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Energy metabolic processes play important roles for tumor malignancy, indicating that related protein-coding genes and regulatory
upstream genes (such as long noncoding RNAs (lncRNAs)) may represent potential biomarkers for prognostic prediction. This
study will develop a new energy metabolism-related lncRNA-mRNA prognostic signature for lower-grade glioma (LGG)
patients. A GSE4290 dataset obtained from Gene Expression Omnibus was used for screening the differentially expressed genes
(DEGs) and lncRNAs (DELs). The Cancer Genome Atlas (TCGA) dataset was used as the prognosis training set, while the
Chinese Glioma Genome Atlas (CGGA) was for the validation set. Energy metabolism-related genes were collected from the
Molecular Signatures Database (MsigDB), and a coexpression network was established between energy metabolism-related
DEGs and DELs to identify energy metabolism-related DELs. Least absolute shrinkage and selection operator (LASSO) analysis
was performed to filter the prognostic signature which underwent survival analysis and nomogram construction. A total of 1613
DEGs and 37 DELs were identified between LGG and normal brain tissues. One hundred and ten DEGs were overlapped with
energy metabolism-related genes. Twenty-seven DELs could coexpress with 67 metabolism-related DEGs. LASSO regression
analysis showed that 9 genes in the coexpression network were the optimal signature and used to construct the risk score.
Kaplan-Meier curve analysis showed that patients with a high risk score had significantly worse OS than those with a low risk
score (TCGA: HR = 3:192, 95%CI = 2:182‐4:670; CGGA: HR = 1:922, 95%CI = 1:431‐2:583). The predictive accuracy of the risk
score was also high according to the AUC of the ROC curve (TCGA: 0.827; CGGA: 0.806). Multivariate Cox regression analyses
revealed age, IDH1 mutation, and risk score as independent prognostic factors, and thus, a prognostic nomogram was
established based on these three variables. The excellent prognostic performance of the nomogram was confirmed by calibration
and discrimination analyses. In conclusion, our findings provided a new biomarker for the stratification of LGG patients with
poor prognosis.

1. Introduction

Lower-grade gliomas (LGG) that include World Health
Organization (WHO) grade II and III diffuse gliomas are
common infiltrative brain tumors in adults [1]. Although
advances have been made for the treatment of LGG, includ-
ing neurosurgical resection, chemotherapy, and radiother-
apy, a considerable proportion of patients still experience
recurrence and malignant transformation to high-grade glio-
blastoma multiforme (GBM; WHO grade IV) [2], leading to

declines in their health-related quality of life [3] and eventual
death [2]. This heterogeneity in the prognosis of patients
with LGG highlights the necessity to develop effective bio-
markers to early stratify the patients at high risk for poor out-
comes and give preventative therapy.

In order to maintain the malignant characteristics (rapid
proliferation, migration, and invasion), tumor cells (includ-
ing gliomas) need to produce a large amount of energy [4].
It is well known that carbohydrate, lipid, and amino acid
metabolic processes are the main sources for the production
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of adenosine triphosphate (ATP) [5]. Therefore, the expres-
sion changes in genes involved in these metabolic processes
may be important molecular mechanisms for the progression
of gliomas, and the genes may represent potential biomarkers
for prognostic prediction. This theory has been demon-
strated by some scholars. For example, Qi et al. extracted
the fatty acid catabolic metabolism-related genes from
Molecular Signatures Database (MsigDB) and then identified
an 8-gene risk signature using the Least Absolute Shrinkage
and Selection Operator (LASSO) regression analysis based
on RNA-seq data from the Chinese Glioma Genome Atlas
(CGGA) dataset and The Cancer Genome Atlas (TCGA)
dataset. This risk signature was found to be an independent
prognostic factor for patients with all grade gliomas (CGGA:
hazard ratios ðHRÞ = 4:0044, 95%confidence intervals ðCIÞ
= 2:7634‐5:8028; TCGA: HR = 1:7382, 95%CI = 1:0577‐
2:8567) [6]. Wu et al. used the Cox proportional hazards
model to screen a prognostic signature from the differential
genes of lipid metabolism between LGG and GBM. Conse-
quently, a nine-gene signature was obtained as a classifier,
which was demonstrated to significantly distinguish the
overall survival (OS) between the high- and low-risk group
of CGGA and TCGA cohorts [7]. Univariate Cox regression
analysis performed by Zhao et al. generated a signature includ-
ing 45 glucose-related genes. This risk score was associated
with the OS of patients in the CGGA (HR = 2:293, 95%CI =
1:471‐3:576) training dataset and TCGA (HR = 1:227, 95%
CI = 1:000‐1:504) and GSE16011 (HR = 1:440; 95%CI =
1:016‐2:039) validation datasets [8]. Based on glioma datasets
from TCGA, REMBRANDT (Repository for Molecular Brain
Neoplasia Data), and GSE16011, Chen et al. established a gly-
colytic gene expression signature score by incorporating ten
glycolytic genes. A high risk score was reported to predict poor
prognosis for patients with GBM [9]. Zhou et al. obtained 587
energy metabolism-related genes (including 41 carbohydrate,
73 lipid, and 144 proteinmetabolisms) fromMsigDB and over-
lapped with the 463 differentially expressed genes between
LGG and GBM to develop a risk score. As a result, a 29-gene
signature was identified, and its predictive accuracy can reach
87.2% [10]. However, energy metabolism-related prognostic
biomarkers for LGG remain rarely reported.

