staining was conducted as described previously [23]. Briefly, 3T3-L1 cells
were fully differentiated in the presence or absence of WHS as described above. The cells
were washed and fixed. The fixed cells were stained with filtered oil red O solution. The Oil
Red O-stained cells were observed by using an Olympus light microscope system (Tokyo,
Japan). The stained intracellular lipid droplet was dissolved in isopropanol and the optical
density was measured at 510 nm using a microplate reader (Molecular Devices Inc., San
Jose, CA, USA).

2.6. PI Staining Analysis

3T3-L1 cells were incubated with DM containing MDI with or without WHS for 24 h.
Cells were collected, resuspended in 100 µL PBS, fixed in 1 mL cold ethanol drop by drop,
and incubated overnight. The fixed cells were then resuspended in PI staining buffer
(100 µg/mL PI staining solution + 10 µg/mL RNase in PBS) and incubated for 15 min
in dark. PI-stained cells were analyzed using fluorescence-activated cell sorting (FACS)
cytometer (Cytomics FC 500, Beckman Coulter Inc., Brea, CA, USA).

2.7. Animals and Experimental Design

Six-week-old male db/db (C57BL/KsJ-db/db) mice and age-matched wild-type (WT;
C57BL/KsJ-m+/m+) mice were obtained from the Central Lab. Animal Inc. (Seoul, Korea).
Mice were acclimatized for a week under standard laboratory conditions (light/dark
cycle: 12 h, 22 ± 1 ◦C, and 40 to 60% humidity. All animal procedures were conducted
in compliance with the guidelines for Animal Care and Use of Kyung Hee University
and the experimental protocol was approved by the Institutional Animal Care and Use
Committee of Kyung Hee University (KHUASP-20-292). Mice were divided into 3 groups
(n = 5): WT control group, db/db control group, and WHS-treated db/db group. All groups
of mice were fed a normal chow diet and orally administered with vehicle or 300 mg/kg
WHS for 5 weeks. The body weight and food intake were recorded every week during
the experiment. White adipose tissues (WATs) including subcutaneous fat, inguinal fat,
mesenteric fat, and perirenal fat, brown adipose tissue (BAT), and liver were removed and
immediately frozen in liquid nitrogen for western blot analysis.
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2.8. Biochemical Examination of Blood

Whole blood was collected and plasma was isolated for biochemical analysis. Aspar-
tate transaminase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), glucose,
and lipid profiles including total cholesterol (TC), triglyceride (TG), low-density lipoprotein
(LDL), and high-density lipoprotein (HDL) were measured by using AU480 Chemistry
Analyzer (Beckman Coulter Inc., Brea, CA, USA).

2.9. Histological Analysis

A part of subcutaneous fat and liver were fixed with 4% buffered formaldehyde and
stained with hematoxylin and eosin (H&E) as described previously [23]. The stained slides
were analyzed under a microscope (Olympus, Tokyo, Japan).

2.10. Microbiome Sampling and Microbiome Taxonomic Profiling (MTP)

At the end of the experiment, feces were collected from each mouse and immediately
frozen in liquid nitrogen. Genomic DNA was extracted from fecal using QIAamp Fast DNA
Stool Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instruction. PCR
amplification was performed on each sample for amplifying V3–V4 regions of the bacterial
16S rRNA gene. PCR products were purified and quantified. The equal concentrations of
purified products were pooled together and subjected to pyrosequencing using Illumina
iSeq 100 Sequencing System (Illumina, San Diego, CA, USA). The detailed procedures were
described previously [23].

2.11. Statistical Analysis

Data were expressed as the means ± standard deviation (SD) in vitro or standard error of
the mean (SEM) in vivo, respectively. Statistical significance (p < 0.05) was analyzed by using
Dunnett’s multiple comparison test in vitro and an unpaired Student’s t-test in vivo, respectively.

