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Phasing of dragonfly wings can improve
aerodynamic efficiency by removing swirl
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Dragonflies are dramatic, successful aerial predators, notable for their flight agility and
endurance. Further, they are highly capable of low-speed, hovering and even backwards
flight. While insects have repeatedly modified or reduced one pair of wings, or mechanically
coupled their fore and hind wings, dragonflies and damselflies have maintained their
distinctive, independently controllable, four-winged form for over 300 Myr. Despite efforts at
understanding the implications of flapping flight with two pairs of wings, previous studies
have generally painted a rather disappointing picture: interaction between fore and hind
wings reduces the lift compared with two pairs of wings operating in isolation. Here, we
demonstrate with a mechanical model dragonfly that, despite presenting no advantage in
terms of lift, flying with two pairs of wings can be highly effective at improving aerodynamic
efficiency. This is achieved by recovering energy from the wake wasted as swirl in a manner
analogous to coaxial contra-rotating helicopter rotors. With the appropriate fore-hind wing
phasing, aerodynamic power requirements can be reduced up to 22 per cent compared with a
single pair of wings, indicating one advantage of four-winged flying that may apply to both
dragonflies and, in the future, biomimetic micro air vehicles.
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1. INTRODUCTION

Dragonflies are capable of a diversity of flight tech-
niques, including effective gliding, powerful ascending
flight, tandem flight during copulation, low-speed
manoeuvring and hovering. In contrast to most other
insects, direct musculature acts at each wing base,
enabling dragonflies to control each wing indepen-
dently. Indeed, a wide range of phase relationships
have been described between fore and hind wings
(Norberg 1975; Alexander 1984; Reavis & Luttges
1988; Wakeling & Ellington 1997a; Wang et al. 2003;
Thomas et al. 2004). High flight forces have been
correlated to in-phase flapping of fore and hind wings
(Alexander 1984; Reavis & Luttges 1988; Riippell 1989;
Wakeling & Ellington 1997a), but in many instances
dragonflies are also observed flying with fore and hind
wings operating somewhat out of phase. Grodnitsky
(Grodnitsky & Morozov 1993; Grodnitsky 1999)
postulated that anti-phase wing motions might benefit
hunting, either due to an increase in readiness for
manoeuvrability, or by reducing centre of mass
oscillations, both reducing visibility to potential prey
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and aiding location of targets. Previous computational
(Wang & Russell 2007) and experimental (Luttges
1989; Maybury & Lehmann 2004) studies on the
consequences of fore-hind wing phasing have demon-
strated that phase can have a bearing on both thrust
production and power. However, variations in thrust
and power are closely correlated, suggesting that
certain phases could increase thrust production, albeit
with an increased power requirement, very much as
would be expected with control through varying other
kinematics such as frequency or angle of attack. Flow
visualizations around flapping dragonfly models
(Saharon & Luttges 1987, 1988, 1989) demonstrate
the potential for interaction between the fore wing
wakes and the hind wing, resulting in a range of possible
consequences including the fusing of vortices and
possible lift enhancement; however, their implications
in terms of power and efficiency are not clear. An analy-
tical study of heaving and pitching plates (Lan 1979),
while not strictly directly applicable to hovering, and
omitting the complications of separated flows sub-
sequently believed to be a characteristic of much of slow
dragonfly flight (Thomas et al. 2004), presents an exciting
possibility: interacting tandem wings ‘can produce high
thrust with high efficiency’ by ‘energy extraction by
the hind wing from the wake of the forewing’. Further,
visualization of smoke around free-flying dragonflies
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Figure 1. The mechanical dragonfly and results derived from force sensors at the wing bases. (a) The wingtip paths reported for a
hovering dragonfly (Wakeling & Ellington 1997a) describe approximately horizontal stroke planes, with vertically stacked
wings. (b,¢) The mechanical model of a dragonfly’s right wings was flapped at controlled fore-hind phases. Wing blade elements
and gaze during flow visualization are indicated by the symbol and black lines plotted on the upper wing surfaces, respectively,
in (¢). The black triangle represents the wing’s leading edge. Mean values derived from force sensors at the wing bases, of lift (d),

the ratio of mean lift, L, to mean drag, D, (e), and aerodynamic efficiency expressed as ‘figures of merit’ (f) plotted as a function
of fore-hind wing phase shift. Black solid lines show performances of isolated (i) fore wing, (ii) hind wing, (iii) cumulative effect
of isolated fore and hind wings, and sine fit to combined-wing data as a function of phase.

