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ABSTRACT: Error estimation for differential protein quantification
by label-free shotgun proteomics is challenging due to the multitude
of error sources, each contributing uncertainty to the final results.
We have previously designed a Bayesian model, Triqler, to combine
such error terms into one combined quantification error. Here we
present an interface for Triqler that takes MaxQuant results as input,
allowing quick reanalysis of already processed data. We demonstrate
that Triqler outperforms the original processing for a large set of
both engineered and clinical/biological relevant data sets. Triqler
and its interface to MaxQuant are available as a Python module
under an Apache 2.0 license from https://pypi.org/project/triqler/.
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■ INTRODUCTION
In mass-spectrometry (MS)-based proteomics, label-free
quantification (LFQ) enables the study of relative concen-
trations of proteins in complex mixtures. The technique scales
easily to large sample cohorts and can handle complex
experimental designs.
The data processing of such samples contains a chain of

processing steps that depend on each other. Typically, MS1
features are extracted for each MS run and are subsequently
matched to peptide sequences independently of the other runs.
Optionally, the different MS runs are aligned to each other,
and missing peptide intensities are extracted using so-called
match-between-runs techniques.1,4,18 In each processing step,
thresholds are applied to the measurements based on quality
metrics, either statistically motivated or simply selected
according to best practices; that is, the data that are deemed
reliable are shrinking in each processing step.
Strict partitioning is not just unnecessary, it is also harmful

to the performance of LFQ experiments. We previously
designed a Bayesian method, Triqler, to integrate different
error sources into combined quantification posterior error
probabilities, which we demonstrated to dramatically improve
both the precision and the recall of LFQ experiments.12 It also
addressed the issue of missing values, another major problem
for LFQ data analysis,6,15 by using the Bayesian framework to
appropriately assign probabilities to a range of expression
values. The advantages of Bayesian statistics in protein
quantification is by no means limited to LFQ processing.
More generally, it has been successfully applied to isobaric
labeling experiments8,10 and for clustering quantification
data.13

Triqler’s lack of support for match-between-runs was
addressed in a follow-up article.13 However, we are aware
that a complete reanalysis using a novel method is not always
practical. A very popular pipeline for processing LFQ data is
the MaxLFQ4 software, which includes match-between-runs,
followed by postprocessing with the Perseus package.14 We
hence find it worthwhile to plug into this user base and provide
an alternative means to interpret the output from the MaxLFQ
pipeline. We specifically note the potential of the increasingly
more common practice of depositing results of processing
analyses to repositories, such as MassIVE3 and PRIDE.9

Both MaxLFQ and Perseus, to large extents, follow the
classical threshold-based processing pipeline. Here we show
how Triqler can be used in the place of Perseus, which
effectively converts the MaxLFQ workflow into a Bayesian
processing method. The input to Triqler will in this case be the
evidence.txt file directly obtainable from MaxLFQ. The
processing not only renders a dramatic performance improve-
ment but also gives a more detailed insight into the reliability
of each protein’s quantitative values using Triqler’s new
posterior distribution plotting capabilities.
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■ METHODS

Data Sets

To examine the validity of the results, we analyzed three
engineered data sets, where known proteins were spiked into a
background at known concentrations. For this, we downloaded
MaxQuant result files for a study where UPS proteins were
spiked in at three concentrations in a yeast background, which
we will refer to as the UPS-Yeast set (PRIDE project:
PXD002370, Ratio2_txt.zip and Ratio2.5_txt.-
zip). We also downloaded MaxQuant evidence.txt
files from MassIVE.quant for a reanalysis of the iPRG2015 data
set (RMSV000000248.33), in which six proteins were spiked
in at four different concentrations in a yeast background, and
the MaxLFQ benchmark data set (RMSV000000255.1), with
UPS1/UPS2 proteins spiked into an E. coli lysate.
Furthermore, we downloaded the MaxQuant results

uploaded to PRIDE for four recent biological and clinical
studies: (1) a study investigating temozolomide resistance in
glioblastoma17 (PXD007759), (2) a clinical study examining
CD4+ and CD8+ T-cells of multiple sclerosis patients2

