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Analysis of the effects 
of nonextensivity for a generalized 
dissipative system in the SU(1,1) 
coherent states
Jeong Ryeol Choi

The characteristics of nonextensivity for a general quantum dissipative oscillatory system in the 
SU(1,1) coherent states are investigated using the invariant operator method. We consider a 
deformed Caldirola-Kanai oscillator represented in terms of a parameter q which is a measure of 
the degree of nonextensivity. The nonextensivity effects on the parametric evolution of the SU(1,1) 
coherent states are elucidated. We compare our results with those of previous researches and address 
the advantage of our methodology which adopts the linear invariant operator. In particular, the 
nonextensive behaviors associated with the fluctuations of canonical variables and the dissipation 
of quantum energy are analyzed in detail regarding their dependence on q. The properties of SU(1,1) 
coherent states that we adopt here can be utilized in quantum-information processes such as cloning, 
swapping, and teleportation of state information.

As is well known, Boltzmann-Gibbs (BG) statistics achieved remarkable success, because it provides a standard 
way of thermostatistical analyses incorporated with ergodic theory. Dynamics of lots of physical systems follows 
BG statistics. However, it has turned out that the statistical behavior of some dynamical systems and associ-
ated phenomena does not follow BG statistics. They include long-range spatial and/or temporal interactions, 
long-range microscopic memory, and dissipative  multifractals1–3. This abnormal characteristic originates from 
nonextensive features of such systems, which require another statistical formalism that covers nonextensivity. 
Tsallis introduced a generalized thermostatistics with a concept of nonextensive entropy in Ref. 4, which is suit-
able for describing the mechanism of nonextensivity. Soon after this seminal report, it turned out that Tsallis 
statistics is very useful in the analyses of overall nonextensive dynamical phenomena, including black-body 
 radiation5,  gravitation6, Euler  turbulence7, biological  evolution8, intrinsic inhomogeneities in  manganites9, non-
linear dynamical  dissipation10, etc.11,12.

Özeren has analyzed the nonextensive properties of a damped  oscillator1 which is described in terms of a 
deformed exponential function considering the parametric time evolution of the SU(1,1) coherent states. Glau-
ber coherent states for the deformed damped oscillator driven by an external force has also been  studied13. For 
several physical systems, the deviation of the decay of energy or signal from the usual exponential falloff was 
investigated so  far14–18. If we combine the mechanism underlying such nonexponential decays with the knowledge 
of generating typical SU(1,1) coherent  states19,20, experimental realization of the SU(1,1) coherent states with a 
nonextensive damping can be achieved.

To study nonextensivity for the dissipative system, Özeren used the destruction and creation operators associ-
ated with the simple harmonic oscillator (DCOSHO). Historically, DCOSHO was used in order to derive quan-
tum solutions of harmonic oscillators with time-varying parameters as well as the simple harmonic oscillator. 
For instance, Tibaduiza et al. derived quantum algebraic solutions for nonstationary harmonic oscillators using 
Lie algebraic approach based on  DCOSHO21,22.

However, it is also well known that quantum features of such a time-dependent Hamiltonian system are 
equally well described via other theories that do not use DCOSHO. As one of such alternative theories, the 
invariant operator  theory23,24 devised by Lewis and Riesenfeld is a very useful tool in describing quantum char-
acteristics of time-dependent Hamiltonian systems which were firstly treated by  Husimi25. In fact, the research 
for quantized time-dependent Hamiltonian systems has achieved great success with the use of the invariant 
operators. (e.g., see Refs. 26–33 and references there in).
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Although the research for the deformed damped oscillator with SU(1,1) coherent states was continued further 
after the report of Özeren1, such research so far was rather focused on treating the system using the formal-
ism of DCOSHO. Inspired by the above-mentioned usefulness of the Lewis-Riesenfeld invariant formalism in 
the context of time-dependent systems, we investigate in this work the nonextensive dynamics of the SU(1,1) 
coherent states for the generalized damped harmonic oscillator using a linear invariant operator. To be sure, 
destruction and creation operators constructed from the invariant operator theory of quantization are in general 
different from DCOSHO. A set of destruction and creation operators associated with the invariant operator 
theory (DCOIOT), instead of DCOSHO, will be used. The advantage of the use of DCOIOT in the research of 
time-dependent harmonic oscillators, such as normal/generalized Caldirola-Kanai (CK)  oscillators34,35, is that 
it enables us to obtain exact quantum solutions (without any approximation) so far as the classical solution of 
the given system is  known31.

This paper is organized as follows. At first, the invariant operator theory of the generalized CK oscillator is 
described and the related SU(1,1) generators are constructed. Then the nonextensivity of the SU(1,1) coherent 
states that are introduced by Perelomov is investigated. and the corresponding results are compared with those 
of the previous theory which is based on Özeren’s  work1 and its improved  one36. Our theory is applied to the 
analysis of the behavior of nonextensive dissipative oscillatory systems. Lastly, we give the concluding remarks.

