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The epidermal growth factor receptor (EGFR) plays an

essential role during development and diseases including

cancer. Lamellipodin (Lpd) is known to control lamelli-

podia protrusion by regulating actin filament elongation

via Ena/VASP proteins. However, it is unknown whether

this mechanism supports endocytosis of the EGFR. Here,

we have identified a novel role for Lpd and Mena in

clathrin-mediated endocytosis (CME) of the EGFR. We

have discovered that endogenous Lpd is in a complex

with the EGFR and Lpd and Mena knockdown impairs

EGFR endocytosis. Conversely, overexpressing Lpd sub-

stantially increases the EGFR uptake in an F-actin-depen-

dent manner, suggesting that F-actin polymerization is

limiting for EGFR uptake. Furthermore, we found that

Lpd directly interacts with endophilin, a BAR domain

containing protein implicated in vesicle fission. We

identified a role for endophilin in EGFR endocytosis,

which is mediated by Lpd. Consistently, Lpd localizes to

clathrin-coated pits (CCPs) just before vesicle scission and

regulates vesicle scission. Our findings suggest a novel

mechanism in which Lpd mediates EGFR endocytosis via

Mena downstream of endophilin.
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Introduction

Lpd and RIAM, the two mammalian proteins of the MIG10-

RIAM-Lpd (MRL) protein family, harbour several Ena/VASP-

binding sites (Krause et al, 2004; Lafuente et al, 2004). Ena/

VASP proteins directly interact with actin to promote the

formation of longer, less branched filaments by antagonizing

capping activity (Krause et al, 2003; Pula and Krause, 2008).

In contrast, N-WASP activates the Arp2/3 complex to nucleate

branched actin filaments (Chesarone and Goode, 2009).

Lpd recruits Ena/VASP proteins to the leading edge of cells

thereby regulating lamellipodia protrusion, dorsal ruffling of

fibroblasts, axon extension, and branching of neurons (Krause

et al, 2004; Michael et al, 2010).

Although F-actin polymerization is required for endo-

cytosis in yeast, a role for the actin cytoskeleton during

clathrin-mediated endocytosis (CME) in mammalian cells is

controversial (Lamaze et al, 1997; Fujimoto et al, 2000; Yarar

et al, 2005; Boucrot et al, 2006; Ferguson et al, 2009; Galletta

and Cooper, 2009; Wu et al, 2010; Boulant et al, 2011; Taylor

et al, 2011; Anitei and Hoflack, 2012). In support of a role of

F-actin in CME it has been reported that BAR domain-

containing proteins such as endophilin directly bind to the

plasma membrane to sense or induce membrane curvature

and cooperate with the actin cytoskeleton during membrane

invagination (Yarar et al, 2005; Ferguson et al, 2009; Wu et al,

2010; Suetsugu and Gautreau, 2012) and scission (Itoh et al,

2005; Yarar et al, 2005; Tsujita et al, 2006).

Furthermore, branched F-actin structures, reminiscent of

Arp2/3 nucleated branched arrays in lamellipodia, have

been visualized at clathrin-coated pits (CCPs) (Collins et al,

2011). Fittingly, the Arp2/3 activator N-WASP contributes to

epidermal growth factor receptor (EGFR) endocytosis (Kessels

and Qualmann, 2002; Merrifield et al, 2004; Benesch et al,

2005). In lamellipodia, the length and branching of actin

filaments are antagonistically regulated by the Arp2/3

complex and Ena/VASP proteins (Krause et al, 2003; Pula

and Krause, 2008). Mena but not other Ena/VASP proteins

have been implicated in EGF-dependent breast cancer

invasion and metastasis, however, how Mena is linked to

the EGFR is unknown (Philippar et al, 2008). Further-

more, Lamellipodin and proteins regulating elongation of

actin filaments such as Mena have not been implicated in

endocytosis.

Here, we show that Lpd forms protein complexes with

endophilin and the EGFR and discovered direct interactions

that link endophilin to Lpd-Ena/VASP. We provide the novel

mechanistic insight that endophilin, Lpd, and Mena regulate

EGFR endocytosis and that Lpd’s function in this process

requires Ena/VASP interaction and F-actin. Actin polymeriza-

tion may support membrane invagination and scission during

endocytosis. Here, we provide good evidence that Lpd is

recruited to CCPs just before scission. We have identified a

unique pathway in which Lamellipodin functions down-

stream of endophilin to regulate the F-actin cytoskeleton via

Mena to support CCP scission during EGFR endocytosis.

Results

Using total internal reflection fluorescence (TIRF) micro-

scopy, we observed that EGFP-Lpd localizes not only to
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protruding lamellipodia and filopodia (Krause et al, 2004) but

also to rapidly disappearing spots at the plasma membrane

reminiscent of CCPs (Supplementary Movie S1). To identify

proteins that may link Lpd with regulators of endocytosis, we

conducted a proteomic screen of a human fetal brain protein

array with in vitro translated, 35S-labelled full length Lpd as

the bait (Supplementary Figure S1A and B). Interestingly,

several positive hits contained the SH3 domain of endophilin

A1 (Endo1, SH3GL2) and endophilin A3 (Endo3, SH3GL3)

but were N-terminally truncated. Members of the mammalian

endophilin A family, which includes the additional isoform

endophilin A2 (Endo2, SH3GL1), contain an N-terminal

N-BAR domain with membrane curvature-generating/

sensing properties, a C-terminal SH3 domain (Supplementary

Figure S1C), and have been implicated in the regulation

of vesicle endocytosis (Ringstad et al, 1997; Schuske et al,

2003; Verstreken et al, 2003; Chang-Ileto et al, 2011; Milosevic

et al, 2011).

