
Gleicher et al. J Transl Med  (2016) 14:172 
DOI 10.1186/s12967-016-0924-7

RESEARCH

Definition by FSH, AMH and embryo 
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Abstract 

Background:  Though outcome models have been proposed previously, it is unknown whether cutoffs in clinical 
pregnancy and live birth rates at all ages are able to classify in vitro fertilization (IVF) patients into good-, intermediate- 
and poor prognosis.

Methods:  We here in 3 infertile patient cohorts, involving 1247, 1514 and 632 women, built logistic regression mod‑
els based on 3 functional ovarian reserve (FOR) parameters, including (1) number of good quality embryos, (2) follicle 
stimulating hormone (FSH, mIU/mL) and (3) anti-Müllerian hormone (AMH, ng/mL), determining whether clinical 
pregnancy and live birth rates can discriminate between good, intermediate and poor prognosis patients.

Results:  All models, indeed, allowed at all ages for separation by prognosis, though cut offs changed with age. In 
the embryo model, increasing embryo production resulted in linear improvement of IVF outcomes despite transfer of 
similar embryo numbers; in the FSH model outcomes and FSH levels related inversely, while the association of AMH 
followed a bell-shaped polynomial pattern, demonstrating “best” outcomes at mid-ranges. All 3 models demonstrated 
increasingly poor outcomes with advancing ages, though “best” AMH even above age 43 was still associated with 
unexpectedly good pregnancy and delivery outcomes. Excessively high AMH, in contrast, was at all ages associated 
with spiking miscarriage rates.

Conclusions:  At varying peripheral serum concentrations, AMH, thus, demonstrates hithero unknown and contra‑
dictory effects on IVF outcomes, deserving at different concentrations investigation as a potential therapeutic agent, 
with pregnancy-supporting and pregnancy-interrupting properties.
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At a glance commentary, Gleicher N et al
Background
Prediction of IVF outcomes in patients at different ages 
has been a longstanding goal in reproductive medicine. 
Here we demonstrate that, based on embryo numbers 
produced (retroactive prediction paradigm), FSH and 
AMH levels (both prospective prediction paradigms), 
different models are predictive of good, intermediate and 
poor IVF prognoses at all ages.

Translational significance
This is the first study to demonstrate prospective age-
specific IVF outcome predictions based on FSH and 
AMH levels, and a retrospective prediction model based 
on embryo numbers.

In an unexpected translational finding, AMH was 
found associated with contradictory IVF outcomes at 
"best" (unexpectedly high pregnancy and delivery rates) 
and excessively high peripheral serum levels (spiking 
spontaneous miscarriages).

If confirmed, these observation suggest the potential 
clinical use of AMH as a fertility enhancing pharmaco-
logical agent at "best" levels and as a potential abortefaci-
ant at excessively high levels.

Background
How to establish outcome prognoses for infertile women 
entering in  vitro fertilization (IVF) cycles is not well 
defined [1]. If accomplishable at all ages, the ability to 
predict prognoses would, therefore, be clinically very 
valuable. Better definitions of patient populations at IVF 
centers would also improve internal as well as external 
quality controls. In the US such external controls are 
mandated by an act of Congress [2], and currently not 
satisfactory [3]. Finally, treatments offer different levels 
of efficacy in good-, intermediate- and poor-prognosis 
patients [4]. Better definition of “disease” severity, there-
fore, should improve individualization of IVF treatments 
and, thereby, improve outcomes.

Prognostication of IVF outcomes has been a longstand-
ing goal [5]. With key component female age [6, 7, 9], a 
variety of models have been published [6–11] as declin-
ing clinical pregnancy and live birth rates with advanc-
ing female age well demonstrate [12]. te Velde et al. [10] 
therefore, were correct in noting that, when building pre-
diction models for IVF, changes in outcomes have to be 
considered with advancing female age.

Age is, however, not the only important predictor of 
IVF outcomes. Functional ovarian reserve (FOR), a term 
reflecting the growing follicle pool, and, therefore, oocyte 
and embryo numbers, is also closely associated with IVF 
outcomes. Abnormally low FOR (LFOR) is defined by 
abnormally increased age-specific follicle stimulating 

hormone (FSH) [13] and/or decreased age-specific 
anti-Müllerian hormone (AMH) [14], both reflecting 
declining egg and embryo numbers and, therefore, dete-
riorating pregnancy and live birth chances [15].