Dynamics of the generalized nonextensive CK oscillator
Basics of the general CK oscillator with nonextensivity. Various physical systems subjected to a 
friction-like force which is a linear function of velocity can be modeled by the formal CK oscillator. The Hamil-
tonian of the CK oscillator is given  by34,35

where γ is a damping constant. This Hamiltonian can be generalized by replacing the ordinary exponential func-
tion with a deformed one that is defined  by1,37

with an auxiliary condition

where q is a parameter indicating the degree of nonextensivity. This generalized function is known as the q-expo-
nential and has its own merit in describing non-idealized dynamical systems. The characteristic behavior of 
the q-exponential function is shown in Fig. 1. In the field of thermostatistics, a generalization of the Gaussian 
distribution through the q-exponential is known as the Tsallis distribution that is well fitted to many physical 
systems of which behavior does not follow the usual BG statistical  mechanics38.

In terms of Eq. (2), we can express the generalized CK Hamiltonian in the  form1

(1)Ĥ = e−γ t p̂
2

2m
+ 1

2
eγ tmω2x̂2,

(2)expq (y) = [1+ (1− q)y]1/(1−q),

(3)1+ (1− q)y ≥ 0,

(4)Ĥq =
p̂2

2m expq (γ t)
+ 1

2
expq (γ t)mω2x̂2.

Figure 1.  q-exponential function for several different values of q.
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This Hamiltonian is Hermitian and, in the case of q → 1 , it recovers to the ordinary CK one that is given in 
Eq. (1). From the use of the Hamilton’s equations in one dimension, we can derive the classical equation of 
motion that corresponds to Eq. (4) as

In an extreme case where q → 0 , Eq. (2) reduces to a linear function 1+ y . Along with this, Eq. (5) reduces to

If we think from the pure mathematical point of view, it is also possible to consider even the case that q is smaller 
than zero based on the condition given in Eq. (3). However, in most actual nonextensive systems along this line, 
the value of q may not deviate too much from unity which is its standard value. So we will restrain to treating 
such extreme cases throughout this research.

In general, for time-dependent Hamiltonian systems, the energy operator is not always the same as the given 
Hamiltonian. The role of the Hamiltonian in this case is restricted: It plays only the role of a generator for the 
related classical equation of motion. From fundamental Hamiltonian dynamics, we can see that the energy 
operator of the generalized damped harmonic oscillator is given  by26,39

Let us denote two linearly independent homogeneous real solutions of Eq. (5) as s1(t) and s2(t) . Then, from 
a minor mathematical evaluation, we  have40,41

where Jν and Nν are the Bessel functions of the first and second kind, s0,1 and s0,2 are constants which have dimen-
sion of position, and ν = q/[2(1− q)] . From Fig. 2, we see that the phases in the time evolutions of s1(t) and 
s2(t) are different depending on the value of q. Now we can represent the general solution of Eq. (5) in the form

where c1 and c2 are arbitrary real constants.
We introduce another time function s(t) that will be used later as

This satisfies the differential  equation42

where � is a time-constant which is of the form

By differentiating Eq. (13) with respect to time directly, we can readily confirm that � does not vary in time.

Invariant operator theory and the SU(1,1) description. In accordance with the invariant operator 
theory, the invariant operator must satisfy the Liouville-von Neumann equation which is

A straightforward evaluation after substituting Eq. (4) into the above equation leads  to24,40

where b̂ is a destruction operator defined as
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whereas its hermitian adjoint b̂† is a creation operator. If we take the limit γ → 0 , Eq. (16) reduces to that of 
the simple harmonic oscillator. One can easily check that the boson commutation relation for ladder operators 
holds in this case: [b̂, b̂†] = 1 . This consequence enables us to derive the eigenstates of Î in a conventional way.

The zero-point eigenstate |0� is obtained from b̂|0� = 0 . The excited eigenstates |n� are also evaluated by acting 
b̂† into |0� n times. The Fock state wave functions |ψn� that satisfy the Schrödinger equation are different from 
the eigenstates of Î by only minor phase factors which can be obtained from basic  relations24. However, we are 
interested in the SU(1,1) coherent states rather than the Fock states in the present work.

The SU(1,1) generators are defined in terms of ladder operators, such that

From the inverse representation of Eq. (16) together with its hermitian adjoint b̂† , we can express x̂ and p̂ in 
terms of b̂ and b̂† . By combining the resultant expressions with Eqs. (17)–(19), we can also represent the canoni-
cal variables in terms of SU(1,1) generators as

(16)b̂ =
√

1

2��

[(

�

s(t)
− im expq (γ t)ṡ(t)

)

x̂ + is(t)p̂

]

,

(17)K̂0 =
1

2

(

b̂†b̂+ 1

2

)

,

(18)K̂+ =1

2
(b̂†)2,

(19)K̂− =1

2
b̂2.

