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Aim: To formulate an aerosolized nanoliposomal carrier for remdesivir (AL-Rem) against coronavirus dis-
ease 2019. Methods: AL-Rem was prepared using modified hydration technique. Cytotoxicity in lung
adenocarcinoma cells, stability and aerodynamic characteristics of developed liposomes were evalu-
ated. Results: AL-Rem showed high encapsulation efficiency of 99.79%, with hydrodynamic diameter of
71.46 ± 1.35 nm and surface charge of -32 mV. AL-Rem demonstrated minimal cytotoxicity in A549 cells
and retained monolayer integrity of Calu-3 cells. AL-Rem showed sustained release, with complete drug
release obtained within 50 h in simulated lung fluid. Long-term stability indicated >90% drug recovery
at 4◦C. Desirable aerosol performance, with mass median aerodynamic diameter of 4.56 ± 0.55 and fine
particle fraction of 74.40 ± 2.96%, confirmed successful nebulization of AL-Rem. Conclusion: AL-Rem rep-
resents an effective alternative for coronavirus disease 2019 treatment.
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Lay abstract: Remdesivir is one of the first drugs approved for the treatment of coronavirus disease 2019.
Currently, it is administered via an injection into the bloodstream. This means that the drug circulates
around the entire body and only a limited amount reaches the diseased site – the lungs. Frequent dosing is
therefore required, which needs expert personnel and multiple hospital visits and can result in serious side
effects. In this study, the authors developed specialized, nanosized particles containing the drug remdesivir
that can be administered directly into the lungs. This could drastically minimize side effects, enhance
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efficacy and allow easy self-administration at home. The results of the study are promising but require
additional investigation.

First draft submitted: 22 December 2020; Accepted for publication: 19 March 2021; Published online:
13 May 2021
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Coronavirus (the Latin corona meaning “crown”) was first isolated from a patient’s respiratory tract in 1965 [1].
Volunteer inoculation and an epidemiological study confirmed coronaviruses to be associated with respiratory
illnesses [2]. SARS coronavirus 2 (SARS-CoV-2) was first detected in Wuhan, China, and has so far affected 50
million people, with 1 million associated deaths [3]. The reproduction number (i.e., R0 value) of SARS-CoV-2
lies between 2.43 and 3.10 [2]. This indicates that the potential for the SARS-CoV-2 virus to infect and transmit
among humans is very strong, unlike Middle East respiratory syndrome coronavirus, which has an R0 value of less
than 1 [4]. Multiple routes are involved in SARS-CoV-2 transmission, with droplets and aerosols accounting for
maximum transmission [5]. The viral load gets entrapped within mucus or saliva globs, and the particle size greatly
influences the region in which the particles are deposited. Based on the aerosol diameter, they can either deposit
and infect the deep lungs or, if larger, get trapped within the upper airways [5,6].

The main factor governing the severity of infection is the presence of specific receptors, such as ACE2, CD4,
CCR5, TMPRSS2, CD81 and JAM, that enable viral attachment and entry. The entry of coronavirus into the
pulmonary cells is primarily mediated by the surface-anchored spike protein that binds to the cellular receptor
target (ACE2) present on the cell surface [7]. As ACE2 is predominantly found on the mucosal lining of the nose
and lungs, it greatly facilitates entry to and infection of the respiratory tract [8]. Following receptor attachment, the
virus enters the cell cytoplasm, after which the viral proteins are uncoated, releasing viral genetic material. Coughing
and sneezing lead to shedding of viral progenies from the respiratory tract which can be easily encountered in nasal
swabs [9].

With the ongoing effort toward developing an ideal, effective vaccine for coronavirus disease 2019 (COVID-
19), scientists are repurposing currently available drugs to treat hospitalized patients. Among the thousands of
drugs screened for activity against SARS-CoV-2, some of the US FDA-approved drugs include remdesivir (Rem),
dexamethasone, hydroxychloroquine and chloroquine. Rem has been explored for several indications and has
currently been repurposed for COVID-19 treatment [10]. Rem (GS-5734), a potent viral RNA-dependent RNA
polymerase inhibitor, was recognized to be a promising drug candidate against SARS-CoV-2 after in vitro testing [11].
A randomized controlled trial of Rem in the treatment of SARS-CoV-2 was initiated by a group of researchers
in February 2020 [12]. Early results indicated accelerated recovery of hospitalized, severely ill COVID-19 patients.
The currently used medicament Veklury, an injectable form of Rem, is prescribed for adults and children older
than 12 years who weigh ≥40 kg and are hospitalized for COVID-19. As the viral particles are known to reside
and proliferate within the respiratory airways, effective Rem concentration must be attained within the lungs [9].
Certain findings indicate that following intravenous dosing of Rem (100–200 mg), and via interpretation of human
and animal data, the concentration of Rem and its active metabolite in the lungs is inadequate to inhibit SARS-
CoV-2. This could be due to the physicochemical and pharmacokinetic properties of the drug leading to low tissue
distribution and penetration, especially in the lungs; thus, as reported by Sun, to show efficacy, the concentration
of Rem required to inhibit SARS-CoV-2 in cell culture would be IC50 >7.7 μM and IC90 >17.6 μM of the active
metabolite [13]. For such a high concentration of Rem to directly reach the lungs, localized pulmonary delivery
would be highly advantageous.