In addition, long noncoding RNAs (lncRNAs), a class of
noncoding transcripts > 200 nucleotides in length, had also
been demonstrated to affect cancer progression by regula-
tion of the energy metabolism genes and then the related
processes [11]. For example, Cheng et al. identified that
highly expressed lncRNA X-inactive specific transcript
(XIST) may promote cell viability, migration, invasion,
and resistance to apoptosis by increasing glucose uptake,
with the mechanism referring to upregulation of glucose
transporters GLUT1 and GLUT3 [12]. The study of He
et al. revealed that upregulated lncRNA UCA1 may induce
glycolysis and invasion in glioma cells by competitively
binding to miR-182 and then influencing the downstream
target (fructose-2,6-biphosphatase) of miR-182 [13]. These
findings indicated that the metabolism-related lncRNAs
may also have underlying prognostic values for LGG; never-
theless, no studies focused on the lncRNA signature until
now. Thus, the goal of this study was to construct a new

energy metabolism-related lncRNA-mRNA prognostic sig-
nature for LGG patients.

2. Materials and Methods

2.1. Dataset Mining. Three datasets obtained from Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/
geo/), TCGA (https://gdc-portal.nci.nih.gov/; level 3), and
CGGA (http://www.cgga.org.cn; level 3) were included in
our study. GSE4290 in GEO was enrolled because it met
the following inclusion criteria: (1) studying RNA expression
profiles, (2) studying brain tissue samples, (3) the number of
samples more than 50, and (4) consisting of LGG (n = 76)
and normal controls (n = 23). GSE4290 was used for screen-
ing the differentially expressed RNAs (DERs). Samples of
TCGA (n = 520) and CGGA (n = 431) were eligible if they
(1) belonged to the LGG type and (2) provided the clinical
survival outcomes because TCGA was used as the training
set for constructing the prognosis model, while CGGA was
used as the validation set to confirm the prognosis value of
the established model.

2.2. Identification of Energy Metabolism-Related Genes. The
mRNAs and lncRNAs in the GSE4290 dataset were reanno-
tated by the HUGO Gene Nomenclature Committee (HGNC;
http://www.genenames.org/) that includes the standard
nomenclature for 4516 lncRNAs and 19,200 protein-coding
genes [14].

The Linear Models for Microarray Data (LIMMA)
method (version 3.34.7; https://bioconductor.org/packages/
release/bioc/html/limma.html) [15] in the Bioconductor R
package (version 3.4.1; http://www.R-project.org/) was used
to identify differentially expressed genes (DEGs) and lncRNAs
(DELs) between LGG and normal controls. The false
discovery rate ðFDRÞ < 0:05 and ∣logFCðfold changeÞ ∣ >1
served as the screening threshold. Clustering analysis was con-
ducted by the Pheatmap package (version: 1.0.8; https://cran
.r-project.org/web/packages/pheatmap) in R language.

Energy metabolism-related gene sets (REACTOME_ME-
TABOLISM_OF_AMINO_ACIDS_AND_DERIVATIVES,
REACTOME_METABOLISM_OF_CARBOHYDRATES,
and REACTOME_METABOLISM_OF_LIPIDS) were
collected from MSigDB (version 7.0; http://software
.broadinstitute.org/gsea/msigdb/). These genes were over-
lapped with the DEGs to obtain energy metabolism-related
DEGs.

2.3. Identification of Energy Metabolism-Related lncRNAs.
Energy metabolism-related lncRNAs were determined by
constructing a coexpression network between DELs and
energy metabolism-related DEGs. The coexpression pairs
were selected by calculation of Pearson correlation coefficients
(PCC) between lncRNAs and DEGs by cor.test function
(https://stat.ethz.ch/R-manual/R-devel/library/stats/html/cor
.test.html) in R. PCC > 0:6 revealed that a significant correla-
tion existed. The network was visualized in the Cytoscape soft-
ware (version 3.6.1; http://www.cytoscape.org/).

2.4. Function Enrichment Analysis. To illustrate the specific
metabolic processes involved of the lncRNAs in the network,
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function enrichment analysis was performed for the genes
coexpressed with lncRNAs using the Database for Annotation,
Visualization and Integrated Discovery (DAVID) (version 6.8;
http://david.abcc.ncifcrf.gov) [16] and Enrichr (https://amp
.pharm.mssm.edu/Enrichr/) [17]. Significant Gene Ontology
(GO) biological process terms and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways with p value < 0.05

were collected and visualized using the ggplot2 package (version
3.3.0; https://cran.r-project.org/web/packages/ggplot2) in R.

2.5. Signature Development and Validation. Based on the
TCGA data, univariate and multivariate Cox regression anal-
yses were sequentially performed to evaluate the prognostic
ability of energy metabolism-related DELs and DEGs in the
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Figure 1: Identification of energy metabolism-related differentially expressed RNAs between lower-grade gliomas and normal brain tissues in
the GSE4290 dataset. (a) Volcano plot to display the distribution of differentially expressed RNAs, which was performed by ggplot2. Green
dots were downregulated RNAs; red dots were upregulated RNAs; black dots were RNAs not differentially expressed. FC: fold change; FDR:
false discovery rate. (b) Heat map of differentially expressed RNAs, which was created by Pheatmap. Red indicated high expression; green
indicated low expression. (c) Venn diagram to display the overlap between differentially expressed protein-coding genes (DEGs) and
energy metabolism-related genes obtained from Molecular Signatures Database.
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coexpression network using “survival” package in R (version,
2.41-1; http://bioconductor.org/packages/survivalr/), with p <
0:05 tested by log-rank testing as the statistical threshold. A
Cox proportional hazards model based on the L1-penalized
regularization regression algorithm in the penalized package
(version, 0.9-5; http://bioconductor.org/packages/penalized/)
[18, 19] was subsequently conducted in DELs and DEGs still
significant after multivariate analysis to further screen the
optimal signature combination. The expression differences
of signature genes between LGG and GBM were subsequently
identified in GSE4290 (71 vs. 81), CGGA (443 vs. 249), and
TCGA (524 vs. 155) datasets via an unpaired t-test to verify
their specificity, with p < 0:05 set as a statistical difference.
Finally, the risk score was established as follows:

Prognostic risk score =∑βDERs × ExpDERs, where ExpDERs
is the expression levels of prognostic DERs and∑βDERs is the
prognostic coefficients of DERs after LASSO analysis.