SH3 domains bind to specific proline-rich peptides and

there are several putative SH3-binding sites located in the

C-terminus of Lpd and RIAM. To test whether the endophilin

SH3 domain mediates the interaction with Lpd and whether

it also binds RIAM, we performed pull-down assays from

lysates of NIH/3T3 cells with purified GST-SH3 domains of

each endophilin isoform. Lpd (Figure 1A) but not RIAM

(Supplementary Figure S1D) was pulled down by all endo-

philin SH3 domains suggesting an SH3 domain-mediated

interaction of endophilin specifically with Lpd. Furthermore,

co-immunoprecipitation of endogenous Lpd and endophilin

A3 indicates that Lpd is indeed a novel binding partner of

endophilin in mammalian cells (Figure 1B; see Supplementary

Figure S1E for antibody specificity).

As described previously, overexpression of endophilin A3

induces membrane tubulation (Ferguson et al, 2009)

(Figure 1E), while endophilins A1 and A2 localize to CCPs

(Perera et al, 2006) (Figure 1C and D). We individually co-

expressed the GFP-endophilin isoforms with mCherry-Lpd in

HeLa cells and used TIRF microscopy to selectively analyse

whether Lpd colocalizes with endophilin at the plasma

membrane. We observed colocalization of Lpd with endophi-

lin A1 (Figure 1C), A2 (Figure 1D), and A3 (Figure 1E) in

83%, 71%, and 93% of the cells, respectively (Figure 1F). As

expected, the Lpd-related protein RIAM did not colocalize

with endophilin (not shown).

To identify the part of Lpd that interacts with the SH3

domain of endophilin, we generated different truncation

mutants of Lpd tagged with mCherry (Figure 2A) and co-

expressed them with GFP-endophilin A3 in HeLa cells. We

scored colocalization of both proteins in cells in which the

expression of endophilin A3 caused membrane tubulation. As

expected, we did not observe colocalization of the two

C-terminal truncation mutants of Lpd (Lpd-N1, Lpd-N2)

with endophilin A3, as these do not contain SH3 domain-

binding sites (Figure 2B and C). However, all N-terminal
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Figure 1 Lamellipodin and endophilin interact in cells. (A) Pull down of Lpd from NIH/3T3 cell lysate using GST-tagged SH3 domains of
endophilin A1 (Endo1), endophilin A2 (Endo2), and endophilin A3 (Endo3) or GST as a control. (B) IP of endophilin A3 from NIH/3T3 cell
lysate using Endo3-specific antibodies or control IgG. (A, B) The western blots were probed with anti-Lpd antibodies. A representative blot
from three independent experiments is shown. (C–E) HeLa cells expressing mCherry-Lpd and (C) Endo1-GFP, (D) Endo2-GFP, or (E) Endo3-
GFP were imaged using TIRFM. Single colour (magnified square) and merged images of a representative cell are shown. Scale bar: 30mm (left
image) and 5mm (right image). (F) mCherry-Lpd colocalization with Endo1-GFP, Endo2-GFP, and Endo3-GFP was scored in at least 30 cells
each from 3 independent experiments. Lpd was considered to colocalize when it overlapped with the majority of endophilin spots/tubules.
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truncated Lpd constructs containing proline-rich regions co-

localized with endophilin A3 (Figure 2B and C), suggesting

that the endophilin SH3 domain binds to various proline-rich

regions in the Lpd sequence. To investigate whether Lpd and

endophilin interact directly, fragments of Lpd covering the

whole C-terminus were fused to GST (Figure 2A). In a Far

Western assay, the purified GST-Lpd fusion proteins were

overlaid with the purified SH3 domain of each endophilin

isoform fused to maltose-binding protein (MBP). In agree-

ment with our colocalization data, the MBP-endophilin A1,

A2, and A3-SH3 domains bound to all Lpd constructs

containing SH3 domain-binding sites (Figure 3A–C). MBP

appeared to non-specifically bind to the highly charged

C-terminal-most sequence of Lpd (Figure 3D), although it

did not bind GST alone, which served as the negative control

(Figure 3A–C). This indicates that all endophilin SH3 do-

mains can interact directly with several proline-rich regions

within Lpd.

To determine the specific endophilin SH3 domain-binding

sites in Lpd, we designed a SPOTS scan peptide array with

consecutive 12mer peptides that overlap each other by three

amino acids and cover the complete C-terminus of Lpd.
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Figure 2 Endophilin colocalizes with the C-terminus of Lamellipodin at induced membrane tubules. (A) Full-length (FL) and truncation
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5 mm (right image). (C) Endo3-GFP colocalization with different mCherry-Lpd truncation mutants (see B) was scored in at least 25 cells from 3
independent experiments. Lpd was considered to colocalize when it overlapped with the majority of Endo3 tubules.
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We overlaid this SPOTS scan array with the purified MBP-SH3

domain of endophilin A2 that is the predominant isoform in

non-neuronal cells (Ringstad et al, 1997). Detection of

MBP revealed that endophilin A2 binds directly to 10 SH3

domain-binding sites within Lpd (Figure 3E; Supplementary

Figure S2A and B) and suggests that Lpd might simulta-

neously bind several endophilin proteins, which assemble

at invaginating membrane tubules during the highly orga-

nized endocytosis process.