Pulmonary delivery would provide high lung concentrations, mitigate systemic exposure and toxicities and
reduce dosing frequency [14]. Inhalation via nebulization is one approach that provides easy and convenient drug
delivery for patients [15]. Delivering 50 mg Rem for 30 min via nebulizer would be the fastest approach and would
deliver the drug directly to the airways. This could aid in healing the infection earlier and lessen the likelihood
of prolonged hospitalization. However, the main issue with delivering Rem to the lungs is its poor solubility and
aqueous instability. It is also more likely to undergo degradation during storage in an aqueous environment [16].
Nanocarrier-based pulmonary drug delivery systems like liposomes possess unique properties, including small size
(∼100 nm) and circumvention of first-pass effect, making them suitable drug carriers for enhanced pulmonary
deposition. Moreover, the large surface area of the lungs and the high permeability of the pulmonary epithelium offer
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unique pulmonary targeting options. Unlike parenteral delivery, the inhalation route for controlled release systems
like liposomes can result in localized drug action in the lungs for prolonged periods, improving the therapeutic
outcome of the medication, increasing drug aqueous stability and reducing systemic adverse effects [17].

Therefore, the current study aimed to formulate a stable aerosolized nanoliposomal carrier for Rem (AL-Rem)
that would be biocompatible, efficient in drug delivery and able to successfully fulfill the criteria associated with
nebulization. The liposomal solution would be directly nebulized to the pulmonary region as an improved and
localized therapy against COVID-19.

Methods
Materials
Rem was purchased from Chemietek (IN, USA). DPPC and PE 18:0/18:0-PEG2000 were obtained from Lipoid
(Ludwigshafen, Germany). Cholesterol, chloroform, NMP, tetrahydrofuran and TFA were acquired from Sigma-
Aldrich (MO, USA). SBE-β-CD was kindly donated by Ligand Pharmaceuticals (CA, USA). DOPC and lactate
dehydrogenase (LDH) assay kit were obtained from Cayman Chemical Company (MI, USA). Transwell R© insert
plates were procured from VWR International (PA, USA). ACN, methanol, acetone and HPLC-grade water were
purchased from Thermo Fisher Scientific (MA, USA).

HPLC analysis
Rem was chromatographically separated using a Waters Alliance R© HPLC system with a 2998 photodiode array
detector (NJ, USA). A 250 × 4.6-mm, 5-μm Hypersil ODS R© column (Thermo Fisher Scientific) was used as
the reverse phase C18 column maintained at 25◦C. An optimum mobile phase ratio of 65:35 (ACN with 0.1%
TFA:phosphate buffer with pH adjusted to 3.5) was used with a single injection volume of 10 μl and a flow rate
of 1 ml/min. Autosampler assembly was used to load the samples from the carousel, and eluted drug peak signal
was detected at 247 nm. Data were analyzed using Empower 3 software (Waters).

Stability study of Rem
Currently, there are no reports on the stability of Rem. Therefore, it was necessary to investigate pH, thermal
stability and photostability of Rem. To determine stability over a pH range, Rem stock (1 mg/ml) was prepared by
solubilizing in NMP. The stock solution was diluted with a 1:1 (v/v) mixture of ACN:0.1N hydrochloric acid with
a pH of 1.2, ACN:phosphate buffer with a pH of 3.5 and ACN:phosphate buffer with a pH of 7.4 to achieve a
final concentration of 50 μg/ml [18]. Each batch was analyzed in triplicate and maintained at different temperature
conditions (i.e., 4◦C, 25◦C and 37◦C). The samples were collected after 24 h and analyzed using HPLC. The
photostability of Rem was examined under UV radiation. Based on the HPLC method for Rem, the solvent mixture
chosen for sample preparation was ACN:HPLC water (1:1). The Rem stock prepared in NMP was diluted in a
scintillation vial with ACN:HPLC water (1:1) to achieve a final concentration of 50 μg/ml. To determine the
photodegradation of Rem, the vial was placed in a UV chamber. At various time intervals of 0, 1, 3 and 5 days, the
sample was withdrawn and the drug content analyzed using HPLC.

Preparation of Rem liposomes
The solubility of Rem in different organic solvents (i.e., acetone, methanol, THF and ACN) was tested prior to
formulation development. Different commonly used methods for preparing Rem-loaded liposomes were screened.
First, an ethanol injection method was used wherein lipids and Rem were dissolved in absolute ethanol and
injected into water at 55◦C. The resultant dispersion was probe-sonicated at 30% amplitude for 2 min, followed
by centrifugation to separate free Rem.

Another method used to prepare Rem-loaded liposomes is the modified hydration method, as described by
Patel et al. [19]. The compositions of various batches prepared using different concentrations of lipids are given in
Table 1. Briefly, Rem and a weighed quantity of lipids were dissolved in a mixture of THF and chloroform. The
mixture was subsequently added to and adsorbed on parenteral-grade mannitol (200μm) dropwise with continuous
stirring at 60◦C and left overnight to evaporate the organic solvent. The resultant adsorbed powder was dispersed
thoroughly in warm water at 55◦C, and the formed dispersion was probe-sonicated at 30% amplitude for 2 min.
Liposomes were centrifuged at 490 relative centrifugal force (RCF) for 5 min to separate free Rem (if any), and the
supernatant was analyzed for its physicochemical characteristics and entrapment efficiency. Final nanoliposomes of
Rem (AL-Rem) were optimized as per Table 1.
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Table 1. Composition of Rem liposomal batches prepared using modified film hydration.
Liposome batch Cholesterol (mM) DSPE-PEG2000 (mM) DPPC (mM) DOPC (mM) Rem (mg)

1. Lipo-DPPC 26 4 82 – 2.5

2. Lipo-DODP 26 4 41 38 2.5

3. Lipo-DODP 26 4 61.5 19 2.5

4. Lipo-DOPC1 26 4 – 76 2.5

5. Lipo-DOPC2 26 4 – 76 5

DODP-DOPC and DPPC (1:1).
Rem: Remdesivir.