The LGG patients were divided into the high-risk group
and low-risk group using the median risk score as the cut-
off. The Kaplan-Meier curve and receiver operating charac-
teristic (ROC) curve were used to assess the predictive ability
of the energy metabolism-related signature. These analyses
were performed for the training dataset (TCGA) and valida-
tion dataset (CGGA), respectively.

To validate if the risk score could be independent of other
clinicopathological parameters, univariate and multivariate
Cox regression analyses were performed using the training
dataset, followed by the stratification analysis for clinical vari-
ables with p < 0:05 in multivariate analysis. Furthermore, a
nomogram using the result of multivariate Cox regression
analysis was constructed to predict the 3-year and 5-year OS.
The performance of the nomogram was assessed by discrimi-
nation and calibration. The discrimination was determined by
the area under the curve (AUC) of the ROC curve and concor-
dance index (C-index). The calibration was evaluated by cali-
bration curves, which shows the agreement between the
predicted and observed survival probabilities.

3. Results

3.1. Identification of Energy Metabolism-Related DERs. A
total of 15,183 protein-encoding mRNAs and 576 lncRNAs
were annotated in three included datasets. Based on the
LIMMA method, 1613 mRNAs and 37 lncRNAs were found
to be differentially expressed between LGG and normal brain
tissues in the GSE4290 dataset (Figure 1(a)). Hierarchical
clustering analysis showed that LGG samples could be clearly
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Figure 2: Identification of energy metabolism-related differentially expressed lncRNAs based on their coexpression with differentially
expressed protein-coding mRNAs. Upregulated lncRNAs (square) and mRNAs (circle) were in red; downregulated lncRNAs (square) and
mRNAs (circle) were in green. The coexpression pairs between lncRNAs and mRNAs were selected by calculation of Pearson correlation
coefficients (PCC) by cor.test function. Only coexpression pairs with PCC > 0:6 were visualized.

4 BioMed Research International

http://bioconductor.org/packages/survivalr/
http://bioconductor.org/packages/penalized/


GO:0006024~glycosaminoglycan biosynthetic process

2 4 6
Count

8

GO:0006094~gluconeogenesis
GO:0006486~protein glycosylation

GO:0006533~aspartate catabolic process
GO:0006629~lipid metabolic process

GO:0006661~phosphatidylinositol biosynthetic process
GO:0006699~bile acid biosynthetic process

GO:0007584~response to nutrient
GO:0008652~cellular amino acid biosynthetic process

GO:0009725~response to hormone
GO:0016101~diterpenoid metabolic process

GO:0019083~viral transcription
GO:0030203~glycosaminoglycan metabolic process

GO:0030206~chondroitin sulfate biosynthetic process
GO:0030208~dermatan sulfate biosynthetic process

GO:0032869~cellular response to insulin stimulus
GO:0035338~long−chain fatty−acyl−CoA biosynthetic process

GO:0035457~cellular response to interferon−alpha
GO:0042493~response to drug

GO:0044321~response to leptin
GO:0044539~long−chain fatty acid import

GO:0046488~phosphatidylinositol metabolic process
GO:0046855~inositol phosphate dephosphorylation

GO:0046856~phosphatidylinositol dephosphorylation
GO:0046951~ketone body biosynthetic process

GO:0051292~nuclear pore complex assembly
GO:0055114~oxidation−reduction process

GO:0060992~response to fungicide
GO:0070859~positive regulation of bile acid biosynthetic process

GO:0071320~cellular response to cAMP
GO:0071394~cellular response to testosterone stimulus
GO:0071872~cellular response to epinephrine stimulus

2

3

4

5

−log (p value, 10)

Count
2
4

6
8

(a)

5

5
10

15
20

10 15 20
Count

hsa00062:fatty acid elongation

hsa00250:alanine, aspartate and glutamate metabolism

hsa00280:valine, leucine and isoleucine degradation

hsa00330:arginine and proline metabolism

hsa00562:inositol phosphate metabolism

hsa00650:butanoate metabolism

hsa01100:metabolic pathways

hsa01200:carbon metabolism

hsa04070:phosphatidylinositol signaling system

Count

2

3

4

5

−log (p value, 10)

(b)

Figure 3: Function enrichment analysis for genes in the coexpression network by the Database for Annotation, Visualization and Integrated
Discovery database. (a) Gene Ontology (GO) biological process terms; (b) Kyoto Encyclopedia of Genes and Genomes (KEGG). These plots
were generated using the ggplot2 package.
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Table 1: Function enrichment.