In women with premature ovarian aging (POA), also 
called occult primary ovarian insufficiency (oPOI) [16], 
normal statistical associations between age and FOR are 
disturbed. POA/oPOI patients prematurely demonstrate 
LFOR. They represent approximately 10  % of females, 
independent of race and ethnicity, and at IVF centers can 
exceed half of all patients [17]. In POA patients FOR-
based rather than age-based prediction models in IVF 
may, therefore, be preferable.

We here present three different models, involving age 
and FOR, which based on clinical pregnancy as well as 
live birth chances allow definitions of patients into good-, 
intermediate and poor IVF prognosis categories. The 
here presented study yielded in addition unexpected 
results, which suggest previously unrecognized physi-
ologic effects of AMH on IVF outcomes.

Methods
Patient populations
This study involves three partially overlapping patient 
cohorts: Cohort I, 1247 consecutive fresh IVF cycles dur-
ing 2009–2013, including egg donor, however excluding 
elective single embryo transfer (eSET) and mild stimula-
tion cycles, was used to investigate associations of good 
quality embryo numbers (between 1 and 15) with clini-
cal pregnancy and live birth rates at different ages (<36, 
36–38, 39–40, 41–42 and  ≥43  years). Patients  <36 are 
presented as a single age category because ages  <30, 
31–32, 33–34 and 35–36 produced basically identical 
outcomes (see Additional file 1: Appendix Figure S1).

Cohort II, 1514 consecutive fresh autologous non-
donor IVF cycles, excluding eSET and mild stimulation 
cycles, was stratified for age used to establish associa-
tions of highest FSH levels (2.5–40.0 mIU/mL) with clini-
cal pregnancy and live birth rates.

Cohort III, 632 fresh autologous non-donor cycles 
between 2011 and 2014, excluding eSET and mild stim-
ulation cycles, was used to assess associations of lowest 
AMH levels (≤0.5–10.0  ng/mL) with clinical pregnancy 
and live birth rates, stratified for age. Only AMH meas-
urements by the Beckman Generation 2 AMH assay were 
included as neither manufacturers of earlier AMH assays 
nor our own statisticians able to generate conversion 
tables.

All patient data, representing consecutive IVF cycles, 
were extracted from our center’s anonymized electronic 
research data base unless meeting the exclusion criteria 
noted above. Table  1 summarizes patient and IVF cycle 
characteristics for all three patient cohorts.
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FSH and AMH values
FSH values were tested in house by commercial assay. 
Though commercial AMH assays are similar at mid-range 
(variations between assays are usually only seen at very 
low and very high levels), here reported values should not 
automatically be applied to other AMH assays since ear-
lier generation AMH assays differ from the in this study 
utilized assay. We later demonstrate that, indeed, mid-
range values matter most in here reported AMH model.

Blood draws occurred at initial presentation, with IVF 
cycle starts on average initiating 8 weeks later.

IVF cycle protocols
Cycle stimulation protocols at our center are limited, while 
choice of gonadotropin manufacturer is left up to patients 
and their insurance coverage. Oocyte donors receive a 
long agonist protocol (150–300 IU of gonadotropins daily), 
usually given as human menopausal gonadotropin (hMG). 
Since most of our center’s patients present with LFOR, a 
majority receive short microdose agonist protocols, with 
FSH (300–450 IU) and hMG (150 IU). Patients with nor-
mal FOR, if under age 38, receive similar stimulation to 
egg donors. Patients with LFOR are pretreated with dehy-
droepiandrosterone (DHEA) to raise testosterone levels to 
above 28 ng/mL (1 nmol/L) before IVF cycle start [18], and 
also receive CoQ10 supplementation [19].

Up to age 38, our center transfers in fresh cycles only 
1–2 embryos; between ages 38–42, 3 embryos and above 
age 42, 3 to maximally 5 embryos.

Embryo assessment
After assessment and grading, our center routinely 
transfers embryos on day-3 (cleavage stage) [20]. Only 

4—8-cell embryos of at least grade 3 are transferred or 
cryopreserved and, therefore, considered good quality.

Statistics
FOR parameters and categorical age were used to model 
the probability of clinical pregnancy, live birth or preg-
nancy loss using logistic regression. For models with 
AMH, AMH [2] was also included, and a statistically sig-
nificant predictor of all outcomes. A P value of <0.05 was 
considered statistically significant. All statistical analyses 
were performed by the center’s senior statistican (S.K.D.), 
using SAS version 9.4 software.

Ethics, consent and permissions
Patients whose data are preserved in our center’s 
anonymized electronic database sign at presentation an 
informed consent that allows use of their medical records 
for research, as long as their anonymity is preserved and 
their medical records remains confidential. Both condi-
tions are met when data is extracted from the electronic 
database. Such projects are, therefore, approved by the 
center’s IRB (IRB of The Center for Human Reproduc-
tion, Chairman, Neil Rosenberg, MD) as expedited appli-
cations. This here presented study was, thus, approved 
under IRB application number ER0330215/01.