Physicochemical characterization of AL-Rem
AL-Rem was characterized based on particle size, polydispersity index and zeta potential using a Zetasizer Nano ZS
dynamic light scattering particle size analyzer (Malvern Panalytical, Royston, UK). Samples were accurately diluted
(i.e., 150 μl of liposomes in 3 ml of purified water). Diluted samples were loaded into disposable cuvettes and
analyzed at 25◦C with a scattering angle of 173◦. For entrapment efficiency determination, AL-Rem was loaded
in Amicon ultra centrifugal filters (50,000) and centrifuged at 1110 RCF for 10 min (Darmstadt, Germany). The
decant was analyzed for free drug using HPLC analysis [20]. The encapsulation efficiency of Rem was expressed as
the percentage of drug encapsulated and calculated using the following formula:

Percent encapsulated =
[(Total Rem) − (Free Rem)]

(Total Rem)
× 100%

In vitro cytotoxicity assays
The cytotoxicity of Rem liposomes prepared using DPPC and DOPC was assessed on A549 cells (American Type
Culture Collection, VA, USA) using MTT assay. RPMI medium, supplemented with L-glutamine, 1% sodium
pyruvate and 10% fetal bovine serum, was used as growth medium. For this assay, 1 × 104 cells/well were seeded in
a 96-well plate and allowed to attain confluency overnight under humdified conditions at 37◦C and 5% CO2. The
medium in each well was withdrawn, replaced with the treatment (Rem-loaded DOPC/DPPC liposomes ranging
from 2.5 to 0.08 mg/ml) and incubated for 3 h. The treatments were substituted with fresh media and further
incubated to analyze any post-treatment toxicities. After 24 h, cell viability was assessed using MTT assay.

Crystal violet assay was performed to examine the morphological changes in the presence of the treatment groups.
As per the aforementioned protocol, after 24-h incubation, the cells were washed with phosphate-buffered saline
and fixed using 4% v/v glutaraldehyde. Later, the fixed cells were stained with 0.5% w/v crystal violet. Excess
crystal violet was washed out using HPLC-grade water, and plates were air-dried overnight. Images were captured
at x20 magnification using an inverted microscope (Evos XL core imaging system; Thermo Fisher Scientific).

Cellular uptake study
To assess qualitative cellular uptake, Coumarin 6 (C6) fluorescent dye-loaded nanoliposomes were prepared follow-
ing the same protocol mentioned earlier. A549 cells were plated in a 96-well plate at a density of 10,000 cells/well
and maintained at 37◦C and 5% CO2 overnight. The cells were treated with free C6 (i.e., C6 solution) and
C6-loaded nanoliposomes at a concentration of 2.5 μg/ml each for a duration of 2 h. Later, the cells were washed
with phosphate-buffered saline and further incubated with 1 μg/ml of DAPI nuclear stain for 15 min. Cells were
washed with phosphate-buffered saline and images were captured at x20 magnification using an EVOS FL auto
cell imaging system (Thermo Fisher Scientific).

LDH assay
The release of LDH enzyme present in a cell is an indication of damage caused to the plasma membrane. Cells
were cultivated in 96-well plates as per the similar protocol mentioned earlier. Cells were treated with the highest
concentration of AL-Rem (i.e., 2.5 mg/ml), and an equivalent volume of blank liposomes was tested in other wells.
To completely nullify the effect of liposome turbidity on the absorbance values, a blank control comprising only
treatment without cells was also evaluated. A direct comparison of the treatment groups was performed with the
positive controls (i.e., Triton X-100 and 0.1% w/v SLS). After incubating with treatment for 3 h, the quantity of
LDH released or leaked was measured using an LDH assay kit (Cayman Chemical Company). Required reagents
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were prepared as indicated in the manufacturer’s protocol. Well plates were centrifuged and supernatant was
withdrawn. Each supernatant with reagent was analyzed at 490 nm for the concentration of LDH released in the
presence of each treatment using an Epoch 2 plate reader (BioTek Instruments, VT, USA) [21]. The interference of
the liposomal formulation in the absorbance measurement was eliminated by subtracting it from the blank control
(treatment without cells). The percentage of LDH activity was calculated using the following formula:

% LDH activity =
[(Experimental value A490) − (Spontaneous release A490)]

[(Maximum release A490) − (Spontaneous release A490)]
× 100

Epithelial integrity study
The effect of the liposomal formulation on the integrity of airway lung epithelial cells was examined using the Calu-
3 cell line. Briefly, 1 × 105 cells were seeded per polycarbonate insert (0.33 cm2, 0.4 μm) in 24-well Transwell R©

plates. The growth medium used was Eagle’s Minimum Essential Medium supplemented with 10% fetal bovine
serum. Transepithelial electrical resistance (TEER) was measured each day following medium replacement using a
Millicell ERS-2 (MilliporeSigma, NH, USA) device probe until a TEER value of 900–1000 ohm-cm2 was achieved,
indicative of monolayer formation. Two commonly used drug delivery approaches (i.e., liposomes and SBE-β-CD)
were screened for their effect on epithelial integrity. Briefly, DOPC-based liposomes (equivalent to 1 mg/ml of
AL-Rem) and SBE-β-CD (50 mg/ml) were dissolved in the medium. Growth medium in the apical chamber at
t = 0 was replaced with the respective treatments and resistance was measured at 0.5, 1, 2, 4, 6 and 24 h. Inserts
with medium alone were used as negative control.