Taken together, we found that the endophilin SH3 domain

directly interacts with 10 potential SH3-binding sites in the

C-terminus of Lpd, both proteins colocalize, and form a

complex with each other in cells.

The EGFR is mainly internalized via CME upon exposure

to physiological levels of EGF (2 ng/ml) (Lund et al, 1990;

Vieira et al, 1996; Huang et al, 2004; Sigismund et al, 2008).

Endophilin has been suggested to function in EGFR

endocytosis and is recruited to activated EGFR complexes

(Soubeyran et al, 2002), but its role has not been tested

directly. Because endogenous Lpd co-immunoprecipitates

with endophilin (Figure 1B) and both colocalize at the

plasma membrane (Figure 1C–E), we hypothesized that

also Lpd might form a complex with the EGFR and localize

to CCPs. TIRF microscopy revealed that mCherry-Lpd and

EGFR-GFP do indeed colocalize at the plasma membrane in

clusters resembling CCPs (Figure 4A). We tested whether Lpd

interacts with the EGFR by overexpressing EGFR-GFP in

HEK293 cells and immunoprecipitation of endogenous Lpd.

Probing of the precipitates with anti-GFP antibodies showed a

co-immunoprecipitation with the specific Lpd antibody but
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not the control IgG (Figure 4B). We also observed co-immu-

noprecipitation of endogenous Lpd and EGFR in A431 (Figure

4C and D) and in HeLa cells (Figure 4E and F), which

suggests that the actin cytoskeletal regulator Lpd and the

EGFR form a protein complex in cells.

In addition, we detected colocalization of GFP-Lpd-positive

clusters with mRFP-clathrin light chain (Clc) at CCPs

(Figure 4G). On average 28% of clathrin spots colocalized

with Lpd, whereas 53% of Lpd-positive spots colocalized

with clathrin (Figure 4G), suggesting that Lpd is dynamically

recruited to CCPs. Since Lpd functions by recruiting the

actin cytoskeleton regulatory Ena/VASP proteins (Krause

et al, 2004; Michael et al, 2010), we tested whether GFP-

Mena and GFP-VASP also colocalizes with mRFP-Clc at

CCPs and we found that this is indeed the case (Figure 4H;

Supplementary Figure S3A and B; Supplementary Movie S2).

On average 29% of clathrin spots colocalized with Mena,

whereas 31% of Mena spots colocalized with clathrin

(Figure 4H). To analyse whether Lpd dynamically localizes

to CCPs, we quantified Lpd recruitment during CCP scission

in TIRFM movies. This analysis revealed that Lpd-GFP colo-

calized with 57% of mRFP-Clc labelled CCPs shortly before

their scission (Figure 4I and J; Supplementary Movie S3).

These data led us to hypothesize that Lpd and Ena/VASP

proteins may regulate the actin cytoskeleton at CCPs to

support CME of the EGFR.

However, the role of the actin cytoskeleton in CME is

controversial and whether actin polymerization is required

for EGFR uptake is unknown. To test this, we used an ELISA-

based EGFR internalization assay in HeLa cells (Figure 5A).

We assessed the percentage of EGFR uptake in cells after

F-actin depolymerization with the G-actin sequestering drug

Latrunculin B (Lat B) or with DMSO as a control. We

observed that blocking F-actin polymerization upon physio-

logical EGF stimulation decreased the uptake of the EGFR by

20% (Figure 5B) and 38% at higher EGF concentrations

(Supplementary Figure S3C).

Since Lpd regulates the actin cytoskeleton by recruiting

Ena/VASP proteins (Krause et al, 2004; Michael et al, 2010),

we hypothesized that Lpd and Ena/VASP might regulate

EGFR endocytosis. We first assessed the effect of Lpd over-

expression on EGFR endocytosis. Surprisingly, overexpression

of Lpd-GFP substantially increased EGFR endocytosis by

51% at 2 ng/ml (Figure 5C) and 27% at 100 ng/ml EGF

(Supplementary Figure S3D) compared to a GFP-only control.

To verify the function of Lpd for EGFR internalization, we

efficiently knocked down Lpd expression with three Lpd-

specific shRNAs (Supplementary Figure S3E). We observed

a non-significant reduction in EGFR endocytosis by B56%

after 2 min stimulation with 2 ng/ml EGF in Lpd knock-

down cells (Supplementary Figure S3F). After 5 or 20 min

stimulation, EGFR endocytosis is significantly decreased by

B25% at both 2 ng/ml (Figure 5D and E) and 100 ng/ml

(Supplementary Figure S3G) of EGF.

CME of the EGFR only occurs after EGF stimulation,

however, clathrin-independent mechanisms may also ac-

count for some of the internalized EGFRs under certain

circumstances (Lund et al, 1990; Yamazaki et al, 2002;

Sigismund et al, 2005; Orth et al, 2006) and many other

receptors including the transferrin receptor are taken up

by constitutive CME mechanisms (Warren et al, 1997;

Johannessen et al, 2006). Fluorescently labelled transferrin

uptake was not affected by Lpd knockdown in HeLa cells in

an imaging-based assay (Supplementary Figure S4A and B).

To explore the function of Ena/VASP proteins in CME of the

EGFR, we efficiently knocked down Mena or VASP expression

with two independent Mena or VASP-specific shRNAs, re-

spectively (Supplementary Figure S5A). Interestingly, knock-

down of Mena but not VASP decreased EGFR endocytosis by

up to 58% after 5, 10, and 15 min stimulation with 2 ng/ml

EGF (Figure 5F and G; Supplementary Figure S5B and C).

