
METHODS ARTICLE
published: 04 April 2014

doi: 10.3389/fninf.2014.00034

Graph-based active learning of agglomeration (GALA): a
Python library to segment 2D and 3D neuroimages
Juan Nunez-Iglesias1*†, Ryan Kennedy1,2, Stephen M. Plaza1, Anirban Chakraborty3 and

William T. Katz1

1 FlyEM Project, HHMI, Ashburn, VA, USA
2 Department of Computer and Information Science, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
3 Video Computing Group, Department of Electrical Engineering, University of California at Riverside, Riverside, CA, USA

Edited by:

Satrajit S. Ghosh, Massachusetts
Institute of Technology, USA

Reviewed by:

Alexis Roche, Siemens Research -
CIBM, Switzerland
Thouis Raymond Jones, Harvard
University, USA

*Correspondence:

Juan Nunez-Iglesias, Life Sciences
Computation Centre, Victorian Life
Sciences Computation Initiative,
187 Grattan Street, Carlton, VIC
3010, Australia
e-mail: juan.n@unimelb.edu.au
†Present address:

Juan Nunez-Iglesias, Life Sciences
Computation Centre, Victorian Life
Sciences Computation Initiative,
Carlton, VIC, Australia

The aim in high-resolution connectomics is to reconstruct complete neuronal connectivity
in a tissue. Currently, the only technology capable of resolving the smallest neuronal
processes is electron microscopy (EM). Thus, a common approach to network
reconstruction is to perform (error-prone) automatic segmentation of EM images, followed
by manual proofreading by experts to fix errors. We have developed an algorithm and
software library to not only improve the accuracy of the initial automatic segmentation, but
also point out the image coordinates where it is likely to have made errors. Our software,
called gala (graph-based active learning of agglomeration), improves the state of the art
in agglomerative image segmentation. It is implemented in Python and makes extensive
use of the scientific Python stack (numpy, scipy, networkx, scikit-learn, scikit-image, and
others). We present here the software architecture of the gala library, and discuss several
designs that we consider would be generally useful for other segmentation packages. We
also discuss the current limitations of the gala library and how we intend to address them.

Keywords: connectomics, Python, electron microscopy, image segmentation, machine learning

1. INTRODUCTION
Connectomics, the elucidation of complete neuronal circuits,
requires resolutions as low as 5–10 nm to distinguish the smallest
neuronal processes, but also fields of view hundreds of microm-
eters across or more, as neurons can easily span those distances.
This size disparity results in large image volumes of at least 10
gigavoxels and often orders of magnitude larger. Neurons are vis-
ible as distinct regions, or segments, in this 3-dimensional image
volume. Combining an accurate segmentation with the position
of pre- and post-synaptic sites in the image (Kreshuk et al., 2011;
Jagadeesh et al., in press), one can obtain the shapes, locations,
and connectivity of all the neurons in an image volume, as has
been demonstrated in Helmstaedter et al. (2013) and Takemura
et al. (2013).

Various methods have been proposed (and implemented)
to go from images to neuronal morphology and connectivity.
Cardona et al. (2010) used manual tracing of the midline of
neuronal processes, along with manual annotation of synapses,
to analyze a neuronal circuit. Helmstaedter et al. (2011) refined
this approach by having multiple individuals trace the same
neuron, thus allowing them to estimate the error rate of their
traces. Manual tracing alone, however, will not scale to the recon-
struction of large neuronal circuits (Helmstaedter, 2013). An
alternate strategy, then, has been to use automatic segmenta-
tion of the neurons in the image volume, followed by human
proofreading of this segmentation (Chklovskii et al., 2010).
Until recently, this proofreading was the rate-limiting step for

neuronal reconstruction from EM images, for two reasons: first,
the segmentation algorithms were (and still are) orders of magni-
tude too inaccurate to reconstruct even a single neuron without
errors; and second, the human proofreaders had to examine
every voxel of the image, even if the automatic segmentation
is correct. In response, we developed a new machine learning-
based algorithm for image segmentation (Nunez-Iglesias et al.,
2013) that provides state of the art automatic segmentation accu-
racy and then directs proofreaders to likely areas of error in the
segmentation. This has dramatically sped up proofreading and
reconstruction speed (5–16-fold, in our anecdotal observations).