In vitro release study
In vitro release study was carried out to compare the release profile of Rem from Rem solution and AL-Rem
in simulated lung fluid (SLF) conditions. Briefly, 10,000 molecular weight cutoff Slide-A-Lyzer dialysis cassettes
(0.1–3 ml; Thermo Fisher Scientific) were hydrated in the prepared SLF medium for 10 min prior to use. As DPPC
is an essential lung surfactant, modified SLF-3 medium (i.e., SLF-4) was prepared as previously described in the
literature [21]. Briefly, concentrated, blank DPPC liposomes were added to the SLF-3 fluid to account for the lung
surfactant. DPPC liposomes were prepared using the thin-film hydration method. A total of 100 mg of DPPC was
dissolved in a 1:1 mixture of chloroform:methanol and subjected to rotary evaporation to form a lipid film. The
lipid film was hydrated with 100 ml distilled water and agitated at 55◦C for 2 h. The dispersion was bath-sonicated
for 2 h at 55◦C. The solution was mixed with lung fluid and the pH was adjusted to 7.4 [22].

For the release study, hydrated cassettes were loaded with 1 ml of the Rem solution and AL-Rem formulation
separately from one port using a 19G11/2 TW BD filter needle attached to a 3-ml syringe. Rem solution was
prepared by solubilizing 2.5 mg of Rem in 1 ml of 15% w/v SBE-β-CD solution using the coprecipitation method.
The filled cassettes were immersed in a beaker containing 150 ml of SLF-4 medium using a floater, and the assembly
was constantly stirred at 250 rpm. Periodic withdrawals at time points 0.5, 1, 2, 4, 6, 12, 24 and 50 h were made
and immediately replenished with an equivalent quantity of fresh dissolution medium. The aliquots were accurately
diluted with ACN, centrifuged at 16,300 RCF for 5 min and analyzed for drug release from both formulations
using HPLC.

Liposomal stability study
The stability of AL-Rem was analyzed in terms of percentage of drug content, particle size and polydispersity index.
Briefly, AL-Rem at 2.5 mg/ml was subjected to different temperature conditions (i.e., 4◦C and 25◦C). Aliquots of
these samples were analyzed for percentage of drug remaining after 2 and 4 weeks using HPLC. Physicochemical
characterization of the liposomal formulation was also performed at the end of 4 weeks using a dynamic light
scattering particle size analyzer [23].

In vitro pulmonary drug deposition
Pulmonary drug deposition of the AL-Rem formulation was evaluated using a Next Generation Impactor (NGI)
170 (MSP Corporation, MN, USA) as described previously [24]. A stainless steel induction port (i.e., United States
Pharmacopeia throat adaptor attachment) and specialized stainless steel NGI™ gravimetric insert cups (model 170;
MSP Corporation) were attached to the NGI. Prior to use, refrigeration for 90 min at 4◦C was performed to cool
the equipment, minimizing the heat transfer evaporative effects of the nebulized droplets, which cause droplet
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shrinkage and impact deposition. The AL-Rem formulation (2 ml) was placed into the PARI LC PLUS R© nebulizer
cup of a PARI FAST-NEB compressor system (Boehringer Ingelheim, CT, USA) attached to a rubber mouthpiece
and linked to the NGI. A flow rate of 15 l/min was delivered using an HCP5 vacuum pump (Copley Scientific,
Nottingham, UK) and adjusted using a DFM 2000 flow meter (Copley Scientific). Samples were collected from
the different stages using a lysis solvent (a binary mixture of ACN and water), subjected to centrifugation (13,000
RCF) to separate the encapsulated drug and analyzed using HPLC. Mass median aerodynamic diameter (MMAD)
and geometric standard deviation, the crucial parameters for aerosol performance, were calculated by computing
AL-Rem deposition at each stage of the NGI using log probability analysis (n = 3). The fine particle fraction (FPF)
percentage was defined as the fraction of emitted dose (total amount of drug that exited the nebulizer) deposited
in the NGI at each stage [14].

Statistical analysis
Each data set illustrated the mean ± standard deviation. Student’s t-test and one-way analysis of variance were used
to calculate the significant difference values in the treatment groups. The software used for analysis was Prism 5.0
(GraphPad Software, CA, USA), where p < 0.05 between each group was measured to be a statistically significant
difference between the evaluated groups.

Results
HPLC method
HPLC analysis presented a sharp peak of Rem with a retention time of 4.82 ± 0.5 min within a run time of
8 min. The developed HPLC method was utilized to analyze all the samples from stability, release, physicochemical
characterization and NGI analysis.