3. Results
3.1. WHS Inhibits the Adipogenesis and MCE of 3T3-L1 Preadipocytes

Treatment with WHS significantly reduced the mRNA expression of Cebpα, Pparγ,
and Srebp-1 (Figure 1A–C). WHS exerted anti-adipogenic effect by inhibiting the protein
expression of lipogenic markers, including ACC, FAS, and FABP4 (Figure 1D). As shown
in Figure 1E, the phosphorylation of AMPKα was downregulated, whereas the phospho-
rylation of Akt and mTOR was upregulated during adipocyte differentiation. However,
treatment with WHS reversed these changes in a concentration-dependent manner. Using
Oil Red O staining, we found that intracellular lipid accumulation was markedly increased
over time; however, WHS treatment significantly reduced this accumulation (Figure 1F,G).
These results indicated that WHS suppresses adipocyte differentiation by inhibiting Cebpα,
Pparγ, and Srebp-1 mRNA expression and ACC, FAS, and FABP4 protein expression, and
regulating the AMPK and Akt/mTOR pathways.
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Figure 1. Anti-adipogenic effect of water extract of Hydrangea serrata (Thunb.) Ser. leaves (WHS)
mediated by the regulation of the AMPK and Akt/mTOR pathways in 3T3-L1 preadipocytes. Cells
were differentiated into adipocytes in the presence or absence of WHS (50, 100, or 200 µg/mL). (A–C)
The mRNA expression levels of Cebpα, Pparγ, and Srebp-1 were analyzed by qRT-PCR. (D,E) Western
blot analysis was performed to determine the expression levels of ACC, FAS, and FABP4, and the
activation of the AMPK and Akt/mTOR signaling pathways. (F) Representative microscopic images
and (G) the quantified contents of intracellular lipid accumulation. Values are expressed as the mean
± SD. # p < 0.05 vs. GM control group; * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. DM control group.

3.2. WHS Inhibits MCE via G0/G1 Phase Arrest in 3T3-L1 Preadipocytes

In flow cytometry analysis, 3T3-L1 preadipocytes showed a larger population of
G0/G1 phase cells (approximately 70% of cells) (Figure 2A,B), which was significantly
decreased to approximately 30% when the cells were differentiated with DM containing
MDI. In contrast, MDI treatment induced cell cycle progression to the G2/M phase by
increasing the cell population from 26.49% to 61.85%. WHS induced G0/G1 arrest in
a concentration-dependent manner by increasing the G0/G1 cell population to 35.79%,
43.90%, and 64.69% and reducing the G2/M cell population to 55.87%, 46.76%, and 24.97%
at 50, 100, and 200 µg/mL, respectively. As shown in Figure 2C, the protein levels of cell
cycle-related proteins such as cyclin D1, cyclin E, cyclin B1, and CDK2 were significantly
increased in cells treated with DM containing MDI. In the presence of WHS, the MDI-
induced expression of cyclins and CDK2 was decreased. Treatment with WHS abrogated
the MDI-induced reduction in p21 expression. These results indicated that WHS could
inhibit MCE by inducing G0/G1 arrest via regulation of cell cycle protein expression.
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Figure 2. Inhibitory effect of WHS on the mitotic clonal expansion (MCE) in 3T3-L1 preadipocytes. (A,B) Flow cytometric
analysis was performed to examine cell cycle progression. (C) The protein expression levels of cell cycle markers (cyclins,
CDK2, and p21) were analyzed by western blotting. Values are expressed as the mean ± SD. # p < 0.05 vs. GM control
group; * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. DM control group.

3.3. WHS Alleviates the Body Weight and Body Fat Gain of db/db Mice

A preliminary study using db/db mice (genetically induced obese model) shows that
following the administration of 100 and 300 mg/kg WHS, 300 mg/kg was observed to be an
effective dose with anti-obesity effects (Figure S1). Five-week oral administration of WHS
significantly reduced weight gain without affecting food intake (Figure 3A–C). According to
DEXA analysis, the body composition, total body fat distribution, and total body fat weight
of WHS-treated db/db mice were significantly decreased (Figure 3D,E). Moreover, the body fat
loss effect of WHS was correlated to a reduction in subcutaneous fat (Figure 3F). These results
showed that daily administration of WHS could effectively alleviate body weight gain, which
may be attributed to a reduction in subcutaneous fat weight.
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Figure 3. Effect of WHS on the body weight, body fat weight, and food intake of db/db mice. Mice
(n = 5) were treated with vehicle or (WHS 300 mg/kg) for 5 weeks. (A–C) Body weight and food
intake were measured every week. (D) Representative radiographic images of each group of mice
analyzed by DEXA. (E,F) Total body fat weight and regional white adipose tissue (WAT) weight
were measured by necropsy at the end of the experiment. Values are expressed as the mean ± SEM.
# p < 0.05 vs. WT control group; * p < 0.05 and ** p < 0.01 vs. db/db control group.
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3.4. WHS Mitigates Biochemical Parameters in Plasma of db/db Mice