(PXD011785), (3) a clinical data set investigating biomarkers
for cholangiocarcinoma5 (PXD011804), and (4) a proteoge-
nomics study of nonsmall and small lung carcinoma cell lines16

(PXD015270). For the Glioblastoma data set, as was done in
the original study, we only analyzed the results of the samples
in the T_ZHI sample group, i.e., the samples treated with
temozolomide together with dimethyl sulfoxide, and D_ZHI
sample group, i.e., the sample group with dimethyl sulfoxide
only, but still used the identifications transferred by match-
between-runs reported in the evidene.txt file.

Data Analysis

MaxQuant evidence.txt files were converted to Triqler
input files using the triqler.convert.maxquant
program from Triqler v0.6.1. For this, we used the Andromeda
scores reported by MaxQuant to compute the Triqler peptide-
spectrum match (PSM) score as log(score). We used the
leading protein(s) as reported by MaxQuant as the
corresponding protein for a peptide. Feature intensities were
normalized using a retention-time-dependent normalization
scheme.18 For the Glioblastoma data set, we used the
--use_gene_names option to use gene names instead

of protein identifiers to allow better comparison with the
results from the original study.
The converted input file was then processed by Triqler

v0.6.1 with default parameters, except for the minimum
number of present values per peptide S (--min_samples)
and the log2 fold-change threshold F (--fold_chan-
ge_eval), which are listed in Table 1 and were chosen
based on comparable parameters used in the original studies.

Limitations and Requirements

The data sets presented here used the default MaxLFQ false
discovery rate (FDR) threshold of 1%; however, when
processing new data sets, we recommend that the FDR
thresholds are changed to 100% FDR before starting the
MaxQuant processing. This assures that all peptide quantifi-
cation values are properly transferred to Triqler. Also, although
all data sets made use MaxLFQ’s match-between-runs feature,
the current converter does not take into account errors from
this process.7 A better alternative to this is presented by our
method, Quandenser,13 which evaluates the uncertainty in the
feature alignments and thereby increases the precision in the
processing even further.
An assumption in the Triqler model is that the majority of

the proteins will not change between conditions. However,
even if this assumption is violated, we have previously obtained
reasonable results.12 Furthermore, care should be taken in
specifying the maximum allowed number of missing values per
peptide. The more missing values are allowed, the less reliable
the estimation of the missing value distribution becomes.
However, we have observed that Triqler can obtain reasonable
error estimates when allowing up to 70% of the runs to have
missing values for a peptide.13

A typical run of Triqler takes under 5 min and requires <1
GB of RAM. Thus far, we have not observed a case in which
Triqler was unable to handle a data set due to too large of a
number of PSMs, peptides, or proteins. The largest data set
analyzed by Triqler to date had 500 000 PSMs, 60 000
peptides, and 6000 proteins and finished in 10 min using four
cores and 4.5 GB of RAM.

■ RESULTS AND DISCUSSION
We implemented an interface from MaxQuant to Triqler. The
interface had only one input, converting MaxQuant evi-
dence.txt to Triqler input files, and required no

Table 1. Summary of Data Sets and Resultsa

data set samples groups S F DE proteins (5% FDR)

iPRG2015 12 4 7 0.5 30 tp (max: 30) + 0 fp
MaxLFQ benchmark 8 2 4 1.0 37 tp (max: 40) + 2 fp
UPS-Yeast Ratio2 6 2 3 0.8 9 tp (max: 48) + 0 fp
UPS-Yeast Ratio2.5 6 2 3 0.8 39 tp (max: 48) + 0 fp
Glioblastoma 6 2 3 1.0 270
Multiple sclerosis 27 2 17 0.5 10
Cholangiocarcinoma 30 3 8 0.5 50
Lung cancer 12 2 6 1.0 278