Stability study of Rem
Rem was found to be stable at 4◦C in all tested pH conditions (i.e., 1.2, 3.5 and 7.4). However, as shown in Figure 1A,
Rem in pH 1.2 stored at 25◦C and 37◦C revealed a degradation peak at 5.25 min. Moreover, a significant amount
of degradation was observed at 37◦C in all pH conditions (Figure 1A–C). Substantial degradation of Rem at higher
temperature was evident in the reduction in peak height seen at all pH levels. The concentration of Rem after UV
exposure for 5 days was nearly the same (i.e., approximately 50 μg/ml).

Preparation of AL-Rem
Among the commonly used methods, ethanol injection showed rapid precipitation of Rem. Because of the poor
liposomal stability, the modified hydration method was adopted. Rem solubility in different organic solvents was
evaluated prior to formulation development (data not shown). Organic solvents like THF and methanol showed
the highest Rem solubilizing capacity in comparison to acetone and ACN, which showed solubility of <1 mg/ml.
Therefore, THF was used to solubilize Rem, with chloroform added to solubilize lipids. The most commonly used
phospholipids (i.e., DPPC and DOPC) were evaluated. Batches 1, 2 and 3 (Table 1) prepared using DPPC showed
instability and drug precipitation over time. Increasing molar ratio of DPPC in comparison to DOPC showed
a decrease in stability. Therefore, a liposomal formulation with DOPC alone was prepared. The Rem-DOPC
liposomes (AL-Rem) showed complete drug entrapment with no visible precipitation.

Physicochemical characterization of Rem liposomes
The optimized Rem-loaded DOPC liposomes that were recognized as AL-Rem showed a hydrodynamic size of
71.46 ± 1.35 nm with a polydispersity index of 0.202 ± 0.085. The zeta potential of the liposomes was found to be
–32 ± 2 mV. The encapsulation efficiency of AL-Rem was found to be 99.79%, indicating complete entrapment
of Rem lipid bilayers.

In vitro cytotoxicity assay
As shown in Figure 2A, apart from the physical instability associated with DPPC liposomes, significant toxicity
to lung carcinoma cells was seen. By contrast, DOPC-based liposomes (i.e., AL-Rem) were safe and showed cell
viability of more than 90% even at the highest concentration of 2.5 mg/ml Rem. DPPC-based liposomes at
a similar concentration showed drastic decrease in cell viability to 60%. The results were further confirmed by
performing crystal violet staining to study cell morphology. As depicted in Figure 2B, Rem-DPPC liposomes showed
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Figure 1. Stability study of remdesivir in different temperature and pH conditions. HPLC chromatograms indicating
the stability assessment of Rem at pH (A) 1.2, (B) 3.5 and (C) 7.4 under different temperature conditions. Rem showed
significant degradation at 37◦C in all pH conditions.

a significant decrease in cell number as well as disrupted cell surface compared with Rem-DOPC liposomes (AL-
Rem). By contrast, confluency and cell morphology of the group treated with Rem-DOPC liposomes (AL-Rem)
were similar to the control.

Cellular uptake study
A qualitative cellular uptake assay was carried out in A549 (i.e., lung carcinoma) cells. For this experiment, liposomes
were formulated by replacing Rem with C6 as the active ingredient to allow better visualization of liposomal uptake
and accumulation. As per Figure 3, fluorescent images revealed a higher green fluorescence intensity in C6-loaded
nanoliposomes in comparison to free C6 liposomes treated at the same concentration.

LDH assay
Cell membrane integrity can be effectively measured by quantifying the activity of cytoplasmic enzymes released be-
cause of cellular damage. As per Figure 4A, in comparative analysis, Triton X-100 used as positive control showed a
significantly higher amount of LDH release (p ≤ 0.001) compared with AL-Rem and blank liposomes, and the use
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Figure 2. In vitro cytotoxicity studies in A549 cell line. (A) Cell viability of A549 cells in the presence of Rem-DPPC
and Rem-DOPC liposomes. Highest concentration of Rem-DPPC liposomes showed 1.5-fold higher toxicity than
Rem-DOPC liposomes. (B) Crystal violet staining 24 h after 3-h incubation showed considerable reduction in cell
number for Rem-DPPC liposomes. Rem-DOPC liposomes showed confluency similar to control. Each data point
represents mean ± SD (n = 3).
AL-Rem: Aerosolized nanoliposomal carrier for remdesivir; Rem: Remdesivir; SD: Standard deviation.

Control Free C-6 C-6 liposome

Figure 3. Cellular uptake study of free C6 and C6-loaded liposomes in A549 cells. Higher fluorescence intensity was
observed in C6-loaded liposomes compared with free C6 liposomes. Images were captured under x20 magnification.

of 0.1% w/v SLS showed immediate and highest membrane disruption (i.e., nearly 100%). By contrast, AL-Rem
and blank liposomes, equivalent to 2.5 mg/ml Rem concentration, showed an absorbance value similar to that of
the control group (i.e., cells with media), indicating no cell membrane disruption.
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Epithelial integrity study
TEER is used to measure electrical resistance across a cellular monolayer in the presence of a medium. During the
24-h incubation with liposomes, Calu-3 cells showed less than 10% reduction in TEER compared with the original
value. In comparison to the negative control (i.e., cells with media), there was only a 9% reduction in TEER value
at the end of 24 h. By contrast, treatment with SBE-β-CD at 50 mg/ml showed a 20% TEER reduction after 4 h.
As depicted in Figure 4B, a nearly 25% reduction in TEER was observed at 24 h.

