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Abstract 
The energy sensor AMP kinase (AMPK) and the master scaffolding 
protein, AXIN, are two major regulators of biological processes in 
metazoans. AXIN-dependent regulation of AMPK activation plays a 
crucial role in maintaining metabolic homeostasis during glucose-
deprived and energy-stressed conditions. The two proteins are also 
required for muscle function. While studies have refined our 
knowledge of various cellular events that promote the formation of 
AXIN-AMPK complexes and the involvement of effector proteins, more 
work is needed to understand precisely how the pathway is regulated 
in response to various forms of stress. In this review, we discuss 
recent data on AXIN and AMPK interaction and its role in physiological 
changes leading to improved muscle health and an extension of 
lifespan. We argue that AXIN-AMPK signaling plays an essential role in 
maintaining muscle function and manipulating the pathway in a 
tissue-specific manner could delay muscle aging. Therefore, research 
on understanding the factors that regulate AXIN-AMPK signaling 
holds the potential for developing novel therapeutics to slow down or 
revert the age-associated decline in muscle function, thereby 
extending the healthspan of animals.
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Introduction
With aging, there is a decline in skeletal musclemass and function. Agingmuscle undergoes a shift in the balance between
myogenic potential and fibrogenic activity that leads to reduced capacity of the muscle to repair and regenerate.1 Studies
have shown that age-associated decline in muscle function is multifactorial and affected by genetic and environmental
factors. While many genes have been identified that contribute to muscle development and function, their mechanisms of
action are not well understood.

This review discusses a novel signaling network involving AXIN and AMP-activated protein kinase (AMPK) in
maintaining muscle health that offers a new perspective on promoting healthy aging. Both these proteins are conserved
in metazoans. AXIN is an established scaffolding protein that acts to integrate inputs from multiple signaling molecules,
leading to the regulation of downstream effectors.2 AMPK plays a crucial role in sensing intracellular energy levels and
keeping a balance between cellular metabolism and growth.3

AXIN-AMPK signaling
Recent findings from our lab and other published studies involving AXIN and its interacting partner AMPK provide a
potential clue into the mechanism of muscle health maintenance. Work in the nematode C. elegans has revealed that the
AXIN family member PRY-1 is necessary for animals’ normal motility and health, and its activated form promotes
longevity by maintaining muscle mitochondrial homeostasis.4 A similar function was previously ascribed to the AMPK
catalytic subunit homolog AAK-2.5,6 The genetic and biochemical experiments revealed that PRY-1 and AAK-2 work
together, likely through protein-protein interaction, and PRY-1 is required for AAK-2-mediated beneficial effect on
muscle health and lifespan (Figure 1). The interaction between PRY-1 and AAK-2 is not a unique phenomenon, as other
AXIN family members also interact with AMPK in different biological contexts. For example, another C. elegansAXIN
homologAXL-1 forms a complexwithAAK-2 followingmetformin treatment. Here, AXL-1 is necessary formetformin-
mediated lysosomal localization and activation of AAK-2 in a VHA-3-LMTR-3-PAR-4 (v-ATPase-Ragulator-LKB1)
complex dependent manner7 (Figure 2).

The Axin-containing complexes are also reported in mammalian systems. Following metformin treatment and glucose
deprivation,8–10 the AXIN-based lysosomal pathway, consisting of v-ATPase-Ragulator complex (v-ATPase-Ragulator-
AXIN/LKB1-AMPK), promotes AMPK phosphorylation by LKB1, leading to AMPK activation. In a separate study

Figure 1. PRY-1/AXIN function in the muscle is necessary to maintain muscle health, mitochondrial biogen-
esis and longevity. Genetic and biochemical studies have shown that PRY-1/AXIN interacts with PAR-4/LKB1 and
AAK-2/AMPK in muscles to promote AAK-2/AMPK phosphorylation. AAK-2 in turn activates DAF-16/FOXO cell non-
autonomously in the intestine and promotes DAF-16/FOXO nuclear localization. Green colored P indicates activating
phosphorylation.

Page 3 of 14

F1000Research 2021, 10:1259 Last updated: 18 JAN 2022



involving myotubes and mice gastrocnemius muscle tissue, exercise stimulated both AMPK and Rac1 while increasing
the cellular levels of AXIN1. Accordingly, reducing the AXIN1 function blocked GTP loading of Rac1, AMPK
activation, and glucose uptake in the exercising muscles.11 Additionally, it was shown that muscle-specific knockout
(KO) of the AXIN1-binding Ragulator subunit LAMTOR1 completely abolished treadmill exercise-stimulated AMPK
activation in gastrocnemius muscle.10 Together, these data demonstrate the crucial role of AXIN tethering in activating
AMPK, which promotes muscle metabolism and benefits linked to exercise.