Results and discussion
Effects of embryo numbers
Table 2 summarizes cycle characteristics for Cohort I. As 
expected, good quality embryos, pregnancy and live birth 
rates declined with advancing age, while miscarriage 
rates increased. In age-specific categories, miscarriages 
can be defined in all figures as the differences between 
age-specific clinical pregnancy and live birth rates.

How embryo numbers affected clinical pregnancy and 
live birth rates is shown in Fig.  1: Good-, intermediate- 
and poor-outcomes within each age group were defined 
at visually obvious break points in pregnancy and live 
birth rates. In all figures, fields were colored in yellow 
for poor prognosis, in blue for good prognosis and left 
uncolored for intermediate-prognosis.

As Fig. 1a, c demonstrate, at youngest age (<36 years) 
pregnancy and delivery rates were excellent almost inde-
pendent of good quality embryo numbers. Even poor 
prognosis patients (defined by only 1–3 embryos) still 
achieved clinical pregnancy rates of 34–38  % and live 
birth rates of 29–32 %. Both rates steadily increased with 
increasing embryo production to a maximum of 62 and 
53 %, respectively.

Because our center only rarely performs elective single 
embryo transfer (eSET) [21], and up to age 38 practically 
never transfers more than 2 embryos, this age category at 
most received 2-embryo transfers (2ETs). Yet, pregnancy 

Table 1  Patient characteristics of patient Cohort I, II and III

Cohort I Cohort II Cohort III

Cycles (n) 1247 1514 632

Embryos (n) 4.9 ± 4.3 4.0 ± 3.4 4.1 ± 3.5

Age (years) 37.8 ± 6.7 39.5 ± 5.0 39.5 ± 4.9

FSH (mIU/mL) 17.3 ± 19.1 15.4 ± 14.8 15.8 ± 16.2

AMH (ng/mL) 1.1 ± 1.9 1.1 ± 1.9 1.1 ± 1.9

Pregnancies

 n 346 246 106

 % 27.8 16.2 16.8

Live births

 n 264 178 73

 % 21.2 11.8 11.6

Miscarriages

 n 82 68 33

 % 23.7 27.6 31.3
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and live birth rates increased almost linearly (Fig. 1b, d) 
with increasing embryo production.

The pregnancy loss (miscarriage) rate, defined as clini-
cal pregnancies minus live births, however remained 
similar, whether a woman produced 1 or 15 embryos: 
Pregnancy loss  <36, for example, occurred in 14.7  % of 
women with 1 embryo and in 14.5 % of women with 15 
embryos.

Figure  1a and c also demonstrate that, despited 
uniformly good clinical pregnancy and live birth 
rates  <36  years, separation of good-prognosis (≥51  % 

clinical pregnancy and  ≥44  % live birth), intermedi-
ate prognosis (respectively 40–50 and 34–44  %) and 
poor prognosis patients (respectively  ≤39 and  ≤33  %) 
was still possible based on obvious break points in cycle 
outcomes.

From age 36, outcomes started declining, while preg-
nancy losses increased, at age 36–38 reaching 29.2  % 
for women who produced 1, and 28.6  % in those with 
15 embryos. This traditional embryo quality param-
eter, thus, remained stable (Fig. 1a, c) and almost linear 
improvements of pregnancy and live birth rates with 

Table 2  Cycle outcome characteristics for Cohorts I, II and III in age categories

Ages (years) <36 36–38 39–40 41–42 ≥43

COHORT I (n = 1247)

 Cycles (n) 432 174 162 183 296

 Embryos (n) 7.5 ± 5.1 3.7 ± 2.9 3.7 ± 2.9 3.3 ± 2.4 3.1 ± 2.2

 Pregnancies

  n 203 49 40 32 22

  % 47.0 28.2 24.7 17.5 7.4

 Live births

  n 173 34 29 18 10

  % 40.0 19.5 17.9 9.8 3.4

 Miscarriages

  n 30 15 11 14 12

  % 14.8 30.6 27.8 43.8 54.6

COHORT II (n = 1514)