In vitro release study
In vitro drug release of AL-Rem was evaluated using the dialysis cassette method. The release behavior of Rem from
Rem solution and AL-Rem nanoliposomes is summarized based on cumulative release of Rem in SLF conditions
(Figure 5). The HPLC area measurements obtained were used to calculate the corresponding concentration values.
Rem solution showed very rapid and complete drug release within 8 h. By contrast, AL-Rem showed incremental
drug release during the initial 10 h, later achieving a sustained release pattern. More than 75% drug release was
observed after 10 h, and complete drug release (i.e., nearly 2.5 mg of Rem) occurred within 50 h.
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Figure 6. Stability analysis of aerosolized nanoliposomal
carrier for remdesivir in solution. (A) Percentage of drug
remaining after 2 and 4 weeks of storage at 4◦C and 25◦C. (B)
Particle size analysis after 1-month stability study. No significant
change in particle size was observed at 4◦C.

Liposomal stability study
AL-Rem stability was investigated for 1 month in solution form. Liposomal membrane lysis following 2 and
4 weeks of stability confirmed more than 90% drug entrapment when stored at 4◦C. Additional reduction in drug
entrapment was noted when stored at 25◦C, with more than 15% drug loss after 2 and 4 weeks (Figure 6A).
Drug loss could be due to hydrolytic degradation over time. Stability of the liposomes was further characterized by
particle size analysis. As shown in Figure 6B, AL-Rem particles after 1 month of storage at 4◦C showed minimal
change in overall size. However, a minor increase in particle size was observed when stored at 25◦C. Therefore,
storage of AL-Rem liposomal preparations at 4◦C is more desirable.

In vitro aerosol performance & pulmonary drug deposition
After nebulization, the aerodynamic properties of liposomes influence the drug deposition profile (i.e., amount
deposited in alveolar deep lung regions and airways). The aerodynamic particle size distribution of the aerosol,
MMAD, geometric standard deviation and spread of the aerodynamic particle size distribution were estimated
using a Next Generation Cascade Impactor. The MMAD of the AL-Rem was 4.56 ± 0.55 μm, with a geometric
standard deviation of 2.27 ± 0.12 μm, implying that the emitted dose would be deposited in the gas exchange
regions of the lungs. The FPF was found to be 74.40 ± 2.96%, suggesting good aerosolization performance of
the liposomes. Aerosol deposition profile and plot of the percentage of cumulative drug deposition for each stage
of NGI are presented in Figure 7A & B. These in vitro data illustrate that the AL-Rem formulation is suitable for
inhalation delivery, with deposition deep in the lung airways.
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Discussion
An important determinant of coronavirus entry into mammalian cells is its viral infectivity and pathogenesis.
It is therefore regarded as a chief target for human intervention strategies [25]. Coronavirus infection is known
to be more pronounced in the lung airways [26]. Presently, patients hospitalized with COVID-19 are treated by
intravenous administration of Rem. Drug distribution and formation of a polar Rem metabolite are two of the
concerning factors related to the injectable formulation [9]. Moreover, the systemically administered drug must
reach the lungs at therapeutic levels to exert its effect. During the pandemic, the injectable administration of Rem
has been inaccessible to most patients because of limited occupancy in hospitals and professional supervision. To
offer Rem to all patients who need it, more convenient and accessible dosage forms must be promptly developed.
The inhalation route is a promising alternative for Rem formulation, as it facilitates direct delivery to the main
site of infection. An inhaled Rem formulation would maximize drug exposure at the target site without first-pass
metabolism, enhance antiviral efficacy in the lungs and minimize potential systemic toxicities [27]. Also, direct
administration to the lungs would be much cheaper compared with intravenous injection owing to minimized
dosing frequency and amount of drug delivered. Moreover, self-administration of inhaled Rem in patients without
professional administrators would provide affordable and early-stage treatment of COVID-19 in these challenging
times [28].