We measured AST, ALT, BUN, GLU, and lipid parameters including TC, TG, LDL, and
HDL in the plasma of each group of mice. As shown in Table 1, db/db control mice showed
significantly higher levels of AST, ALT, and BUN compared with WT control mice; however,
administration of WHS 300 mg/kg somewhat lowered these elevations. In addition, WHS
treatment reduced the plasma levels of TC, TG, and LDL although statistical significance
was not observed in TC and TG levels (Table 2). Plasma GLU levels were significantly
higher in db/db control mice than in WT mice, which appeared to be reduced by WHS
treatment (Table 2).

Table 1. The plasma AST, ALT, and BUN levels of each group.

WT db/db WHS (300 mg/kg)

AST (U/L) a 53.00 ± 13.47 138.80 ± 39.97 # 103.80 ± 10.99

ALT (U/L) a 33.20 ± 3.11 121.40 ± 56.20 # 103.40 ± 13.32

BUN (mg/dl) a 19.64 ± 0.52 39.58 ± 3.22 # 25.60 ± 2.50 ***

a Values are expressed as the mean ± SEM. # p < 0.05 vs. WT control group; *** p < 0.001 vs. db/db control group.

Table 2. The TC, TG, LDL, HDL, and GLU levels of each group.

WT db/db WHS (300 mg/kg)

TC (mg/dl) a 76.60 ± 5.64 126.00 ± 6.52 # 102.60 ± 44.64

TG (mg/dl) a 52.20 ± 4.66 86.60 ± 28.00 # 56.60 ± 16.67

LDL (mg/dl) a 7.80 ± 1.64 8.40 ± 1.34 6.40 ± 0.55 *

HDL (mg/dl) a 56.40 ± 0.89 68.80 ± 3.11 # 71.60 ± 2.70

GLU (mg/dl) a 206.20 ± 103.75 645.00 ± 6.12 # 600.40 ± 44.64

a Values are expressed as the mean ± SEM. # p < 0.05 vs. WT control group; * p < 0.05 vs. db/db control group.

3.5. WHS Inhibits Adipocyte Hypertrophy and Adipogenesis in the WAT of db/db Mice

We observed hypertrophied adipocytes (H&E-stained subcutaneous fat) in db/db
control mice and not in WT control mice; however, oral administration of WHS reduced hy-
pertrophy. Adipocyte diameters were measured at six arbitrarily chosen sites on each slide.
The average of adipocyte diameters in db/db control mice (329.49 µm) was markedly larger
than that in WT control mice (89.80 µm), which was significantly reduced to 251.17 µm in
WHS-treated mice (Figure 4B). Consistent with the in vitro results, the protein expression
levels of adipogenic transcription factors (C/EBPα, PPARγ, and SREBP-1) in the subcu-
taneous fat of db/db control mice were increased; however, WHS treatment inhibited this
upregulation (Figure 4C). Moreover, WHS markedly reversed the reduced phosphorylation
of AMPKα. These results demonstrated that WHS could inhibit adipocyte hypertrophy
and adipogenesis by activating AMPKα and inhibiting C/EBPα, PPARγ, and SREBP-1 in
the subcutaneous fat of db/db mice.
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SREBP-1. Values are expressed as the mean ± SEM. # p < 0.05 vs. WT control group; * p < 0.05 and *** p < 0.001 vs. db/db
control group.