 Cycles (n) 303 234 239 259 479

 FSH (mIU/mL) 11.8 ± 12.7 15.0 ± 14.1 15.5 ± 13.2 14.7 ± 14.2 18.0 ± 16.9

 Pregnancies

  n 101 50 40 32 23

  % 33.3 21.4 16.7 12.4 4.8

 Live births

  n 86 35 29 18 10

  % 28.4 15.0 12.1 6.9 2.1

 Miscarriages

  n 15 15 11 14 13

  % 14.9 30.0 27.5 43.8 56.5

COHORT III (n = 632)

 Cycles (n) 127 87 103 109 206

 AMH (ng/mL) 2.3 ± 3.3 1.1 ± 1.9 0.7 ± 1.0 0.6 ± 1.1 0.7 ± 0.7

 Pregnancies

  n 45 16 16 14 15

  % 35.4 18.4 15.5 12.8 7.3

 Live births

  n 37 11 13 7 5

  % 29.1 12.6 12.6 6.4 2.4

 Miscarriages

  n 8 5 3 7 10

  % 17.8 31.2 18.8 50.0 66.7
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increasing embryo production was maintained into older 
ages (Fig.  1b, d). Indeed, improvements within age cat-
egories between 1 and 15 embryos grew with advancing 
age: Under age 36, clinical pregnancy chances increased 
by 82.4 % (from 34 to 62 %) but by 104.2 % (from 24 to 
49  %) in age category 36–38. Concomittantly, live birth 
rates improved by 89.3  % (from 29 to 53  %) under age 
36 and by 105.9  % (from 17 to 35  %) at ages 36–38. By 
age ≥43, clinical pregnancy rate for 1 embryo was 6  %, 
and for 15 embryos 17  %, a 183  % increase, while live 
births increased from 3 to 8 %, a 166.7 % increase (Fig. 1).

As Fig.  1a and c demonstrate, with persistently 
decreasing clinical pregnancy and live birth rates, 
women ≥43 years only with 7 or more embryos reached 
10  % clinical pregnancy rates or higher, and even with 
up to 15 embryos remained in single digit range for live 
births. No woman in that age group, therefore, could be 
considered a good prognosis patient.

Increasingly, poor embryo quality with advancing 
female age was also reflected in increasing pregnancy loss, 
in women with 1 embryo reaching 50.0 % at age ≥43, and 
52.9  % with 15 embryos. The embryo quality parameter 
of pregnancy loss, therefore, remained similar within age 
categories,—even at most advanced age; yet, clinical preg-
nancy and live birth rates within age categories improved 
with growing embryo numbers produced, and did so 
increasingly more pronounced as women grew older.

Effects of FSH levels
Table  2 describes cycle numbers, peak FSH levels and 
clinical pregnancy as well as live birth rates at different 
female ages.

Figure  2 summarizes probabilities of clinical pregnan-
cies (Fig.  2a, b) and live births (Fig.  2c, d) at FSH levels 
between 2.5 and 40.0 mIU/mL. Both at all ages declined 
with increasing FSH levels. Moreover, within each FSH 

Clinical Pregnancy Rates

Embryos
Ages

<35 36-38 39-40 41-42 ≥43
1 34% 24% 20% 15% 6%
2 36% 25% 22% 16% 7%
3 38% 27% 23% 17% 7%
4 40% 29% 24% 18% 8%
5 42% 30% 26% 19% 8%
6 44% 32% 27% 21% 9%
7 46% 34% 29% 22% 10%
8 48% 36% 31% 23% 11%
9 50% 37% 33% 25% 11%
10 52% 39% 34% 27% 12%
11 54% 41% 36% 28% 13%
12 56% 43% 38% 30% 14%
13 58% 45% 40% 31% 15%
14 60% 47% 42% 33% 16%
15 62% 49% 44% 35% 17%

Live Birth Rates

Embryos
Ages

<35 36-38 39-40 41-42 ≥43
1 29% 17% 15% 8% 3%
2 31% 18% 16% 9% 3%
3 32% 19% 17% 10% 3%
4 34% 20% 18% 10% 4%
5 36% 21% 19% 11% 4%
6 37% 22% 20% 12% 4%
7 39% 23% 21% 12% 4%
8 41% 25% 23% 13% 5%
9 42% 26% 24% 14% 5%
10 44% 27% 25% 15% 5%
11 46% 29% 27% 16% 6%
12 48% 30% 28% 17% 6%
13 50% 32% 30% 18% 7%
14 51% 34% 31% 19% 7%
15 53% 35% 33% 20% 8%
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Fig. 1  Age-specific model of pregnancies and live births based on good quality embryos produced per cycle. a, b reflect clinical pregnancy rates; c, 
d reflect live birth rates; In (a) and (c), blue background denotes good-prognosis, white denoted intermediate- and yellow poor-prognosis
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category, both outcomes also declined with advancing 
age.