Investigations of cellular mechanisms underlying AXIN and AMPK interaction have revealed a regulatory relationship
that depends on AMP levels12 (Figure 3). While low glucose triggered AMP-dependent activation of AMPK through the
AXIN-based lysosomal pathway, a modest increase in AMP resulted in AXIN-dependent activation of both lysosomal
and cytosolic AMPK. Finally, extreme nutrient starvation or highAMP concentrations caused phosphorylation ofAMPK
independently of AXIN function.12

Intriguingly, it was shown recently that skeletal muscle-specific AXIN1 knockout (AXIN1 imKO) mice are phenotyp-
ically normal and exhibited no impairment of AMPK regulation or glucose uptake.13 Such a phenotypemay be explained
by redundancies between AXIN1 and its homolog AXIN2. Both proteins are expressed in skeletal muscles, and AXIN2
can functionally replace AXIN1 in regulating AMPK.12,14 Moreover, AXIN2, a negative regulator of WNT signaling,
appears to be essential for myogenesis, as increased WNT signaling in aged skeletal muscle promoted fibrogenesis,
thereby accelerating aging.15–17

Consistent with the role of AXIN in AMPK activation and myogenesis, AMPK is shown to be crucial for regulating
skeletal muscle development, growth, and degradation.18 In skeletal muscle, AMPK signaling has been linked to both
acute and chronic exercise adaptations, in addition to a broad range of skeletal muscle disease states and ageing.19,20

Together these data support the growing evidence that both AXIN and AMPK and their signaling cascade are crucial to
maintaining healthy muscles and slowing organismal deterioration with aging.

Figure 2. AXL-1/AXIN is required for metformin-mediated AAK-2/AMPK phosphorylation and longer lifespan
in C. elegans.Metformin treatment induces formation of AXL-1/AXIN-based lysosomal VHA-3-LMTR-3-AXL-1/PAR-4-
AAK-2 (v-ATPase-Ragulator-AXIN/LKB1-AMPK) complex that is required for AAK-2/AMPK activation. The effect of
metformin is partially attained via inhibition of mTORC1, but other targets of the pathway remain unknown. Green
colored P shows activating phosphorylation.
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Downstream effectors of AXIN-AMPK signaling
Studies in mammalian models revealed that both metformin and glucose deprivation inhibit the mechanistic target of
rapamycin complex 1 (mTORC1) activity, a master regulator of anabolic pathways.8,10 Both these treatments cause
themTORC1 components, RAPTOR andmTOR, to dissociate from the v-ATPase-Ragulator and facilitate the formation
of the v-ATPase-Ragulator-AXIN/LKB1-AMPK complex. Similarly, research in C. elegans has demonstrated that
the VHA-3-LMTR-3-AXL-1/PAR-4-AAK-2 complex negatively regulates phosphorylation of the mTORC1 target S6
kinase B1 (S6K) homolog RSKS-1.7 As the beneficial effects of AXIN-AMPK signaling in theC. elegans studywere not
directly attributed to mTORC1 inhibition, the authors suggested that the signaling cascade may utilize additional factors7

(Figure 2).

The downstream effectors of AXIN-AMPK have been reported in several other studies. Specifically, in a low glucose
condition, the pathway phosphorylates proteins such as acetyl-CoA carboxylase (ACC1) and endoplasmic reticulum-
localized sterol regulatory element-binding protein-1c (SREBP1c), thereby inhibiting fatty acid synthesis12 (Figure 3).
Interestingly, in C. elegans, PRY-1 promotes transcription of SREBP1 homolog SBP-1 to regulate fatty acid synthe-
sis4,21; however, the precise mechanism of this regulatory relationship is unknown. Another effector of PRY-1 appears to
be the CREB-regulated transcriptional coactivator (CRTC) homolog.22 CRTC-1 is known to function downstream of
AAK-2 and affects calcineurin-mediated lifespan and stress regulation in C. elegans.23,24 While AMPK and calcineurin
signaling in mammalian systems regulate CRTCs in an antagonistic manner, the involvement of Axin in this regulatory
network remains to be determined.25–28

Given that AMPK regulates many targets, it is expected that a subset may be co-regulated byAXIN.We recently reported
that both pry-1 and aak-2mutant transcriptomes significantly overlap with mutually up and downregulated genes. These
common differentially expressed genes are associatedwithmuscle structure development, muscle contraction, aging, and
lipidmetabolism.Moreover, we found that PRY-1-AAK-2 signaling functions inmuscles leading to activation ofAAK-2
in a cell-non-autonomous manner and phosphorylation and translocation of the FOXO transcription factor homolog
DAF-16 into the intestinal cell nuclei4 (Figure 1). These results are supported by previous studies showing that activated