Thus, these data show that Lpd, Mena, and F-actin con-

tribute specifically to CME of the EGFR (Figure 5B–G),

suggesting that Lpd may regulate EGFR endocytosis via

Mena and F-actin.

To test this further, we overexpressed Lpd-GFP or GFP with

or without simultaneous addition of Lat B. Lamellipodin

overexpression did not increase EGFR endocytosis when

actin polymerization was inhibited (Figure 6A and B),

indicating that Lpd indeed regulates EGFR endocytosis via

F-actin.

Since Lpd regulates the actin cytoskeleton via Ena/VASP

proteins, Mena localizes at CCPs, and Mena is required for

EGFR endocytosis (Figures 4H, 5F, and G), we also investi-

gated whether the function of Lpd for EGFR internalization

depends on its interaction with Mena. In contrast to Lpd-GFP,

Lpd-F/A-GFP, a mutant of Lpd in which all seven Ena/VASP-

binding sites had been mutated (Krause et al, 2004), did not

increase EGFR endocytosis (Figure 6C and D). Taken together,

our data identify an important role of F-actin polymerization

for EGFR uptake and suggest that Lpd regulates F-actin-

dependent endocytosis of the EGFR via Mena.

Figure 4 Lamellipodin is recruited to CCPs and interacts with the EGFR. (A) HeLa cells expressing mCherry-Lpd and EGFR-GFP were imaged
using TIRFM. Single colour (magnified square) and merged images of one representative cell are shown. Scale bar: 30mm (left image) and 5mm
(right image). (B) IP of EGFR from HEK-293 cells overexpressing EGFR-GFP using Lpd-specific antibodies or IgG control. EGFR was detected
using anti-GFP antibodies (left panels). Reprobe of the same blot with Lpd-specific antibodies (right panels). (C, D) Co-IP of endogenous EGFR
and Lpd from A431 cell lysate using Lpd (C) or EGFR-specific antibodies (D) or IgG control. EGFR and Lpd were detected using specific
antibodies. (E, F) Co-IP of endogenous EGFR and Lpd from HeLa cell lysate using Lpd (E) and EGFR-specific antibodies (F) or IgG control. Cells
were stimulated with 2 ng/ml EGF (þ ) for 5 min or not stimulated (� ). (B–F) A representative blot each from at least three independent
experiments is shown. (G, H) HeLa cells expressing mCherry-Lpd and (G) GFP-Lpd or (H) GFP-Mena and mRFP-Clc were imaged using TIRFM.
Single colour (magnified square) and merged images of one representative cell are shown. (G, H) Scale bar: 30 mm (G) and 10mm (H) (left
image) and 5mm (G) and 2 mm (H) (right image). (G, H) Quantification of the percentage of colocalization of mRFP-Clc with Lpd-GFP (Clathrin
versus Lpd) (G) or GFP-Mena (Clathrin versus Mena) (H) and Lpd-GFP with mRFP-Clc (Lpd versus Clathrin) (G) or GFP-Mena (Mena versus
Clathrin) (H). Each time point of TIRF movies from four cells were analysed containing on average 850 Clc-positive and 450 Lpd-positive spots
each. (I, J) Dynamics of Lpd-GFP and mRFP-Clc in HeLa cells was assessed every 5 s using TIRFM. Single colour and merged images of an area
of a representative cell are shown. Arrows show recruitment of Lpd-GFP to mRFP-Clc shortly before scission. Scale bar: 1 mm (see also
Supplementary Movie S3). (J) Quantification of the percentage of scission events of CCPs containing mRFP-Clc and Lpd-GFP. In total, 700
scission events of 3 different cells were analysed for each experiment.
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Both endophilin and Lpd form protein complexes with

the EGFR (Figure 4B–F) (Soubeyran et al, 2002) and Lpd

regulates EGFR endocytosis (Figure 5D and E; Supplementary

Figure S3E–G). Therefore, we hypothesized that endophilin

regulates EGFR internalization via Lpd. To test this, we first

assessed the percentage of EGFR uptake in HeLa cells over-

expressing Endo3-GFP or GFP as a control. We observed that

overexpression of Endo3-GFP significantly increased EGFR

uptake by B40% at physiological and high concentrations

of EGF (Figure 6E and F). This is a similar increase in EGFR
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uptake as induced by overexpression of Lpd-GFP (Figure 5C

Supplementary Figure S3D). We then examined whether the

function of endophilin in EGFR endocytosis is mediated via

Lpd by overexpressing GFP-endophilin A3 or GFP in combi-

nation with Lpd-specific or control shRNA. Overexpression of

GFP-endophilin A3 significantly increased EGFR uptake in the

presence of the control shRNA but not when the Lpd-specific

shRNA was expressed (Figure 6E and F), suggesting that

endophilin functions in EGFR endocytosis and this is

mediated by Lpd.