Category Term p value Genes

Biology
process

GO:0006661~phosphatidylinositol biosynthetic process 3:380e − 06 INPP5J, ARF3, SYNJ1, PI4KA, PIP4K2A, MTMR7

GO:0030203~glycosaminoglycan metabolic process 5:100e − 06 B3GAT1, GPC2, CHST9, BCAN, VCAN

GO:0030206~chondroitin sulfate biosynthetic process 1:310e − 04 CHSY3, CHST9, BCAN, VCAN

GO:0009725~response to hormone 6:240e − 04 ME1, OXCT1, FHL2, DHCR24

GO:0035338~long-chain fatty-acyl-CoA biosynthetic process 6:240e − 04 ACOT7, ELOVL4, SLC25A1, ACOT4

GO:0030208~dermatan sulfate biosynthetic process 1:009e − 03 UST, BCAN, VCAN

GO:0055114~oxidation-reduction process 2:379e − 03 ME1, TYRP1, CYP46A1, CYP2C8, QDPR,
CBR4, SRD5A1, CRYM, DHCR24

GO:0006699~bile acid biosynthetic process 3:136e − 03 CYP46A1, STAR, SLC27A2

GO:0046856~phosphatidylinositol dephosphorylation 4:090e − 03 INPP5J, SYNJ1, MTMR7

GO:0008652~cellular amino acid biosynthetic process 4:792e − 03 GLS2, ASPA, GOT1

GO:0042493~response to drug 7:278e − 03 STAR, BCHE, OXCT1, FABP3, SRD5A1, AACS

GO:0019083~viral transcription 1:015e − 02 RPLP0, NUP93, TPR, RPS21

GO:0006486~protein glycosylation 1:040e − 02 B3GAT1, B3GALT2, B4GALT6, LRP2

GO:0070859~positive regulation of bile acid biosynthetic
process

1:192e − 02 NR1D1, STAR

GO:0006024~glycosaminoglycan biosynthetic process 1:218e − 02 GPC2, HAS1, HS3ST2

GO:0006094~gluconeogenesis 1:332e − 02 GOT1, ENO2, SLC25A1

GO:0006533~aspartate catabolic process 1:587e − 02 ASPA, GOT1

GO:0071320~cellular response to cAMP 1:829e − 02 STAR, RPLP0, SRD5A1

GO:0016101~diterpenoid metabolic process 1:979e − 02 STAR, SRD5A1

GO:0071394~cellular response to testosterone stimulus 1:979e − 02 SRD5A1, AACS

GO:0006629~lipid metabolic process 2:485e − 02 CPNE6, AACS, LRP2, FABP6

GO:0060992~response to fungicide 2:760e − 02 STAR, SRD5A1

GO:0044539~long-chain fatty acid import 2:760e − 02 FABP3, SLC27A2

GO:0044321~response to leptin 2:760e − 02 NR1D1, STAR

GO:0046951~ketone body biosynthetic process 3:148e − 02 HMGCLL1, AACS

GO:0007584~response to nutrient 3:523e − 02 STAR, OXCT1, AACS

GO:0035457~cellular response to interferon-alpha 3:535e − 02 STAR, TPR

GO:0032869~cellular response to insulin stimulus 3:788e − 02 GOT1, STAR, SRD5A1

GO:0046855~inositol phosphate dephosphorylation 4:304e − 02 SYNJ1, MTMR7

GO:0046488~phosphatidylinositol metabolic process 4:304e − 02 PITPNM3, SYNJ1

GO:0051292~nuclear pore complex assembly 4:304e − 02 NUP93, TPR

GO:0071872~cellular response to epinephrine stimulus 4:686e − 02 STAR, SRD5A1

KEGG
pathway

hsa01100:metabolic pathways 9:150e − 06

ME1, PLD3, TYRP1, HMGCLL1, B3GALT2,
CYP2C8, SYNJ1, PI4KA, QDPR, HK1, AGMAT,

RIMKLA, ACOT4, GLS2, ASPA, CKMT1A, GOT1,
CHSY3, INPP5J, ENO2, B4GALT6, MTMR7,

DHCR24

hsa00562:inositol phosphate metabolism 1:555e − 03 INPP5J, SYNJ1, PI4KA, PIP4K2A, MTMR7

hsa00250:alanine, aspartate, and glutamate metabolism 1:894e − 03 GLS2, ASPA, GOT1, RIMKLA

hsa04070:phosphatidylinositol signaling system 5:025e − 03 INPP5J, SYNJ1, PI4KA, PIP4K2A, MTMR7

hsa00330:arginine and proline metabolism 5:263e − 03 CKMT1A, GOT1, AGMAT, CARNS1

hsa00062:fatty acid elongation 1:343e − 02 ACOT7, ELOVL4, ACOT4

hsa00650:butanoate metabolism 1:558e − 02 HMGCLL1, OXCT1, AACS

hsa00280:valine, leucine, and isoleucine degradation 4:385e − 02 HMGCLL1, OXCT1, AACS

hsa01200:carbon metabolism 4:608e − 02 ME1, GOT1, ENO2, HK1
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distinguished from normal samples according to the expres-
sions of these DERs (Figure 1(b)).

By searching the MsigDB database, a total of 1403 energy
metabolism-related genes were downloaded, including 293 for
carbohydrate, 738 for lipid, and 372 for amino acids and deriv-
ative metabolism. These energy metabolism-related genes
were then overlapped with the above 1613 DEGs, with 110
shown to be shared (Figure 1(c)), indicating that they were
energy metabolism-related DEGs.