aResults for the engineered data sets (iPRG2015, MaxLFQ benchmark, UPS-Yeast Ratio2, and UPS-Yeast Ratio2.5) demonstrate the high
sensitivity and correct FDR control of Triqler. For each of the biological data sets (Glioblastoma, Multiple sclerosis, Cholangiocarcinoma, and Lung
cancer), Triqler finds differentially abundant proteins after multiple testing corrections, which the original studies generally were unable to do. S is
the minimum number of nonmissing values for a peptide to be retained. F is the log2 fold-change threshold used to evaluate the differential
abundance. DE proteins is the number of differentially abundant proteins at 5% differential abundance FDR. If more than two groups were present,
then this column lists the sum of the differentially abundant proteins for each pairwise comparison. For the engineered data sets, the first number is
the number of true-positives (tp), with the maximum number of true-positives given in parentheses, and the last number is the number of false-
positives (fp).
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intervention in the setup of the MaxLFQ processing. We
benchmarked the performance of the combination of MaxLFQ
and Triqler on all data sets. An overview of the results is given
in Table 1, and we will walk through the results for each data
set in the sections below.

Engineered Data Sets

First, we characterized the behavior of our new MaxLFQ
+Triqler pipeline on three engineered data sets, starting with
the UPS-Yeast data set. Employing the fold-change evaluation
threshold of 0.8, as in the original Triqler article, we found a
comparable performance to the original Triqler pipeline with
39 true-positives and 0 false-positives for the Ratio2.5 set
(Figures 1A,B and 2); however, we noted a rather low
sensitivity for the Ratio2 set, with only 9 true-positives and 0
false-positives. This seemed to be due to an underestimation of
the fold change for the UPS proteins, which Triqler estimated
to be closer to the evaluation threshold of 0.8 than to the
spike-in ratio of 1.0 (Figure 1C). Lowering the fold-change
evaluation threshold to 0.5 appreciably increased the sensitivity
to 44 and 28 true-positives for the Ratio2.5 and Ratio2 sets,

respectively, while retaining specificity, with 0 false-positives in
both cases.
More generally, the fold-change evaluation threshold should

be chosen based on the biological question. In practice, many
differential expression analyses already use this type of fold-
change threshold to filter out low effect sizes. However, there
are some differences between this fold-change threshold and
our Bayesian fold-change evaluation threshold. First, the
Bayesian threshold should be higher than two tot three
standard deviations of the fold-change distribution that results
from the prior distributions (Supporting Information). Triqler
calculates this value from the hyperparameter estimations,
prints it in the logs, and warns the user if the chosen threshold
is below this value. In practice, this typically leads to a lower
bound for the log2 fold change of ∼0.5. Below this lower
bound, we expect an accumulation of false-positives due to
technical or biological variation (Figure 1B,C, Figure S1).
Second, for the traditional fold-change cutoff, only the fold
change of the group means needs to exceed the chosen value.
In Triqler’s case, the bulk of the posterior’s probability mass,
for example, 95% to obtain a posterior error probability of

Figure 1. Posterior fold-change distributions allow for a quick and intuitive interpretation of Triqler’s results. (a) Posterior distributions of the log2
fold change for the spiked-in UPS proteins in the UPS-Yeast Ratio2.5 data set correctly center around log2(2.5) = 1.3. The proteins are sorted by
the confidence of the protein identification, with high-confidence proteins (multiple high-confidence peptides) at the top and low-confidence
proteins (few or low-confidence peptides) at the bottom. (b) The number of true-positive differentially abundant proteins in the UPS-Yeast
Ratio2.5 data set slowly decreases as a function of an increasing fold-change evaluation threshold. The lower bound for this threshold is given in
orange and is calculated from the standard deviation of the protein prior distribution. Below this lower bound, the number of false-positives rapidly
increases. (c) For the UPS-Yeast Ratio2 set, the initially chosen threshold of 0.8 leads to very low sensitivity. On the basis of the lower bound
estimation, a threshold of 0.5 is still within the range where few false-positives will occur.
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Figure 2. Posterior distributions reflect the uncertainty of the input data. Posterior distributions for three UPS proteins at the protein, the
treatment group, and the fold change between group levels for the UPS-Yeast Ratio2.5 data set. The plots exemplify the different degrees of
confidence in the differential abundance, as inferred by Triqler. For P02788, we have multiple peptide identifications that all agree on the relative
abundances, which leads to a narrow posterior distribution. For O00762 and Q15483, fewer peptides were identified, and some missing values were
present, which leads to wider posterior distributions and, in the case of Q15483, a visible influence of the protein prior to “pulling” the distribution
toward 0.