3.6. WHS Inhibits Liver Fat Accumulation in db/db Mice

The liver weight of db/db control mice was markedly increased, which was significantly
alleviated by WHS (Figure 5A). Microscopic analysis revealed that fat accumulation in the
liver tissue of db/db control mice, and the color was visibly lighter than that of the liver tissue
of WT control mice (Figure 5B). However, treatment with WHS reduced liver steatosis
and restored redness. As fat accumulation was observed, we investigated the effect of
WHS on adipogenic markers in the liver tissue. In parallel with WAT, the expression levels
of C/EBPα, PPARγ, and SREBP-1 were increased, and the phosphorylation of AMPKα

was decreased in db/db control mice; however, oral administration of WHS reversed these
changes (Figure 5C). These results suggested potential preventive effects of WHS on liver
steatosis by activating the AMPK pathway and inhibiting the expression of C/EBPα,
PPARγ, and SREBP-1 in db/db mice.
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3.7. WHS Induces Brown Fat Activation in db/db Mice

We observed differences in the protein expression of thermogenic markers; however,
there was no significant change in the weight of BAT (Figure 6A). UCP-1 expression
was downregulated in db/db control mice; however, its downregulation was abrogated
by WHS treatment. The protein expression levels of PPARs (PPARα and PPARγ) and
their coactivator PGC-1α were also upregulated in WHS-treated db/db mice (Figure 6B).
SIRT-1 expression was decreased in db/db control mice; however, WHS reversed this effect.
Overall, although statistical significance was not reached, UCP-1, PPARs, PGC-1α, and
SIRT-1 expression was apparently increased in the BAT of db/db mice, implying potential
activation of brown fat by WHS.

3.8. WHS Modulates the Composition of the Gut Microbiota in db/db Mice

As shown in Figure 7A, there were differences in the microbiota composition between the
groups. In db/db control mice, the abundance of Firmicutes, Saccharibacteria, and Proteobac-
teria were slightly increased, whereas the abundance of Bacteroidetes and Tenericutes were
slightly decreased. These changes were abrogated in WHS-treated db/db mice (Figure 7B–F).
The average F/B ratio of WT control mice was 1.05, indicating that the two phyla were evenly
balanced. However, it was increased to 1.74 for db/db control mice and was decreased to
0.60 for WHS-treated mice (Figure 7G). There were considerable differences in the microbial
communities between the WT control and db/db control groups (Figure 7H). However, the
clustering of the WHS-treated group was separated from the db/db control group and shifted
toward the WT control group. These results indicated that WHS could alleviate changes in
the gut microbiota, which could contribute to obesity prevention.
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4. Discussion

According to the World Health Organization (WHO), the prevalence of childhood
obesity has greatly increased from 4% in 1975 to over 18% in 2016. As the cell number is
markedly increased during the growth period, adipocyte hyperplasia mainly occurs during
childhood and adolescence [26]. Once proliferated, the cell number remains constant;
thus, weight gain or loss is primarily associated with the adipocyte volume in adults [27].
Depending on the number of adipocytes, overweight or obese children and adolescents
are more likely to become obese in adulthood. We found that WHS effectively reduced
adipocyte size in the WAT of both HFD- and genetically induced obese mice. Moreover,
WHS suppressed MCE during adipocyte differentiation by arresting the cell cycle at the
G1/S phase via the regulation of levels of cyclin D1, cyclin B1, cyclin E, CDK2, and p21. Our
findings demonstrated that WHS could inhibit childhood obesity by inhibiting adipocyte
hyperplasia and further prevent adult obesity.

Although obesity is mainly induced by high calorie consumption, it is also caused by
various genetic factors [28]. Leptin is a hormone secreted by adipose tissue and is directly
related to body fat mass. In the normal state, leptin circulates in the blood, signals satiety
to the hypothalamus, and suppresses food intake, thereby reducing body weight [29].
Therefore, leptin treatment is useful for treating obesity, while congenital leptin- or leptin
receptor deficiency can lead to hyperphagia and early-onset obesity [30]. Obese people
show high levels of leptin due to leptin insensitivity and the lack of clinical utility of leptin,
which is defined as leptin resistance [31]. We previously reported that WHS exhibited a
potent weight loss effect and ameliorated leptin resistance by reducing plasma levels of
leptin in HFD-induced obese mice [23]. Given that db/db mice are leptin receptor-deficient
models that show features of obesity and leptin resistance [32], we investigated whether
daily intake of WHS alleviates adiposity in genetically obese db/db mice in this study. We
found that WHS treatment reduced body weight and body fat gain in db/db mice. These
results indicated that WHS could ameliorate genetically induced obesity besides acquired
(diet-induced) obesity.