Figure 2.  Time evolution of s1(t) (A) and s2(t) (B) for several different values of q. We used ω = 1 , γ = 0.1 , and 
s0,1 = s0,2 = 0.1.
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The substitution of the above equations into Eq. (4) leads to

where

In accordance with Gerry’s work (see Ref. 43), Eq. (22) belongs to a class of general Hamiltonian that preserves 
an arbitrary initial coherent state. In the next section, we will analyze the properties of nonextensivity associated 
with the SU(1,1) coherent states using the Hamiltonian in Eq. (22).

Analysis of nonextensivity in the SU(1,1) coherent states
Nonextensive SU(1,1) coherent states based on DCOIOT. The SU(1,1) coherent states for the quan-
tum harmonic oscillator belong to a dynamical group whose description is based on SU(1,1) Lie algebraic for-
mulation. The analytical representation of the SU(1,1) coherent states provides a natural description of quantum 
and classical correspondence which has an important meaning in theoretical physics. On the experimental side, 
optical interferometers like radio interferometers that use four-wave mixers as a protocol for improving meas-
urement accuracy are characterized through the SU(1,1) Lie  algebra44,45.

According to the development of  Perelomov46, the SU(1,1) coherent states are defined by

where D̂(β) is the displacement operator, |0̃�k is the vacuum state in the damped harmonic oscillator, and k is the 
Bargmann index of which allowed values are 1/4 and 3/4. The basis for the unitary space is a set of even boson 
number for k = 1/4 , whereas it is a set of odd boson number for k = 3/4 . Here, the displacement operator is 
given by

where β is the eigenvalue of b̂ and ξ̃ is an SU(1,1) coherent state parameter of the form

The above equation means that |ξ̃ | < 1 . For k = 3/4 among the two allowed values, the resolution of the identity 
in Hilbert space is given  by47

where dµ(ξ̃ ; k) = [(2k − 1)/π]d2ξ̃ /(1− |ξ̃ |2)2 . More generally speaking, this resolution is valid for k > 1/2 . 
For a general case where k is an arbitrary value, the exact resolution is unknown. Brif et al., on one hand, pro-
posed a resolution of the identity with a weak concept in this context, which can be applicable to both cases 
of k > 1/2 and k < 1/247. In what follows, various characteristics of the damped harmonic oscillator with and 
without deformation in quantum physics, such as quantum correlation, phase coherence, and squeezing effect, 
can be explained by means of the SU(1,1) Lie algebra and the coherent states associated with this  algebra48,49.

The expectation values of SU(1,1) generators in the states |ξ̃ ; k�  are50
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2 ṡ2

)

+ �

�
m expq (γ t)ω

2s2,

(24)δ(t) =− �

2m expq (γ t)s
2

(√
�− i

m expq (γ t)sṡ√
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Using the above equations, the expectation values of the Hamiltonian given in Eq. (22) are easily identified  as50,51

To derive the classical equation of motion for ξ̃ , we introduce the Euler-Langrange equation that is given  by50

where [A, B] is a generalized Poisson bracket:

By evaluating Eq. (33) with the use of Eq. (32), we have

To analyze this equation, let us divide ξ̃ (t) into real and imaginary parts such that

where ξ̃1(t) and ξ̃2(t) are real. Then, the real and imaginary parts of Eq. (35) can be easily identified, respectively, 
as

where δ1 and δ2 are the real and imaginary parts of δ(t) (δ = δ1 + iδ2) , which are given by

Note that our results, Eqs. (37) and (38), are different from those of the work of Özeren, i.e., Ref. 1. The essential 
difference between the two theories is that our theory is based on DCOIOT, whereas Özeren’s work is based on 
DCOSHO. For convenience, we provide Özeren’s method with some correction of errors in “Methods” section 
(the last section).

In the above description, δ involves an imaginary part (namely, δ2 ) as well as the real one. In order to see the 
physical meaning of the δ2 term, let us consider the limit γ → 0 that the system reduces to the simple harmonic 
oscillator. In this limit, we can re-choose the two classical solutions of Eq. (5) as sinusoidal forms such that 
s1(t) = s0 cos(ωt + θ) and s2(t) = s0 sin(ωt + θ) . Then s(t) defined in Eq. (11) reduces to s0 which is a constant. 
In that case, δ2 vanishes because it is represented in terms of the time derivative of s(t). From this, we can conclude 
that δ2 means the deviation of the system from the simple harmonic oscillator. Alternatively, this also means how 
the system is nonstationary. The larger the value of δ2 , the greater the variation of the amplitude of the oscillator. 
However, for the case that the system is described by the framework of DCOSHO, such an imaginary term does 
not appear at all times (see Refs. 1,36,49).