(Thomas et al. 2004) indicates the potential for a range
of wing—wake interactions in forward flight. In this
study, we use a mechanical model ‘hovering’ dragonfly
to revisit the efficiency implications of phase on hovering
with flapping, tandem wings.

2. EXPERIMENTAL DETAILS

We observed the effect of hovering with two pairs of
wings by measuring the forces and wakes produced by
an intermediate Reynolds number robotic hovering
model dragonfly, and demonstrate the significance
of hovering with a range of fore-hind wing phases.
Reynolds numbers, based on the mean wing chord wing
tip velocity, were 105 (fore wing) or 125 (hind wing);
this is at the low end for small hovering dragonflies
(calculated as between 250 and 500; Maybury &
Lehmann (2004) from Riippell (1989)), but is
considered well above the transitional Reynolds num-
ber (Wang & Russell 2007). Fore-hind wing phases are
described here as the proportion (per cent) of the stroke
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period at which the hind wing leads the fore: +25 per
cent indicates that the hind wing leads the fore wing
by a quarter cycle; 50 per cent indicates total anti-
phase. The robotic model represents the two dynami-
cally scaled right wings of a hovering dragonfly with
realistic wing shapes and hinges vertically separated by
1.25 chord lengths, yielding fore wings beating directly
above the hind wings (figure 1a—c). Both fore and hind
wings followed identical, generalized kinematics sweep-
ing a horizontal stroke plane (see the electronic
supplementary material). The aim of the robot
kinematics was not to precisely reproduce any single
set of measured wing motions, but to provide a
moderately realistic test bed with which the signi-
ficance of wing phasing could be investigated without
introducing confounding aerodynamic factors such as
the direction of the net force vector. Thus, while a range
of stroke plane angles have been described for hovering
dragonflies, we selected vertically stacked horizontal
stroke planes following the observations of hovering
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Figure 2. Wake patterns derived from two-dimensional digital particle image velocimetry at the instant of mid-downstroke of
the fore wing, when the fore wing is directed directly towards the viewer, for (a,c) least efficient (—25%) and (b,d ) most efficient
(4+25%) kinematic phase shifts. The wake of the efficient phase displays a higher ratio of downward to lateral velocities
(bversus a, where the ratio is represented by colour). Flow regions below a vertical flow velocity threshold of 0.1 m s~ ! are shown
in grey. Streamtubes showing wake contraction in (d) compared with wake expansion in (¢) indicate that less momentum, and
less kinetic energy, is wasted as swirl at positive (hind wing leads) kinematic phase shifts. Fluid velocity for both flapping

conditions is indicated by colour background in (¢) and (d).

Sympetrum sanguineum (Wakeling & Ellington 1997a).
Instantaneous aerodynamic lift, defined as the vertical
force that provides weight support, and drag, the force
impeding the motion of the wing in the horizontal plane,
were measured with force sensors at the wing bases.
From these values, we calculated the mean lift force, the
ratio of mean lift to mean drag, the power required to
overcome drag, and the aerodynamic efficiency. Aero-
dynamic efficiency is represented by the ‘figure of
merit’ (FoM), a special case of ‘propeller efficiency’
used for hovering helicopters (electronic supplementary
material). This term describes the ratio of the minimum
theoretical power required for hovering to the measured
aerodynamic power (Prouty 2005). In effect, the FoM
expresses aerodynamic efficiency by comparison with
an ideal helicopter.