In the current study, preliminary evaluation involving pH- and temperature-based stability revealed the hy-
drolytic degradation potential of Rem. With the increase in temperature, the amount of degradation was found
to substantially increase. Similarly, the drug was found to be more susceptible to degradation in alkaline pH con-
ditions. Therefore, conventional solubility enhancement methods like pH adjustment and salt formation would
result in higher chances of chemical degradation. In this case, nanocarrier-based approaches, especially liposomes,
could offer the desired benefits, as they are capable of being aerosolized into particles that have the desired size
range and high FPF and they can encapsulate a pharmaceutically viable concentration of the drug into lipid vesicles
that exhibit prolonged release at the target site [29]. Furthermore, liquid liposomal formulations can be delivered
effectively through medical air-jet nebulizers, making this an easy and preferred drug delivery design [17,30]. For
example, delivery of doxorubicin-encapsulated liposomes via inhalation induced considerably higher cell death at
the target tissue in mouse lungs and substantially reduced negative side effects in nontarget organs, such as kidneys,
liver and spleen, when compared with free doxorubicin or intravenously administered doxorubicin-encapsulated
liposomes [31]. Moreover, as only a portion of the drug gets released at a certain time, the drug encapsulated within
the liposomal barrier is safe from chemical degradation, which helps increase the therapeutic efficacy of the drug.
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Based on the literature, different commonly used methods for liposome preparation were screened. The most
convenient approach (i.e., the ethanol injection method) showed rapid drug precipitation. This could be due to
rapid dilution of ethanol in the aqueous phase and low solubility of the drug in ethanol and aqueous medium.
Therefore, one of the novel techniques (i.e., the modified hydration method) was utilized. As reported previously,
higher physical stability and entrapment efficiency of Rem were achieved with the modified hydration method. As
per Patel et al., high entrapment was possibly the result of rapid distribution of the drug within the inner hydrophobic
lipid layer, thus restricting the ability of the drug to diffuse out in the aqueous phase [32]. Moreover, because of
the presence of mannitol or osmotic pressure generation, more drug was favored in the inner lipid layer than
the outer lipid layer during the hydration step, promoting enhanced stability [20,32]. Liposomal formulations with
compositions comprising lung surfactants like DPPC could be potential carriers for pulmonary drug delivery owing
to their high biodegradability, controllable surface charge, sustained release behavior and capability of encapsulating
hydrophobic compounds like Rem [33,34]. However, the authors’ results showed significant cytotoxicity to A549
cells with Rem-DPPC-based liposomes at the desired concentration, and the cells were also unable to hold Rem
for a prolonged period. Therefore, an additional member (i.e., DOPC) of the same class of unsaturated lipids
was incorporated into the formulation. However, combining the two lipids also failed to entrap the drug for a
prolonged period in the aqueous environment. This can be attributed to the fact that unsaturated fatty acids help
maintain membrane fluidity partially by reducing the packing between phospholipids, whereas saturated fatty
acids only increase the packing between phospholipids, thus reducing membrane fluidity [35]. Additionally, because
of the double bond present in DOPC, it is known to produce a less ordered bilayer with a high cross-sectional
area, thus aiding drug encapsulation for a prolonged period. As shown by Leekumjorn et al., increasing palmitate
concentration is directly related to an increase in drug leakage from the liposomal barrier [35]. Therefore, compared
with DPPC and DODP liposomes, which have a higher concentration of palmitate, DOPC showed minimal drug
leakage even after 4 weeks of storage. Since Rem liposomes were prepared using a commonly used technique and
phospholipids, microscopic evaluation (e.g., transmission electron microscopy) was not carried out.

Focusing more on the practical aspects, as per the study by Sun, Rem could show better efficacy in vivo via the
pulmonary route when the projected drug dose is approximately 10.5 mg of its active metabolite (Nuc-TP) [13].
Therefore, one of the best ways to deliver a high concentration of Rem is by using an air-jet nebulizer. Aerosolizing
Rem alone would involve complexities like drug hydrophobicity, rapid hydrolysis to a hydrophilic metabolite
that cannot enter lung cells or instability in aqueous solution. Therefore, Rem liposomal aerosols (AL-Rem)
could significantly extend the drug retention half-life, reduce the dose volume, improve intracellular diffusion and
bioavailability, enhance tissue tolerance against high drug dosages and minimize pulmonary clearance by protecting
the encapsulated drug from enzymatic degradation [29]. In the present study, AL-Rem was completely stable and
showed more than 90% A549 cell viability up to the highest concentration tested. With 2.5 mg/ml of Rem in
liposomes and 75% FPF, nebulizing a volume of 6 ml would theoretically be enough to achieve the desired lung
concentration. Moreover, because of the hydrolytic degradation of Rem alone, it is suggested that the duration
of nebulizer inhalation not exceed 1–2 h [13]. However, as Rem is encapsulated within the liposomal barrier, the
chances of Rem undergoing hydrolytic degradation are minimal, thus widening the scope with regard to increasing
the duration and volume of nebulization.

AL-Rem also offered additional benefits, which were illustrated using different assays. Physicochemical charac-
terization revealed the hydrodynamic diameter of liposomes to be 71.46 nm, with a highly negative zeta potential.
Charged particles have a better tendency to inactivate viral particles in comparison to neutral molecules. They can
affect the overall integrity of the viral particle because of surface adsorption, protonation and deprotonation of
surface moieties [36,37]. Reports state that negatively charged particles are slower acting than positively charged par-
ticles but more effective. Moreover, they show lesser toxicity to normal mammalian cells in comparison to positively
charged particles [38]. In addition, for the drug to show efficacy, it must be released at the target site. Therefore, to
provide clinically relevant information, drug release was carried out in SLF with pulmonary surfactant. AL-Rem
showed sustained release of Rem compared with Rem solution. Based on the literature, Rem has shown an IC50

of 0.987 μM against SARS-CoV-2, which would correspond to approximately 0.6 μg/ml [39]. Since liposomal
drug concentration is around 4166 times higher than the IC50, a release of even 10% of the drug should show
a potent effect against SARS-CoV-2. Additionally, sustained release would compensate for the need for frequent
dose administration.

In vitro cytotoxicity data confirmed the liposomes to have no significant toxicity toward mammalian lung
cells. Unlike SLS, which shows rapid membrane disruption, AL-Rem showed no cellular damage, which was

10.2217/nnm-2020-0475 Nanomedicine (Lond.) (Epub ahead of print) future science group