It may be possible to evaluate numerical solutions of ξ̃1 and ξ̃2 from Eqs. (37) and (38) within a finite interval 
of time with the help of the Mathematica program (Wolfram Research), as has been done in Özeren’s  work1. 
However, the associated calculation is not an easy task in this case due to the complexity of Eqs. (37) and (38) 
with Eqs. (23), (39), and (40). Hence, to obtain the explicit value of ξ̃ , it may be better to apply another method 
which would be easier. In the next subsection, we will describe an alternative method using the development 
given here as the bridge needed to do the basis transformation.
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Alternative method for the nonextensivity analysis. As mentioned in the above subsection, it may 
be favorable to use an alternative method for further development. As such a method, we derive ξ̃ from Eq. (27) 
with the explicit formula of the eigenvalue β . Note that β can be obtained by solving the eigenvalue equation

As a matter of fact, the states |ξ̃ ; k� in Eq. (25) are generalization of |β� , which were established according to a 
general scheme designated in Ref. 46. Hence, the states |ξ̃ ; k� retain most of the characteristics of the basic state 
|β� . The coherent state |β� with the eigenvalue β is considered as the zero-point energy state displaced from the 
origin in phase space by an amount |β| . Although both the states |β� and |ξ̃ ; k� are normalized, they are non-
orthogonal and overcomplete. Over completeness means that a system is described by redundant states that 
spans Hilbert space. From expansion of the system in such states, we can attain its classical features as far as 
quantum mechanics allows.

Through the use of Eq. (16), we can easily evaluate Eq. (41), leading to the exact formula of β:

where x(t) and p(t) are classical solutions of coordinate and momentum, respectively. Whereas x(t) is given 
in Eq. (10), p(t) is derived from the simple relation p(t) = m expq (γ t)ẋ(t) provided that x(t) is known. Thus, 
Eq. (42) becomes

where βR and βI are real and imaginary parts, respectively.
At this stage, it may be useful to put β(t) in the form

where

A minor evaluation after substituting the expressions of βR and βI into Eq. (45) leads to

This outcome shows that β0 is a constant and represented in terms of c1 and c2 . Because c1 and c2 are related to 
the amplitude of the classical solution as can be seen from Eq. (10), β0 ( = |β| ) determines the amplitude of the 
oscillation of the system. If we think of the fact that ξ̃ defined in Eq. (27) is expressed only in terms of β , ξ̃ is 
deeply related to the oscillatory factors of the system such as the amplitude, frequency, and phase. Since the direct 
differentiation of Eq. (46) with respect to time results in
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where the evolution of the corresponding phase follows Eq. (49). Thus we obtained explicit forms of ξ̃i(t)(i = 1, 2).
When we analyze the nonextensivity effects of the system, the use of the analytical solutions, Eqs. (51) and 

(52), may be much more advantageous than the numerical treatment used in Ref. 1. Moreover, the procedure 
which we employed here in order to derive ξ̃i(t) is relatively easy and clearer than the evaluation of them using 
Eqs. (37) and (38). The parametric plot for the evolution of Eqs. (51) and (52) is given in Fig. 3; we confirm 
that it exhibits a circle of radius ξ̃0 . For a comparison purpose, we have also shown the parametric plot of ξi(t) 
obtained using the theory of DCOSHO in Fig. 4 on the basis of the evaluation represented in “Methods” section. 
Remarkably, a compare of Fig. 3 with Fig. 4 shows that the overall appearance of the evolution of the parameter 
of the SU(1,1) coherent states based on the theory of this work is quite different from the results obtained using 
the previous theory (with a correction). A characteristic feature of Fig. 4 is that the trajectory is a spiral form 
whose center proceeds toward the opposite direction of ξ1 , whereas the radius of the spiral decreases in time.

Applications
The results represented in Eq. (50) (or Eqs. (51) and (52)) can be explicitly implemented in studying diverse 
nonextensive properties of the system in SU(1,1) coherent states. As examples, we use it in the analyses of vari-
ances of the canonical variables and the energy expectation value in the nonextensive SU(1,1) coherent states.

Variances and uncertainty product. Let us first use our development of the previous sections in inves-
tigating the nonextensivity associated with the variances of canonical variables. The variances of any quantum 
variable Â in the SU(1,1) coherent states are defined as

For the case of the canonical variables, the variances can be evaluated by using Eqs. (20) and (21). From a minor 
evaluation, we easily have

(51)ξ̃1(t) =ξ̃0 cos[2ϕ(t)],

(52)ξ̃2(t) =ξ̃0 sin[2ϕ(t)].

(53)Vq,k(A) = �ξ̃ ; k|Â2|ξ̃ ; k� − (�ξ̃ ; k|Â|ξ̃ ; k�)2.