For women  <36  years, FSH only up to 7.5  mIU/L 
denoted good prognosis (pregnancy 36–43  %; live 
birth 30–36  %). FSH levels mattered at all ages, with 
lower FSH levels, even with good-prognosis and within 
normal FSH levels offering better outcomes. Preg-
nancy after age 40, and live births even as early as age 
36, failed to reach good-prognosis at even lowest FSH, 
suggesting that, at least in adversely selected patients, 
normal FSH levels may have to be reconsidered.

FSH changed in its clinical relevance with advanc-
ing female age: For example, an FSH of 22.5–25.0 mIU/
mL;  <36  years resulted in clinical pregnancy in 19  %; 
though at age 41–42, the same rate required an FSH of 
2.5  mIU/mL (Fig.  2a); FSH of 32.5  mIU/mL  <36  years, 
allowed live births in 11  %; but at 41–42, this live birth 
rate required an FSH of 2.5 mIU/mL (Fig. 2c).

Figure  2 also demonstrates that  ≥43  years treatment 
futility, according to the American Society for Reproduc-
tive Medicine (ASRM) at ca. 1 % live birth rate [22], was 
reached at FSH 22.5 mIU/mL. Yet, up to 42 years, even 
up to FSH 40.0 mIU/mL futility was avoided.

Effects of AMH levels
Table  2 also introduces Cohort III, which was used 
to assess associations of a patient’s lowest AMH 
(between ≥0.5 and 10.0 ng/mL) with pregnancy (Fig. 3a, 
b) and live birth rates (Fig. 3c, d). In contrast to embryo 
and FSH models, pregnancy and live birth chances in 
association with AMH followed a bell-shaped curve, with 
best outcomes at midrange.

The very high pregnancy and live birth rates at “best” 
AMH levels were unexpected: Under age 36, AMH val-
ues between 3.5  ng/mL and 8.5  ng/mL offered best 
pregnancy chances (49–55  %, good-prognosis patients); 

Clinical Pregnancy Rates

FSH
Ages

<35 36-38 39-40 41-42 ≥43
2.5 43% 31% 26% 19% 9%
5.0 40% 28% 24% 17% 8%
7.5 36% 25% 21% 15% 7%
10.0 33% 23% 19% 13% 6%
12.5 30% 21% 17% 12% 5%
15.0 27% 18% 15% 10% 5%
17.5 24% 16% 13% 9% 4%
20.0 22% 14% 12% 8% 4%
22.5 20% 13% 10% 7% 3%
25.0 18% 11% 9% 6% 3%
27.5 16% 10% 8% 5% 2%
30.0 14% 9% 7% 5% 2%
32.5 12% 8% 6% 4% 2%
35.0 11% 7% 5% 4% 2%
37.5 10% 6% 5% 3% 1%
40.0 8% 5% 4% 3% 1%

Live Birth Rates

FSH
Ages

<35 36-38 39-40 41-42 ≥43
2.5 36% 21% 19% 11% 4%
5.0 33% 19% 17% 10% 3%
7.5 30% 17% 16% 8% 3%
10.0 28% 15% 14% 8% 3%
12.5 25% 14% 12% 7% 2%
15.0 23% 12% 11% 6% 2%
17.5 21% 11% 10% 5% 2%
20.0 19% 10% 9% 5% 2%
22.5 17% 9% 8% 4% 1%
25.0 15% 8% 7% 4% 1%
27.5 14% 7% 6% 3% 1%
30.0 12% 6% 6% 3% 1%
32.5 11% 5% 5% 3% 1%
35.0 10% 5% 4% 2% 1%
37.5 9% 4% 4% 2% 1%
40.0 8% 4% 3% 2% 1%
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b

Fig. 2  Age-specific model of pregnancies and live births based on FSH levels (in mIU/nL). a, b Reflect clinical pregnancy rates; c, d reflect live birth 
rates; In (a) and (c) blue background denotes good-prognosis, white background intermediate- and yellow background poor-prognosis
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1.0–3.0, and 9.0–10.0 ng/mL offered intermediate-prog-
noses (pregnancy 33–46 %), and only AMH of ≤0.5 ng/
mL denoted poor prognosis (with still respectable preg-
nancy rate of 29 %, Fig. 3a).

Live births behaved similarly (Fig.  3b): best live birth 
rates (43–47  %) were obtained at AMH 3.5–7.0  ng/mL; 
intermediate rates (32–41 %) at AMH of 1.5–3.0 and 7.5–
9.0 ng/mL. Even poor prognosis at AMH of ≤1.0 ng/mL 
still was associated with 25–29 % live births.