By calculation of PCC, a total of 585 coexpression pairs
between 27 DELs and 67 energy metabolism-related DEGs
(such as GABPB1-AS1-PON2 (paraoxonase 2), HAR1A-
CYP46A1 (cytochrome P450 family 46 subfamily A mem-
ber 1)/HK1 (hexokinase 1), LINC00599-INPP5J (inositol
polyphosphate-5-phosphatase J), SNAI3-AS1-INPP5J/HK1,
and SNHG1-GPC2 (glypican 2)) (Figure 2), were obtained,
indicating that these 27 DELs may be associated with the
regulation of energy metabolism. Function enrichment
analysis using DAVID (Figure 3; Table 1) and Enrichr
(Supplementary Table 1) also showed that these 67 DEGs
were enriched into energy metabolism-related GO biological
process terms (such as GO:0030203~glycosaminoglycan
metabolic process (GPC2), GO:0030208~dermatan sulfate
biosynthetic process (UST, uronyl 2-sulfotransferase), GO:
0055114~oxidation-reduction process (CYP46A1), GO:
0046856~phosphatidylinositol dephosphorylation (INPP5J),
GO:0006094~gluconeogenesis (SLC25A1, solute carrier
family 25 member 1), GO:0006629~lipid metabolic process
(FABP6, fatty acid binding protein 6), GO:0046488
phosphatidylinositol metabolic process (MBOAT7, mem-
brane bound O-acyltransferase domain containing 7), and
GO:0006631 fatty acid metabolic process (PON2)) and
KEGG pathways (such as hsa01100: metabolic pathways
(INPP5J, HK1), hsa01200: carbon metabolism (HK1), and
glycerophospholipid metabolism (MBOAT7)). Thus, these
27 DELs and 67 DEGs were used for the following analyses.

3.2. Development of Energy Metabolism-Related DER-Based
Risk Score. Univariate Cox regression analysis revealed that

13 out of 27 energy metabolism-related DELs and 27 out
of 67 energy metabolism-related DEGs were significantly
correlated with OS of LGG patients in the TCGA dataset.
Then, they were entered into multivariate Cox regression.
Five energy metabolism-related DELs and four energy
metabolism-related DEGs were filtered as significant, inde-
pendent prognostic factors. These 9 genes were further
suggested to be the powerful prognostic indicators after
LASSO regression analysis (Table 2). Also, there were sig-
nificant expression differences in these 9 genes between
LGG and GBM, indicating that they were specific signa-
tures for LGG (Table 2). A risk score was constructed by
combining the expression levels of these 9 genes with their
LASSO coefficients as the following formula: (−0.05468×
expression of GABPB1-AS1) + (−0.64387× expression of
HAR1A)+ (0.00904× expression of LINC00599)+ (−1.81399
× expression of SNAI3-AS1)+ (0.29846× expression of
SNHG1)+ (0.55872× expression of FABP6)+ (0.77305× ex-
pression of MBOAT7)+ (−0.40797× expression of SLC25A1)
+ (−0.55501× expression of UST).

After calculation of the risk score for each patient in
TCGA and CGGA datasets, the patients were dichotomized
to the low-risk (<median) group and high-risk (≥median)
group. Kaplan-Meier curve analysis showed that patients
with a high risk score had significantly worse OS than those
with a low risk score (TCGA: HR = 3:192, 95%CI = 2:182‐
4:670, p = 1:989e − 10, Figure 4(a); CGGA: HR = 1:922, 95%
CI = 1:431‐2:583, p = 1:039e − 05, Figure 4(c)). The predictive
accuracy of the prognostic risk score was also demonstrated to
be high according to the AUC of ROC curve (TCGA: 0.827,
Figure 4(b); CGGA: 0.806, Figure 4(d)).

To construct a prognostic nomogram, univariate andmul-
tivariate Cox regression analyses were performed for risk score
and several clinical factors to explore all independent risk fac-
tors for OS. Univariate analysis demonstrated that age, histo-
logical type, isocitrate dehydrogenase 1 (IDH1) mutation,
neoplasm histologic grade, radiation therapy, and risk score
were significant prognostic factors. These significant variables
further underwent multivariate analysis. As a result, age

Table 2: The optimal signature combination.

Symbol Type

Expression
(LGG vs. CK)

Expression (GBM vs. LGG) Multivariate Cox regression analysis
LASSO

coefficient
logFC

FDR
(GSE4290)

p value
(GSE4290)

p value
(CGGA)

p value
(TCGA)

HR 95% CI p value

GABPB1-AS1 lncRNA 1.07 2:72e − 07 7:59e − 03 6:72e − 06 8:83e − 289 0.9946 0.9899-0.9994 2:846e − 02 -0.05468

HAR1A lncRNA -1.51 7:65e − 04 4:31e − 03 1:65e − 15 1:62e − 102 0.9938 0.988-0.9996 3:580e − 02 -0.64387

LINC00599 lncRNA -1.3 4:80e − 05 3:64e − 02 2:36e − 06 2:62e − 105 1.0035 1.0001-1.007 4:628e − 02 0.00904

SNAI3-AS1 lncRNA -1.76 9:51e − 08 7:96e − 03 3:12e − 10 1:71e − 258 0.9817 0.9701-0.9934 2:310e − 03 -1.81399

SNHG1 lncRNA 1.3 6:06e − 09 1:28e − 01 1:28e − 04 8:19e − 222 1.0054 1.0004-1.0104 3:328e − 02 0.29846

FABP6 mRNA -2.18 1:13e − 07 2:94e − 01 4:34e − 02 1:42e − 128 1.0062 1.004-1.0085 6:270e − 08 0.55872

MBOAT7 mRNA -1.27 3:92e − 09 8:01e − 01 1:11e − 03 0 1.0084 1.0017-1.0152 1:463e − 02 0.77305

SLC25A1 mRNA 1.03 2:39e − 09 4:05e − 03 5:96e − 12 0 0.9955 0.9911-0.9999 4:934e − 02 -0.40797