(54)Vq,k(x) =
2�ks2

�(1− ξ̃ 20 )
{1+ ξ̃ 20 + 2ξ̃0 cos[2ϕ(t)]},

Figure 3.  Parametric plot of ξ̃ (t) (i.e., ξ̃1(t) and ξ̃2(t) ) on the basis of Eqs. (51) and (52), which are developed 
using DCOIOT, for two different values of q during a cycle of evolution. We used ω = 1 , γ = 0.1 , m = 1 , � = 1 , 
c1 = c2 = 10 , s0,1 = s0,2 = 1 , and ϕ0 = 0 ; This choice of parameters gives the initial condition as ( ̃ξ0 , ϕ(0))=(1, 
0). This graphic can also be drawn from a parametric numerical evaluation using Eqs. (37) and (38) under the 
choice of the initial condition as (ξ̃1(0), ξ̃2(0)) = (1, 0).
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In the case where the deviation of q from unity is not too large, it is possible to approximate Eq. (49) in the form

where ω1 is a modified frequency which is given by ω1 =
√

ω2 − γ 2/4 . Under this approximation, we plotted 
the time evolution of Eqs. (54) and (55), and their product (uncertainty product) in Fig. 5. The red and yellow 
curves in this figure are the case of super-extensive ( q < 1 ), whereas the blue and violet curves are sub-extensive 
( q > 1 ). The variances for both coordinate and momentum oscillate in time. The envelope of the oscillation 
of Vq,k(x) deceases in time while that for Vq,k(p) increases due to the influence of damping. The variances also 
exhibit a delicate dependence on q: You can see that the variation of Vq,k(x) is reduced for large q at a later time, 
while the variation of Vq,k(p) becomes rather drastic in the same situation.

It was shown that quantum states of a damped oscillator correspond to squeezed  states52. Moreover, any non-
adiabatic change in the parameters of a harmonic oscillator produces squeezing. For the case of the nonextensive 
system given here, squeezing of x quadrature grows slightly as q increases, whereas squeezing of p quadrature 
reduces at the same situation. This is a manifestation of the emergence of the effect of nonextensivity.

Figure 5C shows a somewhat regular oscillation of the uncertainty product, Vq,k(x)Vq,k(p) , in time. From the 
first inset in Fig. 5C, we confirm that the amplitude of such an oscillation is slightly smaller when q becomes large. 
On the other hand, the second inset shows an opposite behavior which is that it becomes large as q increases. We 

(55)

Vq,k(p) =
2�k

s2(1− ξ̃ 20 )

{

�(1+ ξ̃ 20 − 2ξ̃0 cos[2ϕ(t)])

+
[m expq(γ t)]2

�
s2 ṡ2(1+ ξ̃ 20 + 2ξ̃0 cos[2ϕ(t)])

+ 4m expq(γ t)sṡξ̃0 sin[2ϕ(t)]
}

.

(56)ϕ(t) ≃ −(ω1t + ϕ0),

Figure 4.  Parametric plot of ξ(t) (i.e., ξ1(t) and ξ2(t) ) which are developed using DCOSHO. This is plotted 
using the real and imaginary parts of Eq. (61) in “Methods” section, under a low-damping limit within the time 
interval ( ti, tf)= (0, 15). If the magnitude of the damping factor is sufficiently high, the parametric behavior of 
ξ(t) is quite different from this (see Fig. 2 in Ref. 36). The initial condition we have taken is ξ1(0) = 0.5 and 
ξ2(0) = 0 . The value of q for the solid red curve is 0.50 for A and 1.50 for B. An extra curve (dashed black curve) 
is added as a reference one which corresponds to the case of q = 1.00 . We used ω = 1 and γ = 0.1.



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1622  | https://doi.org/10.1038/s41598-022-05292-x

www.nature.com/scientificreports/

Figure 5.  The variances, Vq,k(x) (A) and Vq,k(p) (B), and their product (C) as a function of t, which appear 
in Eqs. (54) and (55), for several different values of q. We used the approximation for ϕ(t) , which is given 
in Eq. (56) (This convention will also be used in the subsequent figures). The insets in A and C are enlarged 
graphs for the designated parts. A reference line (dashed black line) on the bottom part of C is �2/4 , which 
is the minimum value allowed as the uncertainty product. We used ω = 1 , γ = 0.1 , ϕ0 = 0 , m = 1 , � = 1 , 
c1 = c2 = 10 , k = 1/4 , and s0,1 = s0,2 = 0.1.
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also see that Vq,k(x)Vq,k(p) is always larger than or equal to �2/4 , which is the minimum value of the product 
allowed in quantum mechanics. While the uncertainty product of the two conjugate variables is always non-zero 
and intrinsic in quantum mechanics, the variation of it (including its components Vq,k(x) and Vq,k(p) ) is novel 
as a nonclassical effect connected with the nonstationary coherent states.