The algorithm, called GALA (graph-based active learning of
agglomeration), works by repeatedly consulting a gold standard
segmentation (prepared by human annotators) as it agglomerates
sub-segments according to its current best guess. (Note: through-
out this paper, we will use “GALA” to describe the algorithm, and
“gala” or “Gala” for the Python library and software.) It thus accu-
mulates a training dataset used to fit a classifier, which guides
subsequent agglomeration decisions. Furthermore, through the
probability output of the classifier, it can estimate its own con-
fidence in whether two segments should be merged, and this
estimate can be used for proofreading.

GALA outperformed previous agglomeration methods for
automatic segmentation of an isotropic (10 × 10 × 10 nm resolu-
tion) focused ion beam scanning electron microscope (FIBSEM)
dataset of Drosophila larva neuropil (Nunez-Iglesias et al., 2013).
What’s more, it remained top-ranked for 8 months in the

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 34 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2014.00034/abstract
http://community.frontiersin.org/people/u/88327
http://community.frontiersin.org/people/RyanKennedy/144751
http://community.frontiersin.org/people/u/136993
http://community.frontiersin.org/people/u/120935
http://community.frontiersin.org/people/u/130110
mailto:juan.n@unimelb.edu.au
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Nunez-Iglesias et al. Learned agglomeration

FIGURE 1 | Two sample automatic segmentations performed with gala.

(A) The SNEMI3D test data. The XZ plane (left) shows the initial, extremely
oversegmented superpixel map, while the YZ (right) and XY (bottom) planes
show the final segmentation returned by gala. Three complete neuronal
segments are highlighted in 3D. Note that the segmentation is not
perfect—stubs on the magenta 3D segment are candidates for missed

branches, and a big false split is apparent on the YZ cut plane (arrows). 3D
shape features should improve these results (Bogovic et al., 2013). (B) Our
favorite fuzzball from the Berkeley Segmentation Data Set. Clockwise from
top-left: original image, gPb boundary probability map (using the cubehelix
colormap), watershed superpixels, and final GALA segmentation using
threshold of 0.5.

SNEMI3D challenge, which uses anisotropic neuronal EM data
of 6 × 6 × 30 nm resolution, against tools developed specifically
for anisotropic data and comprising about 70 submissions (Liu
et al., 2012; Arganda-Carreras et al., 2013; Kaynig et al., 2013; Liu
et al., 2014). Finally, thanks to the nD design of gala, we were
able to segment 2D natural images and outperform state of the
art agglomerative methods on the Berkeley Segmentation Data
Set (BSDS) (Nunez-Iglesias et al., 2013). See Figure 1 for two
segmentation examples obtained with the gala library.

Since we have described the details of the GALA algorithm in
detail elsewhere (Nunez-Iglesias et al., 2013), in this paper we
focus on the design aspects of our implementation. We briefly
present the Python application programming interface (API) and
the command-line interface (CLI), before delving more deeply
into particularly useful design choices, and finally discussing the
current limitations of the library and future directions.

2. API
2.1. PYTHON API
GALA belongs a class of segmentation algorithms called agglom-
erative algorithms, in which segments are formed by merging
smaller segments. Other examples include mean agglomeration
(Arbeláez et al., 2010), the graphical models of Andres et al.
(2012a,b), and Learning to Agglomerate Superpixel Hierarchies
(LASH) (Jain et al., 2011), which is most similar to GALA.
Agglomerative methods begin with an initial fine-grained seg-
mentation known as an oversegmentation or superpixel map. The
superpixel approach allows a massive reduction in computa-
tional cost, enabling the use of more sophisticated algorithms in
the agglomerative step. Additionally, it allows the use of differ-
ent strategies to group pixels and regions, which may have very
different properties (Ren and Malik, 2003).

GALA uses machine learning to obtain a merge priority func-
tion or policy, which dictates which pair of segments to merge
next. It has three main prerequisites to learn this function:

• a superpixel map (or supervoxel), an initial fine-grained seg-
mentation; and

• a gold standard segmentation, that represents the true segmen-
tation of a training volume; and

• a pixel-level intensity map, which is optional but required
for most features. This is usually the probability of boundary
between segments, but can be other things, such as the proba-
bility of the pixel belonging to a glial cell, or to an image of a
cat (Le et al., 2012). The map can even be the input image itself.
Indeed, gala allows multi-channel pixel-level maps that are the
concatenation of some or all of the above maps.