UST mRNA 1.47 5:50e − 10 5:80e − 05 7:57e − 08 2:41e − 256 0.9951 0.9914-0.9989 1:177e − 02 -0.55501

LGG: lower-grade gliomas; GBM: glioblastoma multiforme; CK: normal control; CGGA: Chinese Glioma Genome Atlas; TCGA: The Cancer Genome Atlas;
FC: fold change; FDR: false discovery rate; HR: hazard ratio; CI: confidence interval; LASSO: least absolute shrinkage and selection operator.
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(Figure 5(a)), IDH1 mutation (Figure 5(d)), and risk score
served as independent prognostic factors (Table 3). Also, strat-
ification analysis showed that the risk score could further dis-
tinguish the prognosis of patients with the same age (<42
years, p = 2:529e − 04, Figure 5(b); ≥42 years, p = 3:071e − 09,
Figure 5(c)) and IDH status (without mutation, p = 5:918e −
03, Figure 5(e); with mutation, p = 1:032e − 01, Figure 5(f)),
implying that it is necessary to integrate the risk score into
the clinical prognostic factors. Thus, a nomogram was then
constructed based on these independent prognostic factors
(Figure 6(a)). The excellent prognostic performance of the
nomogram was confirmed by calibration (approximate to the
45-degree line for 3- and 5-year OS prediction) (Figure 6(b))
and discrimination (AUC = 0:845 and C‐index = 0:928; both
higher than age, IDH status, and risk score model alone)
(Table 4; Figure 6(c)).

4. Discussion

In this study, we, for the first time, attempted to develop an
energy metabolism-related prognostic signature for LGG
patients based on the lncRNAs and mRNAs. As a result, a
prognostic risk score established by 9 energy metabolism-
associated lncRNAs (GABPB1-AS1, HAR1A, LINC00599,
SNAI3-AS1, and SNHG1)-mRNAs (FABP6, MBOAT7,
SLC25A1, and UST) was generated. This risk score was dem-
onstrated to be an independent prognostic factor for OS pre-
diction, with the predictive accuracy reaching 82.7% for
TCGA and 80.6% for the CGGA dataset, respectively, which
seemed to be higher than the signature established by
lncRNAs andmRNAs alone previously for LGG, such as Zhou
et al. (29-mRNA, AUC = 79:1% for CGGA) [10], Ni et al. (25-
mRNA, AUC = 77:1%) [20], Wang et al. (4-mRNA, AUC =
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Figure 4: The prognostic performance assessment for the risk score model. (a, c) Kaplan-Meier survival curve analysis to show the overall
survival difference between the high- and low-risk group of the training (a) and validation (c) datasets; (b, d) receiver operator
characteristic (ROC) curves to demonstrate the predictive accuracy for the overall survival of patients in the training (b) and validation (d)
datasets. CGGA: Chinese Glioma Genome Atlas; TCGA: The Cancer Genome Atlas; HR: hazard ratio; AUC: area under the ROC curve.
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62:0%) [21], and Kiran et al. (8-lncRNA, AUC < 80%) [22].
This conclusion was also proved by our study (AUC = 0:827
vs. 0.747 for lncRNA alone model and 0.739 for mRNA alone
model;C‐index = 0:812 vs. 0.702 for lncRNA alonemodel and
0.737 for mRNA alone model). Furthermore, the poor prog-
nosis of LGGwas traditionally determined according to clinical
characteristics, including older age [23] and IDH1 nonmuta-
tional status [24, 25]. Thus, whether the risk score was supe-
rior or added additional prognostic value to these current
clinical systems for prognosis prediction was also an impor-
tant focus in the signature studies [10, 22, 26]. In the present
study, we performed the stratification, AUC, C-index calcu-
lation, and nomogram analyses to confirm it. In line with
previous studies [10, 22, 26], our results showed that the
OS of patients with the same age and IDH1 mutation status
can be further stratified by the risk score. Also, the AUC
and C-index of risk score were obviously higher than age
(AUC = 0:827 vs. 0.564; C‐index = 0:812 vs. 0.743) and
IDH1 mutation status (AUC = 0:827 vs. 0.646; C‐index =
0:812 vs. 0.733). The prognostic performance was the highest
(calibration plot: approximate to the 45-degree line for OS

prediction; discrimination: AUC = 0:845; C‐index = 0:928)
if age, IDH1 mutation, and the risk score were combined.
These findings suggested that our identified combination
(risk score+age+IDH1 mutation) may be a promising bio-
marker for clinical prediction of the outcomes in LGG
patients.