Clinical pregnancy and live birth declined only mildly 
up to age 42, and an unexpectedly high 18 % pregnancy 
rate was still achieved ≥43. Live births reached a respect-
able  7  % (oldest conception at age 47). Pregnancies in 
single digits occurred only with AMH <1.5 ng/mL. With 
AMH ≥2.0 ng/mL, clinical pregnancy rates were between 
10–18  %, though declined at very high AMH (Fig.  3a) 

after reaching peak pregnancy rates at AMH 5.5–6.5 ng/
mL. This patient group, however, also experienced the 
highest pregnancy loss rate of any model.

Pregnancy loss at all ages remained similar for low and 
“best” AMH levels but significantly increased at highest 
AMH levels:  <36  years, at AMH 0.5  ng/mL only 13.8  % 
miscarried and at “best” level of 5.5  ng/mL only 13.0  %; 
but at AMH of 10.0  ng/mL, rates spiked to 42.9  %. The 
same occurred  ≥43, where pregnancy loss was 57.1  % 
with lowest AMH, 61.1 % at “best” AMH levels and spiked 
to 81.8 % at highest AMH, contradicting that AMH line-
arly reflects not only oocyte quantity but also quality (23).

Statistical comments
Because all three here utilized statistical models highly 
correlate in representation of FOR in association with 

Live Birth Rates

AMH
Ages

<35 36-38 39-40 41-42 ≥43
0.5 25% 11% 11% 7% 3%
1 29% 13% 13% 9% 3%
1.5 32% 15% 15% 10% 4%
2 36% 18% 17% 11% 4%
2.5 39% 19% 19% 13% 5%
3 41% 21% 21% 14% 5%
3.5 44% 23% 22% 15% 6%
4 45% 24% 23% 16% 6%
4.5 46% 25% 24% 17% 6%
5 47% 25% 24% 17% 7%
5.5 47% 25% 24% 17% 6%
6 46% 24% 24% 16% 6%
6.5 45% 24% 23% 16% 6%
7 43% 22% 22% 15% 6%
7.5 41% 21% 20% 14% 5%
8 38% 19% 18% 13% 5%
8.5 35% 17% 16% 11% 4%
9 32% 15% 14% 10% 4%
9.5 28% 13% 12% 8% 3%
10 24% 11% 10% 7% 2%

Clinical Pregnancy Rates

AMH
Ages

<35 36-38 39-40 41-42 ≥43
0.5 29% 16% 15% 12% 7%
1 33% 19% 17% 15% 8%
1.5 37% 22% 20% 17% 9%
2 40% 24% 22% 19% 11%
2.5 43% 27% 25% 21% 12%
3 46% 29% 27% 23% 13%
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Fig. 3  Age-specific model of pregnancies and deliveries based on AMH levels (in ng/ml). a, b Reflect clinical pregnancy rates; c, d reflect live birth 
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patient age, construction of combined statistical models 
was not feasable. In univariate models, FSH and AMH, 
independently, were not predictive of miscarriage. 
Embryo numbers, however, did reach significance in an 
univariate model (P =  0.008), though, as expected, sig-
nificance was lost with adjustments for age, as embryo 
numbers in themselves are age-dependent.

General discussion
This study was initiated to determine whether, even in 
relatively adversely selected infertile patient populations, 
definitions of good-, intermediate- and poor-prognosis 
can at different ages be reached based on clinical preg-
nancy and live birth rates. To the best of our knowledge, 
such an age-based association study has never before 
been performed, and certainly not in poor prognosis IVF 
patients. Here studied populations’ relatively poor prog-
noses are best demonstrated by their elevated FSH and 
abnormally low AMH levels (Table 1).

To be able to classify patients prospectively would be 
clinically useful for patients and physicians alike. To clas-
sify patient populations retrospectively, would allow for 
their better definition and, therefore, hypothetically for 
better outcome comparisons between IVF centers. To 
allow for such comparisons, national outcome report-
ing in the US is legislatively mandated by Congress [2], 
though the current system has recently been described as 
inadequate, and even misleading [3].

A final reason for this study was the recent recognition 
that some treatment effects vary between good-, inter-
mediate- and poor-prognosis patients. Indeed, especially 
in poor prognosis patients, some widely utilized treat-
ments may be outright harmful [4].

Definition of patient prognosis
Since prospective definition of prognosis of IVF patients 
has been a longstanding goal, various models have been 
proposed [6–11]. None so far have, however, proven clin-
ically effective [23, 24].