For the first requirement, we have used the watershed algorithm
(Vincent and Soille, 1991), but other methods, such as SLIC
(Achanta et al., 2012) would work. Gala itself contains an imple-
mentation of watershed, although for some parameter sets we just
wrap the implementation in scikit-image, which is more
efficient and works both in 2D and 3D. Again, the only require-
ment here is that the input volume is partitioned into some
integer-labeled regions, and that these regions do not cross true
segment boundaries, at least approximately. The algorithm that
generates this initial oversegmentation is not important.

The second requirement is a completely segmented image to be
used as ground truth. For neuronal EM images, we used ground
truth segmentation generated with the open-source Raveler soft-
ware (Olbris et al., in preparation), while a large ground truth
body exists for natural images in the Berkeley Segmentation Data
Set (BSDS) (Martin et al., 2001). For other images, such as 3D
fluorescence microscopy images, generation of ground truth can
be a laborious process. This has indeed become the rate-limiting
step in a gala segmentation, so we are moving to eliminate this
requirement so that only a subset of ground truth is needed (see
discussion).

For the final requirement, we have used Ilastik (Sommer et al.,
2011) in our own work on EM images, gPb (Maire et al., 2008)

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 34 | 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Nunez-Iglesias et al. Learned agglomeration

for natural images, or the probability maps provided by Ciresan
et al. (2012) for the SNEMI3D challenge. Gala is agnostic about
the origin of the input probability maps, both theoretically and in
this implementation.

Given the above, we create a region adjacency graph, or RAG
(implemented in gala.agglo.Rag) corresponding to the
training superpixel and probability maps, and perform repeated
training agglomerations of the superpixels while comparing
against the ground truth (Rag.learn_agglomerate). This
produces a training set, to which we can fit a classifier, which will
then prioritize merges in a test volume to segment. These opera-
tions are illustrated in the following code snippets, which can be
run from gala’s tests/example-data directory.

First, we import the relevant gala modules and read in the data
using the imio (image IO) module:

imports
from gala import imio, classify, features, agglo,
evaluate as ev
read in training data
ground_truth_train = imio.read_h5_stack(’train-gt.

lzf.h5’)
prob_map_train = imio.read_h5_stack(’train-p1.lzf.h5’)
watershed_train = imio.read_h5_stack(’train-ws.lzf.h5’)

Next, we create a feature manager. These can be concatenated
using the Composite manager. Managers are covered in more
detail in section 3.2.

create a feature manager
fm = features.moments.Manager()
fh = features.histogram.Manager()
fc = features.base.Composite(children=[fm, fh])

Using the feature manager, watershed oversegmentation, ground
truth segmentation, and probability map, we can create a region
adjacency graph g_train and obtain a (features, labels) training
dataset.

g_train = agglo.Rag(watershed_train, prob_map_train,
feature_manager=fc)
(X, y, w, merges) = g_train.learn_agglomerate

(ground_truth_train, fc)[0]
y = y[:, 0] # gala has 3 truth labeling schemes,

pick the first one

With the training dataset, we can train a classifier, using scikit-
learn syntax. Indeed, any scikit-learn classifier can be used here.

rf = classify.DefaultRandomForest().fit(X, y)

By composing the feature map and the classifier, we obtain a
policy: a function whose input is a graph and two nodes (rep-
resenting segments) and whose output is a number in [0, 1].

learned_policy = agglo.classifier_probability(fc, rf)

This policy is then used to segment a test (previously unseen) vol-
ume. We agglomerate the superpixels until the classifier returns a
merge probability of 0.5, which corresponds to even odds that the
merge is a true or false merge. (This assumes a well-calibrated
classifier, meaning that the output corresponds to the probability
of a sample feature vector belonging to the “+1” class. Bostrom
(2008) showed random forests to be reasonably well-calibrated.)

get the test data and make a RAG with the trained
policy
prob_map_test,watershed_test = (map(imio.read_h5_stack,

[’test-p1.lzf.h5’,
’test-ws.lzf.h5’]))

g_test = agglo.Rag(watershed_test, prob_map_test,
learned_policy, feature_manager=fc)

g_test.agglomerate(0.5) # best expected segmentation
seg_test1 = g_test.get_segmentation()

Because gala was created as research software, it implements a
number of additional agglomerative segmentation algorithms,
including mean boundary, oriented mean boundary (Arbeláez
et al., 2010), median boundary, superpixel affinity learning (Ren
and Malik, 2003) (which we also call “flat” learning), and
LASH (Jain et al., 2011). These are invoked simply by using a
different merge_priority_function keyword argument,
or calling agglo.Rag.learn_agglomerate with different
parameters.