Since Lpd functions downstream of endophilin and links the

actin cytoskeleton with EGFR endocytosis, we explored

whether Lpd regulates the actin cytoskeleton to support

membrane invagination or scission using mouse embryonic

fibroblasts lacking all dynamin isoforms (DKO¼ dynamin1/2

KO MEFs) (Ferguson et al, 2009). In the absence of dynamin,

membrane scission is reduced, resulting in an accumulation of

arrested CCPs with long tubular necks that contain endophilin,

N-WASP, a-adaptin, and F-actin (Figure 7A and B, and not

shown) (Ferguson et al, 2009). We observed that endo-

genous Lpd (Figure 7C) and Mena (Figure 7D) also colocalize

with these F-actin clusters at CCPs. Treatment of these

cells with Lat B results in the conversion of long tubular

necks into short, wide necks, suggesting that actin poly-

merization supports both membrane invagination and

scission (Ferguson et al, 2009). We reasoned that the

absence of a protein that regulates the actin cytoskeleton

to drive membrane invagination would decrease the density
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of arrested CCPs, whereas knockdown of a protein that

regulates the actin cytoskeleton to drive scission would

increase the density of arrested CCPs. Interestingly, knock-

down of Lpd in the DKO MEFs significantly increased the

number of arrested CCPs per mm2, indicating that Lpd

regulates the actin cytoskeleton to support vesicle scission

(Figure 7E and F). To further explore the role of Lpd in CCP

scission during EGFR endocytosis, we examined Lpd knock-

down and control HeLa cells after starvation and stimulation

with 2 ng/ml EGF for 2 min by transmission electron micro-

scopy. We observed more invaginated, omega-shaped, and

tubulated CCPs in Lpd knockdown cells compared to control

cells (Figure 7G) further supporting a role for Lpd in CCP

scission.
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Taken together, our data suggest that downstream of

endophilin, Lpd and Mena regulate the actin cytoskeleton

to support membrane scission during CME of the EGFR.

Discussion

In this study, we have identified Lpd as a novel binding

partner of the endophilin SH3 domain and a mediator of

endophilin’s function. Endophilin is recruited together with

Arp2/3 and dynamin at late stages of CCP invagination

just before scission (Perera et al, 2006; Taylor et al, 2011).

The N-BAR domain senses narrow tube diameters similar to

the neck of a clathrin-coated bud and is sufficient for the

recruitment of endophilins to these sites (Milosevic et al,

2011). The N-BAR domain is composed of an N-terminal

amphipathic helix, which supports membrane scission via a
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shallow hydrophobic insertion into the plasma membrane,

and a BAR domain that can stabilize or induce a narrow

neck in vitro (Farsad et al, 2001; Gallop et al, 2006; Masuda

et al, 2006; Boucrot et al, 2012; Mim et al, 2012). The SH3

domain of endophilin A2 directly interacts with 10 proline-

rich peptides that are widely distributed throughout the

C-terminus of Lpd. The motifs that are recognized by the

endophilin A2 SH3 domain have an unconventional

consensus sequence, in agreement with phage display and

peptide mutagenesis results from the known endophilin A2

SH3-binding sites in synaptojanin and dynamin (Cestra et al,

1999). Taken together, this suggests that Lpd is recruited by

endophilin to CCPs.

What is the function of Lpd downstream of endophilin?

In yeast, the endophilin orthologue Rvs167 is required for

vesicle scission (Kaksonen et al, 2005). Endophilin recruits

synaptojanin to facilitate membrane fission and vesicle

uncoating (Schuske et al, 2003; Verstreken et al, 2003;

Chang-Ileto et al, 2011; Milosevic et al, 2011). Furthermore,

endophilin recruits dynamin and thereby supports membrane

scission (Ringstad et al, 1997). Endophilin had also been

observed before at 50–60% of CCPs just before scission

(Perera et al, 2006; Taylor et al, 2011). We detected Lpd at a

much higher percentage of scission events than other

regulators of F-actin such as N-WASP, which localized only

to 20% of scission events (Taylor et al, 2011). The actin

cytoskeleton is essential for endocytosis in yeast but its role

in mammalian CME is controversial. However, good evidence

has been presented that actin polymerization promotes

membrane invagination as well as scission (Galletta and

Cooper, 2009; Anitei and Hoflack, 2012). Recently, a

branched actin network, reminiscent of the actin network

in lamellipodia, has been observed at CCPs supporting the

hypothesis that actin polymerization plays a role in CME

(Collins et al, 2011). However, it is unknown whether actin

polymerization supports EGFR uptake. We show that 25% of

clathrin-mediated EGFR endocytosis depends on F-actin

polymerization in the presence of dynamin. The actin

ultrastructure in lamellipodia is controlled by a balance of

Arp2/3 activity increasing branching and Lpd-Ena/VASP

activity increasing the length of actin filaments (Chesarone

and Goode, 2009). The Arp2/3 activator N-WASP contributes

to EGFR endocytosis (Kessels and Qualmann, 2002;

Merrifield et al, 2004; Benesch et al, 2005; Innocenti et al,

2005). However, neither Lpd nor Ena/VASP has thus far been

implicated in endocytosis. We show that endophilin can

directly interact with Lpd (Figures 1 and 2), and that Lpd

mediates endophilin’s function in this process in an

Ena/VASP and F-actin-dependent manner. We observed a

dramatic increase in EGFR uptake upon endophilin or Lpd

overexpression, suggesting that endophilin-Lpd regulated

F-actin polymerization plays an important role in endocytosis

of the EGFR. Furthermore, knockdown of Lpd and Mena

(Figure 5) or the absence of N-WASP (Benesch et al, 2005;

Innocenti et al, 2005) results in inhibition of EGFR uptake

that is comparable to inhibition of F-actin polymerization.

This suggests that the function of N-WASP-Arp2/3 and Lpd-

Ena/VASP is coordinated to regulate formation of a branched

actin network to support endocytosis.