Obesity is highly responsible for damage to multiple organs, which can lead to NAFLD
induced by fat accumulation in the liver, or renal inflammation [33,34]. In this study, the
db/db mice had significantly higher plasma levels of liver enzymes (e.g., AST and ALT)
and BUN concentrations compared to wild-type mice, suggesting obesity-related liver and
kidney damage [33]. Treatment of the db/db mice with WHS resulted in a moderate decrease
in plasma AST, ALT, and BUN concentrations although statistical significance was not
achieved for changes in AST and ALT levels (Table 1). Moreover, WHS treatment slightly
mitigated hyperlipidemia by reducing TC, TG, and LDL levels (Table 2). Our results suggest
that WHS could ameliorate obesity and obesity-associated disorders. Although the results
showed no statistical significance, probably due to the short duration of administration
or insufficient dosage, significant changes in the markers are expected with the long-term
and/or high dose administration of WHS. The db/db mouse model used in this study is a
well-established T2D model characterized by obesity, decreased insulin receptor sensitivity,
and subsequent high levels of blood glucose (GLU) [35]. In addition to reducing GLU
levels, we found that WHS upregulated adiponectin, an adipokine acts as an insulin
sensitizer in WAT (Figure S2) [36]. These results suggest that WHS can effectively alleviate
obesity-induced T2D.

A major strategy for treating obesity is to increase energy expenditure. Exercise is
a simple method to use stored energy. Thermogenesis is another energy expenditure
process, in addition to physical activity. Therefore, targeting thermogenesis is a potential
approach for combating obesity [37]. Although a slight, apparent increase in the expression
of BAT-related factors including UCP-1, PPARs, PGC-1α, and SIRT-1 was observed, our
present study suggested no significant changes in the expression of BAT-related factors,
primarily due to a relatively short duration of treatment (i.e., 12 weeks). In fact, WHS can
activate AMPK, which contributes to increasing cellular NAD+ levels, activating NAD-
dependent deacetylase SIRT-1 ultimately leading to PGC-1α activation, and consequently
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upregulating mitochondria-related genes [38,39]. Considering the activating effects of
WHS on the AMPK and BAT-related genes, future studies with a longer duration of WHS
therapy are warranted.

BAT is abundant in infancy; however, it regresses in adulthood, and the distribution
of WAT is predominant [40]. Nevertheless, a third type of fat, referred to as beige or brite
adipocytes, has been identified. Therefore, instead of BAT activation, “browning of WAT”
is a possible mechanism for treating adult obesity. The browning phenomenon alters WAT
metabolism from energy storage to energy utilization [41]. Increasing evidence suggests
that administered agents can induce browning through several mechanisms, including
UCP-1- and PGC-1α-mediated mechanisms [42], SIRT-1-mediated PPARγ and PRDM-16
deacetylation and their interaction [43], the norepinephrine-β3-adrenergic pathway [44],
and the MAPK pathway [45]. In the present study, we observed the increased levels of
UCP-1, PPARs, PGC-1α, and SIRT-1 in vivo. Furthermore, the activation of the p38 and
ERK signaling pathways in 3T3-L1 cells following WHS treatment (Figure S3) demonstrated
the potential of WHS in inducing adipocyte browning.

Increasing evidence suggests that the gut microbiota composition is affected by diet,
disease state, or medications [46]. In this study, WHS-treated mice showed a gut microbiota
composition that was similar to that of WT control mice, which differed from that of db/db
control mice. Our results demonstrated that daily administration of WHS could reduce
obesity by modulating the gut microbiota. Short-chain fatty acids (SCFAs), metabolites
derived from bacteria, can act as signaling molecules to activate various pathways, such
as the AMPK, PGC-1α, and PPAR pathways [47]. Therefore, the gut microbiota plays a
crucial role in energy metabolism by producing their metabolites [48]. Bacteria members
of Bacteroidetes mainly produce acetate and propionate, while Firmicutes mostly produce
butyrate [49]. We found that the abundance of major genera (Alistipes, Bacteroides, and
Odoribacter) in Bacteroidetes were increased in WHS-treated mice, whereas that in Firmicutes
(Lachnospiraceae, Oscillibacter, Roseburia, PAC001360_g, and PAC001228_g) were decreased
(Figure S4). However, these changes showed no statistical significance due to large stan-
dard error between groups and lack of samples. A variety of bacteria are involved in
producing SCFAs, therefore, analyzing metabolites derived from microbiota, rather than
the abundance of bacteria, is worth investigating further.