By assessing the impact of FOR on IVF outcome in 
three distinctively different models, this study, there-
fore, approached the issue differently: In a retrospective 
model, based on number of embryos produced in a given 
IVF cycle; and in two prospective models, utilizing FOR’s 
two most widely used laboratory surrogates, FSH and 
AMH.

This multifocal evaluation of FOR proved successful 
since, based on breakpoints in clinical pregnancy and live 
birth rates, it allowed in in each age category for differen-
tiation between good-, intermediate- and poor-prognosis 
patients.

Defining parameters for individual prognosis catego-
ries, as expected [1] changed with advancing female age, 

and required increasing embryo numbers to maintain 
designations. With clinical pregnancy as final outcome, 
women  ≥43  years no longer demonstrated what could 
be defined as good prognoses. With live births as final 
outcome, all women in that age category, indeed, demon-
strated poor prognosis.

Utilizing peak FSH levels as FOR surrogate, simi-
lar associations became apparent (Fig.  2): pregnancy 
and live birth rates declined with increasing FSH and 
advancing age. Again, prognoses could be defined 
based on rather obvious cut offs in pregnancy and live 
birth rates. This model, however, already at young ages 
revealed a surprisingly narrow range of good-prognosis: 
in women  <36  years, only FSH ≤  7.5  mIU/mL, and at 
ages 36–37, only FSH ≤ 2.5 mIU/mL qualified as good-
prognosis with reference pregnancy, while with end point 
live births, only age  <36 qualified. Even intermediate-
prognosis became rare after age 40, and required FSH 
levels <5.0 mIU/mL, while only poor-prognosis patients 
were left ≥43 years.

These data confirm the importance of utilization age-
specific FSH levels in assessing infertile women [13].

More surprising observations were made in the AMH 
model: In contrast to the embryo and FSH models, it 
demonstrated a typical bell-shaped polynomial pattern. 
Worst IVF outcomes were observed at AMH extremes; 
“best” AMH was slightly above mid-point (Fig.  3). In 
pregnancy rates, this pattern carried over into the oldest 
patient group (Fig.  3a), though based on live births, no 
good prognosis patients were found ≥43 years (Fig. 3c).

Here reported outcomes are, of course, not automati-
cally applicable to other IVF programs. They were the 
consequence of very specific practice patterns [18, 25]. 
Even assuming identical patient populations (in itself also 
a highly unlikely proposition), different clinical protocols 
at other centers will result in different pregnancy and live 
birth rates. To construct universally applicable models, 
this study will have to be repeated on a multicenter or 
even national basis, and further validated against results 
from IVF centers with varying patient populations and 
treatment protocols.

Different AMH assays utilized by IVF centers may 
also offer mildly varying results [26], though mid-range 
AMH, in this study demonstrated to be most important 
AMH range, demonstrates least discrepancies between 
currently in use AMH assays.

Relevance of treatment protocols
Reliable prognostication of patients is of potential clinical 
importance: Treatments, which recently entered routine 
IVF, have shown varying effectiveness in different patient 
categories. For example, the concept of embryo selec-
tion in all of its applications appears beneficial only in 
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good-prognosis patients. With intermediate-prognosis, 
embryo selection appears ineffective, while with poor 
prognosis it outright decreases pregnancy and live birth 
chances [4]. At the other extreme, treatments reported 
effective in adversely selected patients [18, 19, 25], may be 
ineffective in intermediate and good prognosis patients.

IVF protocols, therefore, have to evolve toward indi-
vidualization of care, and a reproducible classification of 
patients, as here presented, would greatly contribute to 
standardization of individualized treatment options.

Previously unknown AMH associations with IVF outcomes
Likely the clinically most consequential and translation-
ally most important findings of this study relate to AMH 
levels: While in embryo and FSH models relationships 
were almost linear, clinical pregnancy and live birth 
chances in relation to AMH levels followed a bell-shaped 
curve, with maximal clinical pregnancy and live birth 
chances at midrange AMH, rather than highest or lowest 
levels.

Even into oldest age categories, this model at “best” 
AMH levels demonstrated unexpectedly high preg-
nancy rates. Live birth rates behaved similarly, and were 
remarkably high up to age 42. Beyond age 42, miscarrage 
rates, however, even at “best” AMH levels were extremely 
high. At “best” AMH levels, women ≥43, for example, 
reached an almost incredolous 18  % clinical pregnancy 
rate; but only a 7 % live birth rate, representing a 61.1 % 
clinical miscarriage rate. Though a 7 % live birth rate in 
this age category is still remarkable, the spike in observed 
pregnancy loss is even more stunning.