Our data suggest that specifically Mena but not

VASP regulates EGFR endocytosis (Figure 5F and G;

Supplementary Figure S5A–C). This is intriguing since

Mena but not other Ena/VASP proteins have been implicated

in EGF-dependent breast cancer invasion and metastasis.

However, how Mena is linked to the EGFR is unknown

(Philippar et al, 2008), and our combined data suggest that

Lpd is the missing link between the EGFR and Mena.

Recently, it has been reported that formation of PI(3,4)P2

spatiotemporally controls the maturation of late-stage CCPs

towards scission (Posor et al, 2013). Importantly, Lpd is one

of the few proteins harbouring a PH domain that is specific

for PI(3,4)P2 (Krause et al, 2004). The increase in the number

of arrested CCPs in the absence of PI(3,4)P2, Lpd, and

dynamin (Figure 7) (Posor et al, 2013; Ferguson et al, 2009)

and the increase in invaginated, omega-shaped, and

tubulated CCPs in the Lpd knockdown cells (Figure 7) to-

gether with endophilin’s known role in regulating scission

indicate that Lpd functions downstream of endophilin and

PI(3,4)P2 to support membrane scission.

In summary, our results imply that endophilin and Lpd

cooperate to regulate the F-actin cytoskeleton via Mena to

support vesicle scission during endocytosis of the EGFR.

Materials and methods

Molecular biology
GFP-Lpd (Krause et al, 2004), mCherry-Lpd: full-length human Lpd
(AY494951) in pCDNA3.1-mCherry-DEST which was generated by
subcloning mCherry cDNA and the Gateway destination cassette
(Invitrogen) into pCDNA3.1 (Invitrogen). Lpd-GFP or LpdF/A-GFP:
Phenylalanine to alanine mutation in all seven Ena/VASP-binding
sites (Krause et al, 2004) were introduced by site-directed
mutagenesis (Quickchange, Agilent) into full-length human Lpd
(AY494951) in pENTR3C (Invitrogen). Lpd and LpdF/A were
transferred to pCAG-DEST-GFP, which was generated by
subcloning the Gateway destination cassette (Invitrogen) into
pCAG-GFP (Matsuda and Cepko, 2004) (kind gift of C Cepko,
Harvard Medical School, Cambridge, USA; Addgene 11150). pBS-
Lpd: full-length human Lpd (AY494951) in pBlueScript-II-SK(þ )
(Agilent). mRFP-Clc (Tagawa et al, 2005) (Addgene 14435) and
EGFR-GFP were a kind gift from Dr Ari Helenius (ETH Zuerich) and
Dr A Sorkin (University of Pittsburgh), respectively. pMSCV-GFP-
Mena (Bear et al, 2000); pEGFP-VASP (mouse VASP cDNA cloned
into BamHI-EcoRI of pEGFP-C1; Clontech); Endophilin A1-GFP:
human endophilin A1 in pDONR201 (HSCD00000899, Harvard
Institute of Proteomics) was transferred into pDEST-EGFP, which
was generated by subcloning the destination cassette (Invitrogen)
into pEGFP-N1 (Clontech). Rat full-length endophilin A2-GFP was a
kind gift from Dr Pietro De Camilli (Yale University, USA).
Endophilin A3-GFP: the endophilin A3 cDNA (IMAGE5197246-
AK68-m23) was cloned into pENTR11 (Invitrogen) and transferred
to pDEST-EGFP. MBP or GST-endophilin A1-SH3, endophilin A2-
SH3, endophilin A3-SH3: SH3 domain of endophilin A 1–3 in pMAL-
c2g (New England Biolabs) or pGEX-6P1 (GE-Healthcare). mCherry-
Lpd truncation constructs: amino acid (aa) numbering according to
GenBank AAS82582 Lpd-N1 (aa1–592), Lpd-N2 (aa242–592), Lpd-
C1 (aa593–727), Lpd-C7 (aa724–1092), Lpd-C8 (aa1093–1250) were
cloned into pENTR3C and transferred to pCDNA3.1-mCherry-DEST
by Gateway recombination. GST-Lpd truncation constructs: Lpd-C1
(aa545–728), Lpd-C2 (aa727–791), Lpd-C3 (aa791–889), Lpd-C4
(aa890–1062), Lpd-C5 (aa1030–1132), Lpd-C6 (aa1125–1250) were
cloned into pGEX-6P1 (GE-Healthcare). Human Lpd, VASP, and
Mena-specific shRNA and scrambled control shRNA constructs in
pLL3.7puro (Rubinson et al, 2003): Lpd-1 (forward: 50-tgcgtca
aatcacagaaacgTTCAAGAGAcgtttctgtgatttgacgcTTTTTGGAAAGAATT
CG-30; reverse: 50-tcgaCGAATTCTTTCCAAAAAgcgtcaaatcacagaaacg
TCTCTTGAAcgtttctgtgatttgacgca-30); Lpd-2 (forward: 50-tgctctgaat
cagggagagattcaagagatctctccctgattcagagctttttggaaagaattcg-30; reverse:
50-tcgacgaattctttccaaaaagctctgaatcagggagagatctcttgaatctctccctgattca
gagca-30); Lpd-3 (forward: 50-tgaacaggcctctttgagtaTTCAAGAGAtactc
aaagaggcctgttctttttggaaagaattcg-30; reverse: 50-tcgacgaattctttccaaa
aagaacaggcctctttgagtaTCTCTTGAAtactcaaagaggcctgttca-30); Mena-1
(forward: 50-tGCAGCAAGTCACCTGTTATCTCGAAAGATAACAGGT
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GACTTGCTGCtttttggaaagaattcg-30; reverse: 50-TCGAcgaattctttccaa
aaaGCAGCAAGTCACCTGTTATCTTTCGAGATAACAGGTGACTTGCT
GCa-30); Mena-2 (forward: 50-TcgacaagagcagttagaaaTTCAAGAGAttt
ctaactgctcttgtcgTTTTTggaaagaattcg-30; reverse: 50-TCGAcgaattctt
tccAAAAAcgacaagagcagttagaaaTCTCTTGAAtttctaactgctcttgtcgA-30);
VASP-1 (forward: 50-tgagccaaactcaggaaagtTTCAAGAGAactttcctgagtt
tggctcTTTTTGGAAAGAATTCG-30; reverse: 50-tcgaCGAATTCTTT
CCAAAAAgagccaaactcaggaaagtTCTCTTGAAactttcctgagtttggctca-30;
VASP-2 (forward: 50-tgcgtccagatctaccacaattcaagagattgtggtagatctggac
gctttttggaaagaattcg-30; reverse: 50-TCGAcgaattctttccaaaaagcgtccagatc
taccacaatctcttgaattgtggtagatctggacgca-30). All constructs were veri-
fied by sequencing. Lpd ON-TARGETplus siRNA’s (J-043405-11,
J-043405-12) and control siRNA No 2 (Dharmacon).