Figure 3. AXIN forms a lysosomal complex, v-ATPase-Ragulator-AXIN/LKB1-AMPK, that is crucial for AMPK
activation and the maintenance of energy homeostasis during stress-inducing conditions. The complex is
formed following glucose deprivation, low to moderate increases in AMP levels, and metformin treatment. Once
activated, AXIN-AMPK signaling promotes catabolism and inhibits anabolism by phosphorylating downstream
targets that include ACC1, SREBP1c, Raptor and TSC2. Green and purple colored P indicate activating and inhibitory
phosphorylation, respectively.
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DAF-16 is indispensable for muscle mitochondria homeostasis and lifespan extension. It is worth mentioning that
FOXO3 is also phosphorylated by AMPK in the mammalian system; however, the involvement of AXIN in this process
and the function of activated FOXO3 are unknown.29

Unlike C. elegans, little is known about the role of AXIN and AMPK in regulating muscle health in another leading
invertebrate model, namely the fruit fly D. melanogaster. Overexpression of D-axin in wing disc-associated myoblasts
in larvae causes partial to complete loss of indirect flight muscles.30 However, the precise role of D-axin and the
involvement of AMPK and TORC1 in adult muscles is unknown. In terms of other processes, it has been reported that a
hypomorphic allele of D-axin alters the expression of metabolic genes and is hypersensitive to metabolic stress induced
by fasting. Such a phenotype depends on TORC1 activity and involves increased ROS production.31

Gaps in our knowledge
While much has been learned about Axin, AMPK, and their interactions, there are gaps in our understanding of the
mechanisms regulating the complex formation, downstream effectors, and their role in maintaining muscle health. Some
of the relevant questions are discussed below.

Is AXIN expression beneficial for muscle health?
The existing data supports that AXIN function in the muscle is beneficial. AXIN2 is required for myogenesis and linked
to muscle aging, whereas AXIN1 mediated signaling is necessary for glucose uptake in the exercising muscles.11,15,17

Both AXIN1 and AXIN2 are expressed in the skeletal muscle. Research in C. elegans hints that muscle-specific
overexpression of pry-1 promotes mitochondrial network, muscle development, and muscle physiology.4 Whether such
a role of Axin is conserved in higher eukaryotes is unknown.

Are AXIN1 and AXIN2 redundant in activating AMPK?
While AXIN1 and AXIN2 possess similar domains, they show differences in their regulation and expression pattern
(subcellular localization and cell type-specific expression).14,32 Additionally, AXIN2 is required for muscle develop-
ment. Interestingly, exercise-induced glucose uptake requires AXIN1 in skeletal muscles. While it remains to be seen
whether AXIN2 plays a redundant role in this process and regulates AMPK, Li et al.13 reported no change in AMPK
activation following AXIN1 imKO in the skeletal muscle. Furthermore, Zong et al.12 showed that AXIN2 could
substitute AXIN1 in forming a complex between LKB1 and AMPK.

In C. elegans, PRY-1 and AXL-1 possess the characteristic domains for the AXIN family of proteins2 and negatively
regulate WNT signaling.33,34 It has been shown that AXL-1 functions redundantly with PRY-1 to regulate the WNT
effector protein BAR-1/β-catenin during the formation of the vulva and migration of Q neuroblast. However, both
AXINs are functionally not equivalent and play roles independently to control specific processes. For example, PRY-1
is necessary for lipid metabolism, healthspan, lifespan, and seam cell development, whereas AXL-1 regulates excretory
cell development.4,21,33–36 Recent experiments from our lab also highlight functional differences between the two Axin
proteins. While PRY-1 and AXL-1 are necessary for metformin-induced lifespan extension,7 only PRY-1 is required
for glucose deprivation mediated longevity in C. elegans (Mallick et al., unpublished). These same treatments,
i.e., metformin and glucose deprivation, are known to extend the lifespan in an AAK-2-dependent manner.37,38 Overall,
these studies demonstrate that AXIN homologs in every system have shared as well as unique functions. However,
whether these proteins can redundantly activate AMPK remains to be investigated.

What factors limit AXIN-AMPK signaling?
Recent reports demonstrate that the lysosomal AXIN-AMPK signaling can be activated by glucose deprivation
independently of AMP/ATP ratios. However, the medium-to-high elevation of AMP extends the activation of both
cytosolic and lysosomal AMPK, which is also dependent on AXIN1.12 By contrast, very high AMP levels phosphorylate
AMPK in a manner that does not involve AXIN1 and probably occurs via a conformational change in AMPK. Whether
AXIN-dependent activation ofAMPKalso requires a similar change inAMPKconformation is unclear. Furthermore, it is
unknown how glucose levels facilitate the complex formation and differential activation of AMPK by LKB1.