Remdesivir nanoliposomes for COVID-19 treatment Research Article

quantified by the amount of LDH released. Airway lung epithelial disruption is often associated with increased
permeation of virions to the systemic circulation. Several autopsy studies involving histopathological observation
have confirmed severe alveolar damage with necrosis of alveolar lining cells in the presence of virions [40]. In such
cases, even minimal toxicities induced by a formulation can complicate the disease and allow easy permeation of
virions. Epithelial integrity of Calu-3 cells gave only a 10% reduction in TEER value at the highest liposomal
concentration. However, other drug stabilizers like cyclodextrin showed a comparatively higher reduction in TEER
value. This could be correlated with the ability of cyclodextrins to act as permeation enhancers by reversibly
opening tight junctions [41,42]. Additionally, as the average lung fluid volume is approximately 0.37 ml/kg, which
would be four to five times higher in volume than the nebulized dose, the chances of any epithelial disruption
would be very minimal. Apart from cytotoxicity, liposomal stability is an important parameter that directly affects
the therapeutic efficacy of the encapsulated drug and is interrelated with the manufacturing steps, storage and
delivery [43]. Therefore, evaluation involving long-term stability in aqueous media was carried out by sampling
the liposome for particle size and percentage of drug retained after 2 and 4 weeks of preparation. The extent of
liposomal instability in various biological systems, such as plasma and water, is directly dependent on the relative
drug concentration, size, lamellarity, lipid composition and incubation temperature [44]. The two most important
characteristics – namely, size and incubation temperature – were analyzed. Liposomes showed higher stability and
no change in particle size when refrigerated at 4◦C. By contrast, the amount of drug recovered post-incubation at
room temperature was comparatively less, and there was an increase in particle size, which may have been due to
aggregation or swelling of liposomes. Therefore, it is recommended to refrigerate the AL-Rem preparation during
storage. Another approach could involve lyophilizing the liposomes and reconstituting them in clinical settings
before administration.

Pulmonary drug delivery is accompanied by various barriers that limit aerosol deposition deep in the lungs
(i.e., the alveolar region and respiratory bronchioles), and these are the anatomical barrier, the pathological barrier
and the immunological blockade [45]. In addition, for an inhaled formulation to be deposited in the alveolar regions
and be therapeutically effective, the aerodynamic particle size of the inhaled particle should be within the range
of 1–5 μm with FPF. The amount of active pharmaceutical ingredients emitted from the nebulizer and FPF are
key parameters that impact clinical outcomes [46]. Based on the literature, an air-jet nebulizer was used because
of its higher efficiency and FPF. In the current study, MMAD and FPF percentage confirmed the respirable
potential of formulated liposomes and efficient lung deposition. Usually, particles with MMADs between 1 and
5 μm facilitates entry into the deep lungs. Also, particles most likely to undergo elimination by resident alveolar
macrophages are between 2000 and 3000 nm [47]. As the aerodynamic particle size range of the authors’ liposomal
formulation was 4.56 ± 0.55 μm, with the added benefit of PEGylation, it is more likely to circumvent the
respiratory clearance pathways and reach the gas exchange areas of the lungs easily. Taken together, these results
provide strong evidence that delivering Rem as an aerosolized liposomal preparation (i.e., AL-Rem) directly to
the lungs would provide several added advantages, with long-term stability and reduced dose administration, in
comparison to the currently marketed preparation. In the context of the aforementioned data, which present an
extensive characterization of AL-Rem liposomes in vitro, preclinical testing confirming the efficacy of AL-Rem in
a relevant animal model could be a vital future study.

Conclusion
The current research demonstrates the successful development of a nebulized and scalable dosage form of Rem
intended for self-medication to combat COVID-19. The use of FDA-approved phospholipids and modified
hydration method with a commonly used particle size reduction method makes AL-Rem viable for large-scale
manufacturing. The formulated nanoliposomes of Rem (AL-Rem) have optimal particle size, effective aerosol
characteristics and high drug entrapment efficiency. Minimal mammalian cell toxicities and prolonged drug release
will benefit local administration, reduce frequent dosing and enhance the therapeutic efficacy of the drug. Minimal
loss of cell membrane integrity would combat systemic invasion of the virus. Although the preliminary results are
promising, preclinical studies need to be performed to demonstrate the clinical relevance.

Future perspective
COVID-19 represents a sudden and enduring viral outbreak that is currently being faced by humankind. In such
a scenario, drug repurposing is the fastest treatment option available. The currently available therapy (i.e., Rem
injection) has some major challenges. Our study demonstrates a more effective localized delivery of Rem, which has
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the potential to overcome the hurdles related to the injectable form. Moreover, the development of an aerosolized
nanoliposomal carrier can further potentiate drug efficacy and has great translational potential. Such a carrier could
also serve as a promising drug delivery system for self-administration, combating systemic toxicities and helping to
enhance therapeutic levels of the drug in the lungs.

Summary points

• Remdesivir, an effective repurposed drug against SARS coronavirus 2, was formulated as a localized
nanoliposomal drug delivery system to maximize drug deposition in the lungs and circumvent systemic toxicities.

• An aerosolized nanoliposomal carrier for remdesivir (AL-Rem) was prepared using a modified hydration
technique, with successful entrapment of 99.79% of remdesivir, and resulted in a nanosized carrier with a
negative surface charge and unimodal size distribution.

• AL-Rem showed negligible cytotoxicity in lung adenocarcinoma cells and minimal disruption of lung airway
epithelial cells.

• AL-Rem revealed a sustained drug release pattern, with complete release achieved within 50 h in simulated lung
fluid conditions, indicative of prolonged activity, with reduced frequent dosing.

• AL-Rem solution was found to be physically and chemically stable at 4◦C even after a month.
• Most importantly, desirable performance after aerosolization of nanoliposomes confirmed significant deposition

of remdesivir within the gas exchange areas of the lungs.
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