Figure 3. Genes and proteins close to a fold-change threshold risk being overlooked. (a) Gene RPL21 was called differentially expressed in the
original study of the Glioblastoma data set but missed the 5% FDR cutoff in the Triqler analysis because the log2 fold change was close to 1.0. (b)
Gene RPL13 was not called differentially abundant in the original study or by Triqler; however, it shows equally strong evidence of differential
expression as RPL21 and should ideally be taken into account as evidence of the regulation of the Ribosome KEGG pathway in downstream
pathway analysis tools.
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0.05, needs to exceed the chosen value, which is a much more
strict requirement. This effect can be seen in Figure 3.
Next, we analyzed the iPRG2015 data set with Triqler using

the MaxQuant results from a reanalysis by MaxQuant with
match-between-runs uploaded to MassIVE. Our new pipeline
resulted in perfect recall and precision at 5% FDR, that is,
neither false-positives nor false-negatives. We analyzed this
same set as that in The and Kal̈l12 with several pipelines
without match-between-runs. In that benchmark, the Max-
Quant+Perseus pipeline displayed a very low sensitivity,
frequently only calling one of the six spike-in proteins as
differentially expressed. Furthermore, it showed problems with
specificity as well, producing a couple of false-positives. On the
contrary, a pipeline using Triqler without MaxQuant identified
the spiked-in proteins without any false-positives or false-
negatives as well.
Finally, we looked at a MaxQuant reanalysis of the MaxLFQ

benchmark data set uploaded to MassIVE. We found 37 out of
the 40 differentially abundant UPS proteins at 5% FDR. We
also found two of the eight nondifferentially abundant UPS
proteins making the 5% FDR cutoff as well, although they were
both very close to the FDR threshold.

Biological and Clinical Data Sets

In the original study of the Glioblastoma data set, the authors
found 65 up- and 96 down-regulated genes significantly
differentially expressed based on a t test and filtering for
uncorrected p values below 0.05. Unfortunately, the submitted

data were not detailed enough to allow the application of
multiple testing correction. Triqler found 106 up- and 164
down-regulated genes at 5% FDR. The overlap was 55 genes
(25 up- and 30 down-regulated genes). Triqler did not call a
large part of the genes found in the original study differentially
expressed due to two reasons. First, about half of these genes
have only one or two peptides, the evidence of which was not
strong enough to overcome the prior (Figure S2). Second,
genes with a log2 fold changes close to 1.0 will result in
posterior fold-change distributions with approximately equal
probabilities on both sides of this cutoff (Figure 3a). This
highlights the limitations of setting thresholds before the
pathway analysis.
Looking at the most confidently up- and down-regulated

KEGG pathways reported in the original study again
underlines the issue of using hard partitioning by using a
threshold (Figure 4). For the Ribosome pathway (ko03010),
many genes show expression values close to a log2 fold change
of 1.0, for example, RPL13 (Figure 3b). This gene was not
reported as differentially expressed in the original study but
does show a clear down-regulation in the posterior distribution
plot. Triqler allows the user to easily create these heatmap
posterior plots based on a list of genes or proteins to get a
more thorough image of the pathway expression.
Second, we reprocessed the Multiple sclerosis data set. The

original study2 reported 228 and 195 differentially abundant
proteins for the CD4+ and CD8+ T cells, respectively, using a
p < 0.05 criterion. After we applied the Benjamini−Hochberg