Although our molecular prognostic signature was new
for LGG patients, several lncRNAs included had been dem-
onstrated to be related to the progression and prognosis for
glioma. For example, the study of Luan et al. revealed that
GABPB1-AS1 was a protective factor for the poor OS in
patients with glioma (HR = 0:668, 95%CI = 0:494‐0:904)
and GABPB1-AS1 may be involved in glioma by regulating
autophagy-related genes [27]. Zou et al. reported that
HAR1A was significantly downregulated in patients with
GBM compared with nontumor controls (logFC = −2:873,
p = 2:98e − 11). Multivariate analysis showed that low
HAR1A expression was an independent prognosis factor for
OS of glioma patients (HR = 1:6, p = 0:021) [28]. Fu et al.
found that the expression of LINC00599 was reduced in LGG
and GBM tissues as well as glioma cell lines compared with
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Figure 5: Stratification analysis based on age (a) and IDH1 mutation (d) which were also independent prognostic factors for overall survival
in addition to the risk score. The Kaplan-Meier curve showed significant differences in overall survival between the high-risk group and the
low-risk group in different ages (b, c) and IDH1 mutation status (e, f). HR: hazard ratio; y: year; IDH: isocitrate dehydrogenase.
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normal brain tissues or human astrocytes. Low LINC00599
expression was associated with poor disease-free survival and
OS of glioma patients. In vitro study implied that overexpres-
sion of LINC00599 inhibited cell migration and invasion
through blocking the epithelial-mesenchymal transition pro-
cess [29]. Liu et al. observed that SNHG1 was overexpressed
in glioma tissues and cell lines. In vitro and in vivo assays sug-
gested that SNHG1 promoted glioma progression by function-
ing as a sponge for miR-194 and then inducing the high
expression of pleckstrin homology like domain family A,
member 1 (PHLDA1) [30]. Li et al. elucidated that SNHG1
may regulate the malignant behavior of glioma cells by binding
to miR-154-5p or miR-376b-3p and then enhancing the
expression of downstream target of both miR-154-5p and
miR-376b-3p FOXP2 [31]. Kaplan-Meier analysis of Wang
et al. showed that high expression of SNHG1 was significantly
associated with poor OS. Functional studies demonstrated that
knockdown of SNHG1 suppressed glioma cell proliferation
and cell invasion and increased cell apoptosis [32]. In line with
these studies, we also demonstrated that GABPB1-AS1 and
SNHG1 were highly expressed, while HAR1A and LINC00599
were lowly expressed in LGG compared with normal brain tis-
sues. They were all OS-related genes for LGG. However, their

functions in glioma remain not well understood. In this study,
we predicted that these four lncRNAs may play crucial roles in
LGG by regulating the transcription of energy metabolism-
related genes, including GABPB1-AS1-PON2, HAR1A-
CYP46A1/HK1, LINC00599-INPP5J, and SNHG1-GPC2.
The roles of these energy metabolism-related genes had been
implicated for cancers. PON2 is a member of the paraoxonase
family and had been demonstrated to exert an antioxidative
function by improving mitochondrial efficiency to reduce
reactive oxygen species production. Theoretically, PON2
should be downregulated in cancers exposed to anoxia. How-
ever, several studies showed that PON2 expression was obvi-
ously increased in gastric cancer [33] and bladder cancer [34]
tissues compared with normal tissue samples. Overexpression
of PON2 led to a significant increase in tumor cell prolifera-
tion and resistance to oxidative stress [34], while silencing of
PON2 expression inhibited cancer cell proliferation, migra-
tion, and invasion [24]. Patients with high PON2 expression
had shorter OS compared with those having low PON2
expression [23]. These findings indicated that high expression
of PON2 may represent a protective stress response. It was
reported that CYP46A1, a brain-specific enzyme that converts
the cholesterol into 24(S)-hydroxycholesterol (24OHC), was

Table 3: Univariate and multivariate Cox regression analyses of clinical pathologic features for overall survival.

Variables
TCGA

(N = 520)
Univariate analysis Multivariate analysis

HR 95% CI p value HR 95% CI p value

Age (years, mean ± SD) 42:84 ± 13:39 1.057
1.043-
1.072

2:78e − 15 1.049
1.003-
1.096

3:59e − 02

Gender (male/female) 286/234 1.145
0.811-
1.617

4:40e − 01 — — —

Animal insect allergy history (yes/no/-) 16/289/215 0.831
0.202-
3.428

7:92e − 01 — — —

Asthma history (yes/no/-) 22/346/152 0.894
0.409-
1.956

7:76e − 01 — — —

Food allergy history (yes/no/-) 20/290/210 1.008
0.363-
2.801

9:87e − 01 — — —

Hay fever history (yes/no/-) 38/304/178 0.488
0.177-
1.347

1:24e − 01 — — —

Headache history (yes/no/-) 174/297/49 0.841
0.576-
1.227

3:64e − 01 — — —

Histological type
(astrocytoma/oligoastrocytoma/oligodendroglioma)

194/132/194 0.756
0.620-
0.921

5:25e − 03 0.529
0.244-
1.149

1:08e − 01

IDH1 mutation (yes/no/-) 91/34/395 0.181
0.0675-
0.484

4:14e − 04 0.226
0.0729-
0.701

9:98e − 03

Neoplasm histologic grade (G2/G3/-) 254/265/1 3.416
2.341-
4.985

1:84e − 11 0.949
0.294-
3.063

9:30e − 01

Radiation therapy (yes/no/-) 294/181/45 1.847
1.209-
2.820

2:83e − 03 1.981
0.584-
6.722

2:73e − 01

Targeted molecular therapy 268/200/52 1.389
0.955-
2.019

8:08e − 02 — — —

Risk score (high/low) 260/260 3.192
2.182
-4.670

1:99e − 10 5.041
1.272-
19.97

2:13e − 02

Death (dead/alive) 133/387 — — — — — —

Overall survival days (months, mean ± SD) 32:97 ± 32:78 — — — — — —

HR: hazard ratio; CI: confidence interval; SD: standard deviation; IDH: isocitrate dehydrogenase; TCGA: The Cancer Genome Atlas. Bold indicated the factors
with statistical difference (p < 0:05).
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significantly decreased in GBM samples compared with nor-
mal brain tissue. Low expression of CYP46A1 was associated
with increasing tumor grade and poor prognosis in human
gliomas [35]. Overexpression of CYP46A1 or the use of acti-
vator suppressed cell proliferation and in vivo tumor growth
by increasing 24OHC levels [25]. Malignant tumors often rely
on glycolysis to produce ATP (that is, Warburg effect), but
not tricarboxylic acid cycle. Thus, glycolytic enzymes may