Quantum energy. Now, we will look at the nonextensivity effects on quantum energy as another appli-
cation. The expectation values of the energy operator in the SU(1,1) coherent states can be obtained from 
Eq,k = �ξ̃ ; k|Êq|ξ̃ ; k� , where Êq is given in Eq. (7). A straightforward evaluation of this using Eqs. (22), (32), and 
(50) results in

The energy of the oscillator does not dissipate at its turning points in the motion since the velocity at those points 
is zero. On the other hand, the dissipation of energy is locally maximum when the oscillator acquires the highest 
velocity at a vicinity of the origin ( x = 0). We see from Fig. 6 that such energy dissipation is more rapid  when q 
is large. To understand this consequence, recall from Fig. 1 that the q-exponential function in the region y > 0 
grows faster with q when q is large. From the analyses performed until now, we can confirm that the effects of 
nonextensivity are critical to the evolution of the system as a response to a small deviation of the q-exponential 
from the usual exponential.

Figure 7 shows the comparison of our results for variances and an energy expectation value based on using 
DCOIOT with those of the previous  research36 based on DCOSHO. You can see the nonextensivity results 
obtained using DCOSHO in the SU(1,1) coherent states from “Methods” section. Because invariant operator 
theory admits to obtain complete quantum results which satisfy the Schrödinger equation as mentioned in the 
introductory part, our outcomes based on DCOIOT are exact. However, Fig. 7 shows that the consequences based 
on DCOSHO do not deviated so much from our results, especially for the case of the energy expectation value.

Figure 8 is the comparison of our results with  those41 in the Glauber coherent state. The nonextensivity effects 
in the Glauber coherent state are briefly represented in “Methods” section. While our results for variances Vq,k(x) 
and Vq,k(p) fluctuate over time, Vq,β(x) vary Vq,β(p) in the Glauber coherent state vary monotonically. If we 
neglect such fluctuations in our results, the time behaviors of the variances, Vq,k(x) and Vq,k(p) , are nearly the 
same as those of their counterpart results in the Glauber coherent state. The expectation value of the quantum 
energy Eq,k in our research is somewhat smaller than Eq,β in the case where k = 1/4 (Fig. 8C). However, if we 
take k = 3/4 for Eq,k among its two allowed values, Eq,k is rather larger than Eq,β (not shown in Fig. 8C).

Comparison with the classical perspective. We have used the coherent states, Eq. (25), in the previous 
subsections in order to see variances and quantum energies. It is well known that coherent states resemble classi-
cal states as far as quantum mechanics allows. Let us see how the states in Eq. (25) resemble the classical one. To 
this end, it may be plausible to show that the time evolution of the expectation values �ξ̃ ; k|x̂|ξ̃ ; k� in those states 
are similar to the classical trajectory. However, because the generating functions, Eqs. (17)–(19), are represented 
in terms of two-photon operators in the terminology of quantum optics, the expectation value of x̂ in the cor-

(57)

Eq,k =
k

(1− ξ̃ 20 ) expq(γ t)

{

δ0(t)(1+ ξ̃ 20 )+ 2�ξ̃0

[(

m expq(γ t)

�
(ṡ2 + ω2s2)

− �

m expq(γ t)s
2

)

cos[2ϕ(t)] + 2
ṡ

s
sin[2ϕ(t)]

]}

.

Figure 6.  The dependence of the energy expectation value Eq,k [Eq. (57)] on q. We used ω = 1 , γ = 0.1 , ϕ0 = 0 , 
m = 1 , � = 1 , c1 = c2 = 10 , k = 1/4 , and s0,1 = s0,2 = 0.1.
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Figure 7.  Comparison of the results of this research (solid curves) for Vq,k(x) (A), Vq,k(p) (B), and Eq,k (C) with 
their counterpart results Vq,k(x) , Vq,k(p) , and Eq,k in the previous research (circles) performed using DCOSHO. 
We used ω = 1 , γ = 0.1 , ϕ0 = 0 , m = 1 , � = 1 , c1 = c2 = 10 , k = 1/4 , and s0,1 = s0,2 = 0.1 . For the case based 
on DCOSHO, we used Eqs. (62)–(64), where ξ (actually, ξ1 and ξ2 ) were numerically evaluated from the real 
and imaginary parts of Eq. (61) with the initial value of ξ as the same value of ξ̃ (0) : ( ξ1(0) , ξ2(0))=(ξ̃1(0) , ξ̃2(0) )= 
(0.462117, 0.0). Note that ξ̃1(0) is the same as ξ̃0 in this case, which can be evaluated using Eq. (47).
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Figure 8.  Comparison of our results Vq,k(x) (A), Vq,k(p) (B), and Eq,k (C) with those in the Glauber coherent 
state, Vq,β(x) , Vq,β(p) , and Eq,β , respectively, for two different values of q. Our results are solid curves, whereas 
the results in the Glauber coherent state are circles. The results associated with the Glauber coherent state, 
as well as ours, are obtained using DCOIOT. We used ω = 1 , γ = 0.1 , ϕ0 = 0 , m = 1 , � = 1 , c1 = c2 = 0.3 , 
k = 1/4 , and s0,1 = s0,2 = 1.
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responding states is zero. For this reason, such a scheme is not applicable in the case of SU(1,1) coherent states 
for an oscillatory system.