Figure 4. Pathways can be easily inspected by heatmaps of posterior distributions. Heatmap of posterior distributions of the fold change for the (a)
Ribosome KEGG pathway (ko03010) and (b) Regulation of actin cytoskeleton KEGG pathway (ko04810) of the Glioblastoma data set. The genes
are sorted by confidence of the gene being identified, with genes with multiple high-confidence peptides closer to the top and genes with few or
low-confidence peptides toward the bottom. The ko03010 pathway shows very consistent down-regulation, whereas the ko04810 pathway displays
both up- and down-regulated genes.
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correction for multiple testing, none of these proteins
remained significant at 5% differential-abundance FDR.
Applying Triqler to MaxQuant’s evidence file resulted in 10
differentially abundant proteins at 5% differential abundance
FDR for the CD4+ T cells, with 5 overlapping with the original
list of 228 proteins at p < 0.05. Most of the proteins called
significant at p < 0.05 in the original study were not called by
Triqler because they were artifacts of the multiple testing
problem or were due to low effect size (Figure S3). For the
CD8+ T cells, no differentially abundant proteins were found
with Triqler at 5% differential abundance FDR, but five
proteins were found at 10% differential abundance FDR. None
of these appeared in the p-value-filtered list of the original
study. This appears to have been a result of one of the control
samples clustering with the Multiple sclerosis samples, as was
also observed in the original study. Triqler’s Bayesian model
assigns less importance to such outliers compared with a t test.
Next, we investigated the Cholangiocarcinoma data set.

Here he original study used a pipeline of MaxLFQ followed by
the mixOmics R package.11 This resulted in zero, two, and
three differentially abundant proteins at 5% differential
abundance FDR for the premalignant periductal fibrosis
(PDF)−Normal, Cholangiocarcinoma (CCA)−Normal, and
CCA−PDF comparisons, respectively. Reanalysis with Triqler
resulted in 1, 19, and 30 differentially expressed proteins for
these respective comparisons at the same FDR threshold. The
sets found by Triqler included the differentially abundant
proteins from the original study at 5% FDR, except for
Q96PD5, and showed a large overlap with the list of
differentially abundant proteins with uncorrected p values
below 0.05 in the original study (2, 29, and 30 proteins,
respectively).
Finally, we reanalyzed the Lung cancer data set. In the

original study,16 the authors found 147 differentially abundant
proteins using |log2 FC| > 1.0 as the criterion without applying
any statistical tests. Reanalysis with Triqler resulted in 278
differentially abundant proteins at 5% differential abundance
FDR with an overlap of 88 proteins with the list of
differentially abundant proteins from the original study. Out
of the 14 differentially abundant proteins that had a Pearson
correlation >0.4 with microarray mRNA expression levels in
the original study, 11 were also called differentially abundant
by Triqler.

■ CONCLUSIONS
Here we have shown that with very little effort, users can
extract new information from previously processed data from
MaxQuant using our Triqler interface. There is often a sizable
overlap with the differentially abundant proteins at p-value
thresholds, but Triqler is able to eliminate false-positives
caused by multiple testing, unreliable data, incoherent data,
and poor missing value imputation. Also, instead of reporting
three separate values for the identification probability, fold
change, and significance value for differential expression for
each protein, Triqler reports a posterior fold-change
distribution that is intuitive to interpret and incorporates all
three pieces of information.
Bayesian statistics is also helpful for downstream analysis.

Whereas we here described how to generate statistics for lists
of differentially abundant proteins, this is seldom the end goal
of an experiment. Often, we strive to examine higher level
questions, such as is a particular metabolic pathway differ-
entially regulated, or are the proteins from a certain organelle

differentially regulated? When using frequentist tests, we
would, in such situations, again partition our findings based
on an arbitrary selected FDR threshold; however, at least in
theory, this is better done by Bayesian models, allowing
uncertainties to propagate to the final question we want to
answer.
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