play important roles for cancer. Hexokinase (HK) is the first
rate-limiting enzyme to phosphorylate glucose to form
glucose-6-phosphate (G-6-P). Theoretically, all hexokinase iso-
zymes (HK1 to HK4) should be highly expressed for tumor ini-
tiation and maintenance. However, a study showed that HK2
was upregulated [36] but HK1 was downregulated to increase
glycolysis and accelerate tumor growth and metastasis [37].
This result may be attributed to the underlying regulation
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between HK1 and HK2, which was also confirmed in the study
of Tseng et al. (that is, knockdown of HK1 increased the HK2
level; silencing of HK2 elevated HK1 expression) [37]. INPP5J
is a negative regulator for PI3K/AKT signaling and thus may
function as a tumor suppressor, which was demonstrated in
breast cancer [38], ovarian cancer [39], hepatocellular carci-
noma [40], and oesophageal squamous cell carcinoma [41].
GPC2 is a member of the human glypican family of proteins
that mediate neuronal cell adhesion and neurite outgrowth by
attaching to the cell surface via a GPI anchor. Hereby, GPC2
protein is highly expressed in brain tumors, which had been
validated in neuroblastoma [42, 43]. In accordance with
these studies, we also identified that PON2 and GPC2 were
upregulated, while CYP46A1, HK1, and INPP5J were down-
regulated in LGG compared with normal control (Supple-
mentary Table 1).

The published study on SNAI3-AS1 was rarely reported,
except one for hepatocellular carcinoma, in which highly
expressed SNAI3-AS1 was shown to be correlated with
shorter OS; knockdown of SNAI3-AS1 inhibited cell prolifer-
ation and metastasis, whereas inverse conclusions were
obtained with overexpression of SNAI3-AS1 in vitro. Func-
tional investigations showed that SNAI3-AS1 may affect
tumorigenesis by inducing tumor epithelial to mesenchymal
transition via regulating the UPF1/Smad7 signaling pathway
[44]. Unfortunately, our results showed that SNAI3-AS1 was
downregulated in LGG, suggesting that SNAI3-AS1 may be
tissue-specifically expressed and a new target for LGG. Further-
more, we speculated that SNAI3-AS1 may function in LGG by
coexpressing with HK1 and INPP5J as described above.

In addition to lncRNAs, four energy metabolism-related
genes (FABP6, MBOAT7, SLC25A1, and UST) were also
included into the prognostic signature, indicating their
importance for LGG. Some genes had been demonstrated
to be related to the development and progression of cancer
previously. For example, a gastric cancer risk allele carrier
was observed to have downregulated expressions of
MBOAT7 [45]. Overexpression of mitochondrial citrate car-
rier (SLC25A1) was proved to be associated with reduced
survival of lung cancer patients [46]. The mechanisms of
SLC25A1 in cancer referred to its antioxidant defense and
maintenance of the self-renewal capability of cancer stem
cells [46, 47]. Knockdown of UST could significantly reduce
migration and adhesion in mouse melanoma cells and pul-
monary metastasis in mice [48]. However, no studies

focused on glioma, suggesting they may also represent new
biomarkers for LGG.

There were some limitations in this study. First, the
expression of crucial lncRNAs and mRNAs should be veri-
fied with quantitative PCR, western blotting, or immunohis-
tochemistry in LGG and normal brain tissues with larger
sample size. Second, the prognosis ability of our risk score
and combined model should be validated in newly hospital-
ized LGG patients. Third, in vitro and in vivo experiments
are also essential to confirm the coexpression mechanisms
of our identified lncRNAs (GABPB1-AS1-PON2, HAR1A-
CYP46A1/HK1, LINC00599-INPP5J, and SNHG1-GPC2).
Fourth, lncRNAs can function as competing endogenous
RNAs (ceRNAs) to target mRNAs by sponging miRNAs. It
may be a potential direction in the future to explore a signa-
ture established by lncRNA-miRNA-mRNA for prognosis
prediction and reveal possible ceRNA mechanism axes for
LGG as reported in other cancers [49]. Fifth, proteomics
analysis also should be conducted in LGG and normal brain
tissues in order to identify a protein alone or lncRNA-protein
signature for prognosis prediction [50].

5. Conclusion

Our present study provided a new prognostic biomarker for
LGG based on energy metabolism mechanisms. This prog-
nostic signature consisted of five lncRNAs (GABPB1-AS1,
HAR1A, LINC00599, SNAI3-AS1, and SNHG1) and four
mRNAs (FABP6, MBOAT7, SLC25A1, and UST), which
could classify patients into high- and low-risk subgroups
exhibiting significantly different OS. Furthermore, this risk
score was also combined with clinical characteristics (age,
IDH1 mutation) to establish a prognostic nomogram, which
may be more applicable for clinical use.
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Table 4: The performance of the nomogram assessed by discrimination parameters.

Model AUC C-index p value Specificity Sensitivity

Age 0.564 0.743 0 0.889 0.278

IDH1 mutation 0.646 0.733 8:138e − 05 0.849 0.442

Multiclinical 0.779 0.8 1:278e − 06 0.877 0.632

lncRNA alone 0.747 0.702 9:97e − 14 0.832 0.662

mRNA alone 0.739 0.737 0 0.778 0.662

Multi-RNA based 0.827 0.812 0 0.798 0.827

Multi-RNA combined 0.845 0.928 0 0.863 0.782

AUC: area under the curve of receiver operating characteristic curve; C-index: concordance index; IDH: isocitrate dehydrogenase.
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