Antibodies
Anti-Lpd pab 3917 (Krause et al, 2004), anti-RIAM pab 4612
(Lafuente et al, 2004), anti-Mena mab A351F7D9 (Lebrand et al,
2004), anti-VASP mab (IE273; Immunoglobe, Germany; Niebuhr
et al, 1997), anti-EGFR mab (Cancer Research UK), IP-specific anti-
EGFR mab (Cell Signaling), anti-alpha-adaptin mab clone AP6
(Thermo Scientific), anti-N-WASP rabbit mab clone 30D10 (Cell
Signaling); anti-endophilin A3 pab (S-15; Santa Cruz), anti-Hsc70
mab (B-6; Santa Cruz), anti-MBP mab (New England Biolabs); anti-
GAPDH mab (clone 6C5; Millipore); anti-GFP mab (Roche).

Cell culture and transfections
NIH/3T3, HEK293 cells (ATCC) and DKO MEFs (Ferguson et al,
2009) were grown in Dulbecco’s Modified Eagle Medium (DMEM),
10% fetal bovine serum (FBS) and 2 mM L-glutamine. HeLa cells
(ATCC) were grown in Minimum Essential Medium Eagle (MEM),
10% FBS, 1� Non-essential amino acids and 1 mM sodium
pyruvate. Cells were transfected using either Fugene HD or
X-tremeGENE 9 (Roche). HeLa cells expressing control-, Mena,
VASP, or Lpd-specific shRNAs were subjected to 3 days selection
with 1mg/ml Puromycin. Deletion of dynamin proteins in DKO
MEFs was induced by the addition of 4-hydroxy-tamoxifen to the
culture medium as described previously (Ferguson et al, 2009).

Pull down, immunoprecipitation, and western blotting
Lysates were prepared in lysis buffer (50 mM Tris–HCl, pH 7.4,
200 mM NaCl, 1% NP-40, 2 mM MgCl2, 10% glycerol, NaF, Na3VO4
and complete mini tablets without EDTA, Roche). Precleared lysate
was incubated with glutathione beads (GE Healthcare) or with
primary antibody or control IgG followed by protein A/G beads
(Alpha Diagnostics) and was washed with lysis buffer. Western
blotting was performed as described previously (Krause et al, 2004).
Secondary antibodies were goat anti-rabbit, goat anti-mouse and
rabbit anti-goat-HRP (Dako).

EGF stimulation and EGFR internalization assay
EGFR internalization assay was done as described previously
(Caswell et al, 2008) with slight variations. In brief: cells were
plated at 50% confluence and starved overnight (MEM, 0.2% FBS).
Cell-surface proteins were biotinylated with Sulfo-NHS-sulfo-SS-
Biotin (Pierce) for 30 min at 41C, washed with 1� PBS and
stimulated with 2 or 100 ng/ml EGF in starving medium for 2, 5,
10, 15, or 20 min. Remaining surface-bound biotin was removed by
washes with reduction buffer (50 mM glutathione, 75 mM NaCl,
10 mM EDTA, 1% BSA, 75 mM NaOH) followed by washes with
5 mg/ml iodoacetamide. Amount of internalized EGFR was
determined as the percentage of surface EGFR from the lysate of
cells by ELISA. Internalized, biotinylated EGFR was captured by
mouse-anti-human EGFR antibody (BD Pharmingen) and detected
by HRP-coupled streptavidin (GE Healthcare).

Immunofluorescence staining
Cells were plated on nitric acid-washed coverslips (Hecht-Assistant)
and fixed in 4% paraformaldehyde-PHEM (60 mM PIPES, 25 mM
HEPES, 10 mM EGTA, 2 mM MgCl2, 0.12 M sucrose). Cells were
permeabilized (1� PBS, 0.05% Triton X-100) for 10 min at room
temperature, unspecific binding sites blocked (1� PBS, 5% BSA)
for 1 h at room temperature. Antibodies were diluted in blocking
buffer and incubated for 30 min at 371C. Coverslips were mounted
onto glass slides (Menzel) using the ProLong gold antifade reagent
(Invitrogen). Secondary reagents were goat anti-rabbit or goat anti-

mouse Alexa Fluor-488 or -568 (Molecular Probes) and Phalloidin
Alexa Fluor-488 or -568 (Molecular Probes).