Alternatively, we can check that how the time evolution of the expectation value of x̂2 is analogous to the 
counterpart classical one as a second best. We have provided such a comparison in Fig. 9. This figure shows that 
the values �ξ̃ ; k|x̂2|ξ̃ ; k� with k=1/4 and k=3/4 exhibit oscillatory behaviors with dissipation over time like x2 in the 
classical state. While the local minimum values in the evolution of x2(t) are zero, those of both the two quantum 
ones are not zero but are some finite values. This quantum consequence is due to the existence of their zero-point 
 quantities53 that are intrinsic in quantum mechanics. Such zero-point quantities originate from the Heisenberg’s 
fundamental uncertainty limit, which is absent in the classical domain.

Conclusion
The properties of a general nonextensive damped harmonic oscillator have been investigated using the invariant 
operator theory. Based on the formal developments for the nonextensivity dynamics, we have replaced ordinary 
exponential function given in the CK Hamiltonian with the q-exponential one. Through this generalization 
for the formalism of the CK Hamiltonian, it was possible to analyze the nonextensive behavior of the system.

We introduced the destruction and creation operators, b̂ and b̂† , in order to establish the SU(1,1) coherent 
states. These operators were produced entirely from the invariant operator theory of the deformed system, 
while the ladder operators used in the work of Özeren1 are those which were relevant to the simple harmonic 
oscillator. The SU(1,1) generators, K̂0 , K̂1 , and K̂2 , were defined in Eqs. (17)–(19) in terms of b̂ and b̂† . To unfold 
the quantum theory associated with the SU(1,1) coherent states, we have reexpressed the Hamiltonian given in 
Eq. (4) in terms of these generators [see Eq. (22)].

Based on these procedures, we investigated nonextensive characteristics of the system in connection with the 
SU(1,1) coherent states. For convenience, we separated the coherent state parameter ξ̃ into real ( ̃ξ1 ) and imagi-
nary ( ̃ξ2 ) parts. By means of the Euler-Langrange equation, the differential equations associated with the time 
evolution of ξ̃1 and ξ̃2 were obtained, as shown in Eqs. (37) and (38). However, if we consider the complexity of 
these equations, it may be somewhat difficult to derive the numerical solutions of ξ̃1 and ξ̃2 from them. Hence, 
we adopted an alternative method which enabled us to obtain the closed form of the analytical expressions of ξ̃1 
and ξ̃2 . For this, we have taken the advantage of Eq. (27) with the explicit formula of β(t) . You can easily confirm 
the time behavior of ξ̃1 and ξ̃2 from their resulting expressions given in Eqs. (51) and (52).

The effects of nonextensivity with different values of q were illustrated in detail and compared with those of 
Özeren’s work (with some improvement), which have been studied using DCOSHO. The parametric plots of 
our results for ξ̃1 and ξ̃2 reveal circles (Fig. 3), while those based on the theory developed using DCOSHO reveal 
spirals (Fig. 4). Figure 5 shows that the variances of x and p oscillate with time. The envelope of such an oscilla-
tion for Vq,k(x) decreases over time, whereas that for Vq,k(p) increases. As a manifestation of the nonextensivity, 
the time variation of Vq,k(x) becomes small as q increases, whereas that of Vq,k(p) becomes large at the same 
situation. We confirmed that the energy of this generalized system dissipates over time like in the case of the 
ordinary damped oscillator, whereas the rate of such a dissipation is slightly higher for larger q. If we think of the 
fact that invariant operator theory gives complete quantum solutions without  approximation31, our consequences 
for variances and energy expectation values are exact. By the way, Fig. 7 shows that the counterpart quantum 
results evaluated on the basis of DCOSHO are not so different from ours. Our results for the variances of the 
canonical variables and the energy expectation value were also compared with those in the Glauber coherent 
state, addressing differences and similarities between them. It may be possible to extend our method adopted in 

Figure 9.  Comparison of the quantum expectation values �ξ̃ ; k|x̂2|ξ̃ ; k� with the square of the classical position 
x2(t) , where the allowed values of k for quantum results are 1/4 and 3/4 as mentioned previously. We used 
q = 1.05 , ω = 1 , γ = 0.1 , ϕ0 = 0 , m = 1 , � = 1 , c1 = c2 = 1 , and s0,1 = s0,2 = 1.
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this work to any arbitrary form of q-deformed oscillatory systems so long as the system admits SU(1,1) formal-
ism with appropriate SU(1,1) generators.