Though in embryo and FSH models pregnancy, inde-
pendent of embryo numbers and FSH levels, loss rates 
remained the same within all age categories, in the AMH 
model miscarriage rates remained similar only at low 
(57.1 %) and “best” AMH levels (61.1 %); at highest AMH 
levels, they spiked to an incredible 81.8 %.

Combined, these AMH-associations suggest positive 
effects on clinical pregnancy and live birth rates up to 
“best” AMH levels but, because of increasing miscarriage 
rates, with highest AMH levels unfavorable effects on live 
birth rates. A currently widely held opinions is that AMH 
linearly reflects oocyte quantity and quality, both declin-
ing with advancing female age [27, 28]. Here presented 
AMH observations, however, now suggest otherwise.

Moreover, since miscarriage rates remained the same 
in all age categories, whether patients produced 1 or 15 
embryos, improved outcomes with increasing embryo 
production (though identical embryo transfer numbers), 
likely, were independent of embryo quality, as defined by 
an embryo’s chromosomal integrity. Here presented data, 
therefore, suggest the existence of yet another embryo 

quality factor, which is independent of the embryo’s chro-
mosomal status.

The concept of selecting out euploid embryos prior 
to embryo transfer is the basic principle behind preim-
plantation genetic screening (PGS) [29]. Here reported 
findings, therefore, may at least partially explain why, 
contrary to most predictions, the PGS procedure has so 
far failed to improve IVF outcomes [30, 31].

The next question to be answered is what drives this 
previously unknown embryo quality factor, which appar-
ently increases in relative importance with advancing 
female age? Here presented data suggest that it must be 
associated with increasing oocyte/embryo production 
in IVF cycles; yet, since improvements with increas-
ing embryo numbers almost doubled between youngest 
and oldest age categories, the efficacy of this additional 
“embryo quality factor” must increase with advancing 
female age. This observation suggests that AMH may, 
indeed, be this second, previously unknown “embryo 
quality factor.”

AMH is, of course, strongly associated with oocyte/
embryo production in IVF [27, 28, 32]. At “best” AMH 
levels, our third model demonstrated extraordinarily high 
clinical pregnancy rates into even the oldest age catego-
ries. Women at ages 41–42 years and above 43 achieved 
almost unheard of clinical pregnancy rates of 29–30, and 
17–18 %, respectively. Neither embryo nor FSH models, 
however, demonstrated such extraordinary clinical out-
comes at advanced age categories.

These extraordinary IVF cycle outcomes, therefore, 
appear associated with “best” AMH levels, which in this 
study were defined at ranges of 3.5–8.5  ng/mL in the 
youngest, and between 4.5 and 7.5  ng/mL in even the 
oldest age categories.

Yet, in oldest patients this apparently beneficial AMH-
associated effect on clinical pregnancy rates was mostly 
lost to high miscarriage rates. Though live birth rates 
still remained relatively high until age 42, above age 43, 
at “best” AMH, they reached only 6–7  %. These rates, 
though, were still clearly higher than at vey low or very 
high AMH levels (2–5 %).

Conclusions
Combined, these observations suggest a “dosage-
dependent,” effect of AMH on clinical IVF outcomes: At 
“best”levels, AMH improves embryo implantation at all 
ages, leading to peak clinical pregnancy rates. Whether 
this observation represents an AMH effect on oocytes, 
embryos or the endometrium remains to be determined. 
At excessively high levels, AMH, however, to signifi-
cant degrees appears to increase the risk of pregnancy 
loss. Miscarriages at highest AMH spiked at all ages to 
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approximately 60  % but reached the incredible rate of 
81.8 % in the oldest age category above 43 years.

At “best” levels, AMH, thus meets previously noted 
requirements for a here newly described “embryo quality 
factor,” which is quantitatively associated with increasing 
embryo yields but also increases in efficacy with advanc-
ing age. This study, indeed, suggests that AMH, as facili-
tator and inhibitor, demonstrates increasing utility with 
advancing female age.

If confirmed by further investigations, here reported 
effects of AMH on IVF outcomes suggest, especially in 
older women, at appropriate dosaging a potential thera-
peutic role in improving clinical outcomes in IVF. Our 
data, however, also raise the specter of AMH, at higher 
therapeutic levels, functioning as an abortifaciant.

Somewhat surprisingly, a pharmacological AMH prod-
uct for human use is currently not available anywhere in 
the world. This is that more surprising since, at least in 
animal models, AMH has been demonstrated to demon-
strate clinical effects [33].
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