The fluid (mineral oil) inside a 0.43 m® flow tank was
seeded with air bubbles to allow visualization of a two-
dimensional slice of the flow field around the wings and
including the wake beneath the hovering mechanical
dragonfly. The properties of these flows were quantified
using digital particle image velocimetry (2D-DPIV,
TSI Insight 6.0), and are presented for a vertical slice
situated half way along the fore wing at the instant of
mid-downstroke of the fore wing (figure 2). Video
(electronic supplementary material) illustrates the
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effect of fore-hind wing phasing on the dynamic wake
structure through several flapping cycles.

3. RESULTS AND DISCUSSION

Interaction between fore and hind wings was largely
detrimental in terms of lift (figure 1d; Maybury &
Lehmann 2004), agreeing with computational analysis
(Sun & Lan 2004), though some phases are less
detrimental than others (see also Wang & Russell
2007). The reduction in lift is attributable to a
reduction in the angle of incidence between each wing
and the local fluid: the wings produce an induced
downward flow both below (downwash) and above
(inwash) the level of the wings; angles of incidence are
reduced due to the fore wing’s downwash on the hind
wing, and the hind wing’s inwash on the fore wing. In
addition to the reduced lift with fore-hind wing
interaction, the mean lift to mean drag ratio of the
flapping wings, while varying with phase, is not
improved compared with wings operating in isolation
(figure le). It is thus tempting to conclude that
aerodynamic efficiency would always be reduced when
wings operate in tandem. However, we find that this is
not the case: at advanced phases, FoMs are better than
in isolated wings.
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Figure 1f shows that aerodynamic efficiency of
isolated wings is poor in all cases, consistently below
half that of an ideal actuator disc or perfect helicopter,
approximately half of that calculated analytically with-
out flow separation (Lan 1979), and considerably below
values achievable by real helicopters (approx. 0.75;
Prouty 2005). This is consistent with the very high angles
of attack, flow separation and loss of leading-edge
suction at the leading edges, and subsequent poor lift—
drag ratios of hovering insect wings. However, the FoMs
of isolated fore or hind wings are surpassed by combined
fore and hind wings operating with positive wing
phases: four-winged flight with correct fore-hind phasing
improves aerodynamic efficiency. To determine aerody-
namic power savings, we calculated the wing beat
frequency required to achieve identical mean lifts
(0.404 N) for wings operating at different phases. From
this, the power requirements for hovering were scaled and
compared: hovering with a phase shift of +25% requires
16 per cent less power than with a phase shift of —25%.
Although this comparison ignores other potential
kinematic parameters, it shows that hovering with the
correct phase between fore and hind wings can have a
considerable energetic significance. Similarly, a compari-
son can be made between two-winged and four-winged
power requirements. Constraining wing shape and all
aspects of kinematics apart from wing beat frequency,
hovering with four wings at best phase shift requires
22 per cent less power than hovering with only the fore
wings at the same mean lift production.

The apparent paradox that efficiency can be
improved despite a reduced ratio of mean lift to mean
drag is explained by two different views describing the
same physical phenomenon. The first is a shift in the
timing of the forces. The periodic, non-vertical com-
ponents of the wake left by the fore wing allow, at
positive, hind wing leading phase shifts, the hind wing
to generate high aerodynamic forces when moving
relatively slowly, at the extremes of the stroke. When
operating at a phase shift of +25%, the hind wing
experiences a peak in lift enhancement (lift compared
with the hind wing flapping in isolation) at 35 and
85 per cent of the stroke period, towards the end of
down and upstroke (Maybury & Lehmann 2004),
respectively—when the wing is moving at approxi-
mately 80 per cent of its peak speed. As power is the
vector product of drag and wing velocity, a bias of force
development away from periods when the wing is
moving fastest reduces the power requirements. Thus,
while the significance of unsteady aerodynamic force
development—that which cannot be predicted with a
quasi-steady analysis relating aerodynamic forces to
the square of velocity—within the stroke cycle is minor
in terms of the total force production, it is considerable
in terms of power and efficiency.