As a final remark, SU(1,1) coherent states including their general deformed types not only play an important 
role in traditional quantum optics but are noticeable as an implement of quantum information theory as well, 
whose main subjects are quantum computation, quantum teleportation, and quantum  cryptography54–56. The 
technique of cloning and swapping of (generalized) coherent states based on Lie algebras SU(1,1) and SU(2) are 
crucial in realizing next generation quantum-information-based technology. In particular, SU(1,1) Lie algebra 
and its related coherent states can be utilized in general in presenting an algebraic adaptation of Kieu’s hyper-
computational quantum algorithm (KHQA)56,57 in quantum computation.

Methods
Methods summary. We introduce a Hamiltonian of a modified CK oscillator that exhibits nonextensive 
effects. This Hamiltonian is represented in terms of a nonextensivity parameter q. We establish a quadratic invar-
iant operator Î associated with the Hamiltonian from the Liouville-von Neumann equation. The invariant opera-
tor is represented in terms of annihilation and creation operators ( ̂b and b̂† ) that obey the commutation relation 
[b̂, b̂†] = 1 . SU(1,1) generators, K̂0 , K̂+ , and K̂− , are constructed in terms of the annihilation and creation opera-
tors according to their definitions. Based on these, the Perelomov’s SU(1,1) coherent states are formulated. Using 
the wave functions |ξ̃ ; k� in the SU(1,1) coherent states, we evaluate expectation values of canonical variables 
and their squares. Quantum energy, in addition to the fluctuations of canonical variables and the corresponding 
uncertainty product, is investigated utilizing such values.

Özeren’s methods for the approach of nonextensivity. In Ref. 1, Özeren studied nonextensive 
properties of the generalized damped harmonic oscillator by using a set of DCOSHO. His theory is somewhat 
improved in Ref. 36. Here, we will briefly describe it with some corrections.

Özeren’s research is based on the well-known destruction operator associated with the simple harmonic oscil-
lator, which is given by â =

√
mω/(2�)x̂ + (i/

√
2mω�)p̂, and its hermitian adjoint â† (the creation operator). 

The eigenvalue equation for the destruction operator can be written as â|α� = α|α� , where α is the eigenvale 
and |α� is the eigenstate.

Let us consider the SU(1,1) generators, K̂0 , K̂+ , and K̂− , defined in the same way with those given in 
Eqs. (17)–(19), but in terms of â and â† instead of b̂ and b̂† . Then, the Hamiltonian given in Eq. (4) can be written 
in terms of these generators  as36

where

Note that the Hamiltonian in Eq. (58) is somewhat different from that of the Özeren’s original research given in 
Eq. (15) of Ref. 1 due to some errors in that work.

The SU(1,1) coherent states in this context are defined as |ξ ; k� = D̂(α)|0�k , where |0�k is the vacuum state and 
D̂(α) is the displacement operator of the form D̂(α) = exp[(α2K̂+ − α∗2K̂−)/2] . The parameter of the SU(1,1) 
coherent states is defined as ξ = (α2/|α|2) tanh(|α|2/2) .  If we adopt the same method used in the case of the 
DCOIOT-based approach, the classical equation of motion for ξ is given  by36

If we put ξ = ξ1 + iξ2 where ξ1 and ξ2 are real, the real and imaginary parts of the above equation are easily 
obtained. The parametric evolution of ξ1 and ξ2 for a highly damped case with several different values of q was 
shown in Ref. 36. We have also plotted it in Fig. 4 of this work, but in a low-damping limit, for the comparison 
purpose with our main result (Fig. 3). For more details along this line, see Ref. 36 together with Ref. 1.

Approach based on DCOSHO. The approach for nonextensivity in the SU(1,1) coherent states based on 
the use of DCOSHO are given in Ref. 36. We represent its consequences here for comparison purposes. The vari-
ances of the canonical variables are given by

The energy expectation values are represented as

(58)Ĥq = 2�ω coshq(γ t)K̂0 + �ω sinhq(γ t)(K̂+ + K̂−),

(59)coshq(y) =
1

2
{expq(y)+ [expq(y)]−1},

(60)sinhq(y) =
1

2
{expq(y)− [expq(y)]−1}.

(61)ξ̇ = −iω[2ξ coshq(γ t)+ (1+ ξ 2) sinhq(γ t)].

(62)Vq,k(x) =
2�k

mω(1− |ξ |2) (1+ |ξ |2 + ξ + ξ∗),

(63)Vq,k(p) =
2mω�k

1− |ξ |2 (1+ |ξ |2 − ξ − ξ∗).
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Approach based on DCOIOT in the Glauber coherent state. The Glauber coherent state |β� 
is the eigenstate of b̂ as is represented in Eq.  (41). Quantum dynamics of the system in the Glauber coher-
ent state has been described in Ref. 41. The variance of an operator Â in this state can be defined as 
Vq,β(A) = �β|Â2|β� − (�β|Â|β�)2. For the case of the canonical variables, the variances result  in41

On the other hand, the quantum energy expectation value is of the form

where

Equations (65), (66), and (67) are used in Fig. 8.
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