Microscopy and image analysis
Imaging was done using an Olympus IX-81 microscope equipped
with the Metamorph software, Sutter filter wheels, Photometrics
CascadeII 512B camera, � 20 UPlanFL, � 40 UPlanFL, � 60
PlanApoNA1.45, or � 100 UPlanApoS NA1.4 objectives, Cobolt
Jive (561 nm) and Calypso (491 nm) DPSS lasers and a TIRF
condenser (Till Photonics) or on a Nikon A1R microscope equipped
with an additional TIRF condenser, � 100 Nikon ApoTIRF1.49
objective, and Andor EMCCD camera. Immunofluorescence (IF)
imaging of DKO MEFs was done using a LSM510 confocal micro-
scope (Zeiss).

Quantification of the density of N-WASP spots in Figure 7E and F:
The N-WASP channel of dual N-WASP and F-actin images was
subjected to adaptive background correction in NIS Elements
(Nikon) using 2.0 degrees. Images were then imported into
Volocity (Perkin Elmer) and spots were detected using a ‘Find
Spots’ algorithm with � 99% minimum offset and bright radius of
1 pixel. The cell outline was obtained by automatic segmentation
using the actin channel and minimum standard deviation from
image mean of ‘0’ and a minimum object size of 5000 pixels2. The
number of spots detected per cell were tallied automatically and
used to calculate the mean number of spots per mm2.

Quantification of mRFP-Clc and Lpd-GFP spots in Figure 4G: Both
channels of live-cell TIRF movies were subjected to adaptive back-
ground compensation in NIS elements using 0.2 degrees and 0.5
degrees for mRFP-Clc and Lpd-GFP channels, respectively, before
being filtered with a 3� 3 median filter. All frames of a movie were
then imported into Volocity for automatic object segmentation
based on at least 0.1 standard deviations from the image mean
with iterative size and shape exclusions. The total number of mRFP-
Clc objects, Lpd-GFP objects, as well as the fraction of colocalized
objects were tallied for each time point of each movie and used to
calculate the mean of each group per cell.

Quantification of scission events in Figure 4I–J and
Supplementary Figure S3A and B: TIRF images were subjected to
background subtraction with 0.1 degrees using NIS Elements before
being imported into Volocity and subjected to a fine ‘remove noise’
filter to improve the signal-to-noise ratio. Three 100mm2 ROIs were
chosen for each cell in areas exhibiting dynamic activity of discrete
mRFP-Clc spots. Each region was observed for 10 min with frames
every 5 s. The disappearances of individual spots that were present
for 42 frames were observed for each channel. In total, between
150 and 350 disappearances per cell were analysed. Spots showing
colocalization of mRFP-Clc together with Lpd-GFP or VASP-GFP
before mRFP-Clc disappeared are presented as the percent of total
disappearances±s.e.m.

Transferrin uptake assay
Puromycin selected control shRNA or Lpd knockdown HeLa cells
were plated on coverslips, serum starved for 1 h in phenol red-free
MEM, 5 mg/ml BSA and then incubated with 25mg/ml Alexa488-
transferrin (Invitrogen) for 10 min. Cells were washed twice with
ice-cold PBS and once with acid wash buffer (Na-Acetate 0.2 M;
NaCl 0.2 M; pH 5.3) for 2 min followed by two PBS washes and
fixation in 4% PFA. To measure transferrin receptors on the cell
surface, the cells were incubated with 25mg/ml Alexa488-transfer-
rin (Invitrogen) for 45 min on ice, washed three times with PBS and
fixed with 4% PFA. Alexa488 in control and Lpd knockdown cells
were imaged on a widefield microscope using the same exposure
settings, the outline of the cells hand traced and the intensity per
area quantified using Metamorph.

Transmission electron microscopy
Puromycin selected control shRNA or Lpd knockdown HeLa cells
were plated in 15 cm dishes, serum starved o/n, stimulated for
2 min with 2 ng/ml EGF, washed with ice-cold PBS, 0.1 M cacody-
late buffer, and fixed with 2.5% glutaraldehyde in 0.1 M cacodylate
buffer. Cells were detached gently using a cell scraper, pelleted and
further processed for transmission electron microscopy as described
in Taylor et al (2012). Images of 20 cells each for control and
knockdown from two independent experiments were analysed by
blinded observers.
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Proteomic screen
Lpd was in vitro translated using 35S-methionin (Amersham), pBS-
Lpd and the TNT Quick coupled transcription/translation system
(Promega) and used to overlay a human fetal brain protein array
(hEX; Source Biosciences/ImaGenes) according to the instruction of
the manufacturer. Positive hits were detected using a STORM
Phosphorimager (Molecular Dynamics).

Far western blot and SPOTS scan array
Western blots of purified GST-Lpd fragments or custom-made
SPOTS scan peptide arrays (Cancer Research UK services) were
overlaid as described (Niebuhr et al, 1997) with purified MBP-
Endo1/2/3-SH3 or MBP and MBP was detected with anti-MBP
antibodies and the ECL kit (Pierce).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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