Several other factors may also limit AXIN and AMPK mediated signaling. One of these is post-translational modifica-
tion. AXIN activity is known to be regulated by phosphorylation.2,39,40 Another could be subcellular localization. While
the AXIN-AMPK complex is localized to lysosomes and cytoplasm, the changes in their activities in response to external
stimuli are poorly understood.10,12 Both factors are broadly expressed and in overlapping domains; however, whether
their interactions are global or restricted to specific tissues remains to be determined. In this regard, it is worth mentioning
that AMPK functions cell non-autonomously in C. elegans,24 and we have reported that the protein is needed in both
muscles and intestine to mediate beneficial effects of constitutive expression of AXIN in muscles.4
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What are the effectors of AXIN-AMPK signaling?
Given that AMPK is involved in many different processes and regulates many downstream targets, one might expect
that AXIN-AMPK interaction co-regulates a subset of the targets. In support of this, a recent paper suggests that
AXIN-AMPK signaling phosphorylates targets that are different from ATP/AMP-dependent AMPK signaling.12 As
mentioned above, our analysis of C. elegans pry-1 and aak-2 transcriptomes has revealed many overlapping genes that
are differentially expressed. However, more work is needed to identify and validate common targets of AXIN-AMPK
signaling that are involved in maintaining muscle health in different systems. Identification of such target genes could
lead to a better understanding of molecular mechanisms underlying the signaling network and the development of
diagnostic markers and therapeutic interventions to promote muscle health.

New research directions
Weenvisage several exciting research avenues involvingAXIN-AMPK signaling.While substantial knowledge has been
gained in terms of processes that each one participates in and mechanisms underlying their function, little is known how
the interactions between the two proteins are regulated, leading to changes in the expression of target genes that carry out
various roles. Below are some of the potential research directions to address the questions in the previous section.

While it has been shown that the AXIN homologs in both C. elegans (PRY-1 and AXL-1) and mammalian systems
(AXIN1 and AXIN2) can activate AMPK,4,7,9,12 the redundancies between the homologs and their tissue-specific
interactions with AMPK are unknown. Moreover, the differences in lifespan and lipid metabolism phenotypes between
the two AXIN mutants in C. elegans raise the question of functional equivalency regarding AMPK activation in
physiological conditions. Future research along these lines should refine our understanding of AXIN-AMPK signaling
and its conservation in eukaryotes.

Depending on the context, signaling pathways may utilize different mechanisms to regulate their responses. In
this regard, research in the following areas should improve our understanding of the regulatory mechanism of AXIN-
AMPK signaling. First, whether a conformational change in AMPK following AXIN binding occurs similar to the AMP-
dependent mechanism. Second, the role of post-translational modification of AXIN in activating AMPK. Third,
identifying a specific region of the multidomain AXIN protein required for AMPK interaction that, in turn, may uncover
potential competitors to modulate the signaling. And, finally, the discovery of factors affecting subcellular localizations
of both AXIN and AMPK and, in turn, their interactions.

Other modes of regulation of AXIN-AMPK signaling may include spatial and temporal changes in AXIN expression.
AXIN is not only a negative regulator but also a downstream target of the WNT signaling.21,41 Consistent with this,
PRY-1/AXIN is required for MOM-2/WNT mediated lifespan regulation,4 and MOM-2 is expressed in the body wall
muscles of C. elegans. It remains to be explored whether AXIN function in muscles is regulated in a WNT-dependent
manner in eukaryotes.

Research from our group has shown that overexpression of PRY-1/AXIN inC. elegans extends the lifespan and improves
muscle health in older adults. Whether forced expression of mammalian AXIN in muscles may also promote the
healthspan of animals by activating AXIN-AMPK signaling requires investigation. In line with this, expression analysis
of AXIN1 and AXIN2 in old adults and patients with a muscle disease should prove valuable.

As mentioned above, AXIN and AMPK are crucial for muscle development and physiology. Furthermore, exercise
promotes the activation of AMPK in anAXIN-dependent manner. Given that exercise promotesmuscle health and delays
aging,42–44 it is conceivable that AXIN and AMPK are involved in this process. More work is needed to understand the
role of AXIN-AMPK signaling in exercise-mediated benefits.

Conclusion
AXIN family of scaffolding proteins control a wide array of cellular processes by recruiting multiple factors and forming
protein complexes. One of the interactors of AXIN is the well-known energy sensor AMPK. AMPK functions as a nexus
between energy conservation and aging, and perturbations of its function lead to various age-related pathologies. AXIN-
AMPK signaling promotes muscle health and delays age-associated deterioration. Future studies on the pathway, its
interacting proteins, and tissue-specific effectors hold promise to uncover key candidates that may be targeted in the
future to delay age-associated muscle degeneration and improve muscle health during aging.

Data availability
No data are associated with this article.
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