Our current study showed conflicting results regarding the effects of WHS on food
intake (Figure 3 vs. Figure S1). The db/db mice have a mutation of the leptin receptor,
resulting in loss of food intake control. Therefore, the observed lack of WHS effects on food
intake might be caused by the lack of effects of leptin as a food-intake suppressor. Future
confirmative studies are required to elaborate on the effects of WHS on food intake in
normal mice or diet-induced obese mice. Once additional evidence is available suggesting
the effects of WHS on food intake, mechanistic studies to elucidate the anti-obesity effects
of WHS through evaluating direct food-intake biomarkers (e.g., GLP-1) might be needed.
Lipolysis is the metabolic process through which TG in lipid droplets is hydrolyzed into
glycerol and free fatty acids (FFAs). Upon stimulation, lipolysis is mainly regulated by
lipases including adipocyte triglyceride lipase (ATGL), hormone-sensitive lipase (HSL),
and monoacylglycerol lipase (MGL) [50]. FFAs circulate, are transported through fatty acid
translocase (FAT/CD36), and are used to generate energy by mitochondrial β-oxidation
using various enzymes including carnitine palmitoyltransferase 1 (CPT1) and carnitine
translocase (CAT) [51]. These processes primarily occur in mitochondria of skeletal muscle
which utilizes and demands high energy [52]. Therefore, it is worth further evaluating the
effect of WHS on energy expenditure and mitochondrial activity in skeletal muscle.

5. Conclusions

Our findings show that WHS exhibits the anti-obesity action in vivo and in vitro.
WHS treatment potently decreased the expression of adipogenic markers and induced G1
cell cycle arrest in 3T3-L1 preadipocytes. In db/db obese mice, WHS markedly decreased
body weight and subcutaneous fat weight. Treatment with WHS slightly reduced AST,
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ALT, and BUN levels in plasma. WHS also mitigated hyperlipidemia by reducing plasma
TC, TG, and LDL levels. In addition, WHS significantly improved obesity of db/db mice
through downregulation of adipogenic markers in the WAT and the liver, and upregulating
thermogenic factors in BAT. Taken together, these results indicate that WHS possesses
anti-obesity effects by regulating adipogenesis in WAT and liver, activating BAT, and
modulating gut microbiota.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu13103624/s1, Figure S1. Effect of WHS on the body weight, food intake, and body fat
weight in db/db mice. Mice (n = 3) were treated with vehicle or (WHS 100 or 300 mg/kg) for 5 weeks.
(A–C) Body weight and food intake were measured every week. (D) Representative radiographic
images of each group of mice analyzed by DEXA. (E,F) Total body fat weight and regional WATs
weight were measured at the end of the experiment. Values are expressed as mean ± SEM. # p < 0.05
vs. WT control group; * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. db/db control group. Figure S2.
Effect of WHS on adiponectin expression in the subcutaneous fat of db/db mice. (A) Total protein was
extracted from subcutaneous fat and western blot analysis was performed to examine the expression
of adiponectin. Values are expressed as the mean ± SEM. # p < 0.05 vs. WT control group. Figure S3.
Effect of WHS on ERK and p38 pathways in 3T3-L1 preadipocytes. Cells were differentiated into
adipocytes in the presence or absence of WHS (50, 100, or 200 µg/mL). (A) Western blot analysis was
performed to determine the activation of ERK and p38 pathways. # p < 0.05 vs. GM control group;
** p < 0.01 and *** p < 0.001 vs. DM control group. Figure S4. Gut microbiota composition of each
group (genera).
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