The second description of this phenomenon is
apparent from the resultant wake after the action of
both sets of wings (figure 2 and electronic supple-
mentary material). The term ‘swirl’ applies to lateral
motions of the wake representing non-downward, and
thus non-weight-supporting momentum. Energy put
into swirl is wasteful, as it is not associated with
momentum flux providing weight support. At positive
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kinematic phases and high aerodynamic efficiencies,
swirl applied to the fluid by the fore wings can be
recovered to a certain extent by the hind wings,
redirecting lateral motions of the wake into the vertical.
This effect is illustrated with snapshots of the flow field
showing that, at an inefficient (—25%) phase shift, the
spreading wake has a considerable component of non-
downward momentum (figure 2a). By contrast, at
efficient (+25%) fore-hind phase shifts, the contracting
wake is largely vertical (figure 2b). Streamtubes of
the wake at the same instant and position highlight the
effectiveness of the +25% phase in producing a
conventional, converging momentum jet (figure 2¢,d).
Flow speeds in the wake are also generally lower at
+ 25% phase shift, suggesting that less kinetic energy is
put into the wake for a given change in vertical
momentum, although a full three-dimensional flow field
would need to be measured in order to quantify this
phenomenon with PIV. The power required for a given
mean lift force is reduced at a phase of +25% by a form
of interwing wake recapture; this broadly matches the
28 per cent phase observed by Wakeling & Ellington
(1997a) for a near-hovering (advance ratio of 0.21) free-
flying dragonfly. The mechanism for improved effi-
ciency by swirl removal matches the ‘energy extraction
by the hind wing from the wake of the forewing’
predicted by Lan (1979), and is directly analogous to
that exploited by coaxial contra-rotating rotors,
exemplified by helicopters such as the Kamov Ka-50.

4. CONCLUSIONS

The finding that the conditions for high lift are the same
as those for high aerodynamic efficiency raises the
question of why dragonflies use such a diversity of
kinematic phase shifts during free flight. Previous
suggestions include varying requirements for thrust,
efficiency and readiness for manoeuvrability and some
other aspect of hunting performance (Grodnitsky
1999). An alternative explanation for the observed
phase shifts in free flight is that the appropriate wing
phasing to make effective use of swirl removal is
dependent on the speed with which the wake travels
between fore and hind wings, and this is determined by
the flight speed, direction and thrust production
(Wakeling & Ellington 1997b). In this scenario, the
+25% phase shift between both wings during hovering
should decrease with increasing flight speed owing to
the increase in wake velocity relative to the dragonfly.
The range of observed phase shifts might therefore
simply reflect the kinematic requirements to achieve
the same swirl-removing mechanism at the various
flight conditions by ensuring that the hind wing meets
the correct part of the fore wing wake. At this stage, the
best direct evidence that such wing—wake interactions
occur in free-flying dragonflies is the unstructured
wake, ‘devoid of vortex loops’, and absent of starting
vortices, described from smoke visualization (Thomas
et al. 2004). This is consistent with the swirl-cancelling
characteristic of the efficient phase relationship, which
results in a predominantly downward wake (movie S2),
and contrasts with the inefficient wake (movie S1), in
which the stop/start vortices are maintained.
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Caution must be applied when interpreting the
biological significance of the above observations.
Suggesting an evolutionary advantage to either two-
winged or four-winged forms is unwise, considering the
success and diversity of the true flies (Diptera), and yet
the maintenance of the four-winged form by dragonflies
since the Carboniferous. However, in terms of engin-
eering, the findings presented here may be particularly
valuable. Any energetic benefit from four-winged
flapping would be of great interest in the field of
biomimetic aircraft design (Stafford 2007) because
flapping-winged aircraft are challenged by the high
power requirements of flapping flight (Ellington 1999).
Appropriately phased four-winged flapping, analogous
to dragonfly flight, may thus present one aerodynamic
trick to reduce these power requirements and improve
the endurance of the next generation of flapping micro
air vehicles.

This study was supported by the Wellcome Trust (J.R.U.)
and BMBF Biofuture grant 0311885 (F.-O.L.).
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