The gala API presents a simple tool to obtain state of the
art segmentations, and also allows the exploration of a com-
plete set of hierarchical agglomerative segmentation strategies.
Further, because the segmentation strategy is learned, it can be
applied with very little modification to many different domains,
as demonstrated by its success in natural image segmentation as
well as two different kinds of EM data.

2.2. SEGMENTATION EVALUATION MODULE
One of the most generally reusable parts of the gala library
is the evaluation module in gala/evaluate.py. It offers
efficient implementations of edit distance, Rand Index (Rand,
1971), Adjusted Rand Index (Hubert and Arabie, 1985), Fowlkes-
Mallows index (Fowlkes and Mallows, 1983), and Variation of
Information (VI) (Meila, 2005).

Among these, we focused the most effort on the VI met-
ric for its numerous advantages (Meila, 2005; Nunez-Iglesias
et al., 2013). VI is an information theoretic measure to compare
clusterings or segmentations. It precisely answers the following
question: given the identity of a point in segmentation B, how
much information, on average, will I need to know its iden-
tity in segmentation A, and vice-versa? If the two segmentations
match perfectly, the answer is 0 bits: no additional information
is required if the identity in A is the same as the identity in B in
every case. Formally, it is the sum of the conditional entropy of A
given B and the conditional entropy of B given A:

VI (A, B) = H (A|B) + H (B|A) (1)

When A is our automatic segmentation and B is the gold stan-
dard, H(A|B) measures the oversegmentation or false splits, and
H(B|A) measures the undersegmentation or false merges.

The two components of VI are computed efficiently (O(npixels)

time complexity) with the evaluate.split_vi function.

gt_test = imio.read_h5_stack(’test-gt.lzf.h5’)
import numpy as np
results = np.vstack((

ev.split_vi(watershed_test, ground_truth_test),
ev.split_vi(seg_test1, ground_truth_test)
))

print(results)
[[0.1845286 1.64774412]
[0.33793257 0.28697057]]

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 34 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Nunez-Iglesias et al. Learned agglomeration

This is interpreted as follows: the undersegmentation VI of
the watershed superpixels compared to the ground truth
segmentation is 0.18 bits. That is, the average watershed basin will
have slightly over 97% overlap with one ground truth body and
3% with another (since −0.97 log2(0.97) − 0.03 log2(0.03) =
0.19 ≈ 0.185). In contrast, its oversegmentation VI is 1.64 bits,
which means that most ground truth segments are split into
more than 3 watershed pixels. (The conditional entropy of a per-
fect (1/3, 1/3, 1/3) split is 1.58 bits. A perfect 50-50 split has an
entropy of 1 bit.)

By computing the two conditional entropies at each segmen-
tation threshold, we generate the split VI plot (Figure 2) that we
introduced in Nunez-Iglesias et al. (2013), showing the trade-
off between oversegmentation and undersegmentation. In this
plot, the x-axis is the undersegmentation conditional entropy,
measuring false merges, and the y-axis is the corresponding
oversegmentation measurement. Agglomerative segmentations
begin somewhere close to the y-axis (lots of oversegmenta-
tion but very little undersegmentation). Then, a correct merge
results in a downward move along the plot, while an incorrect
merge causes a rightward move. The goal of a good segmen-
tation algorithm, then, is to get as close as possible to (0, 0),
a perfect match between automatic segmentation and ground
truth.

This approach is in contrast to the commonly used plot of VI
against segmentation threshold (see e.g., Andres et al., 2012b),
which obscures the tradeoff information.

2.3. COMMAND-LINE INTERFACE
In addition to the flexible Python library interface, we developed a
set of command-line scripts to perform common gala functions,

such as training and segmenting. This is the primary way of
interacting with gala in a production environment. The scripts
make use of the excellent argparse module, so usage can be
determined by running the scripts with the -h or –help flags. Each
option can be provided on the command line or through a JSON
configuration file format.

3. DESIGN HIGHLIGHTS
In this section, we focus on a few design elements that we consider
essential to gala’s success.

3.1. N-DIMENSIONAL ARRAY SUPPORT
Many segmentation libraries assume 2D or 3D data, or provide
separate functions for each (see, for example, Achanta et al., 2010,
or many OpenCV functions).

We instead abstracted away the notion of a neighboring
pixel (or voxel) with a get_neighbor_idxs function that
depends only on the pixel coordinates, the shape of the array,
and a connectivity parameter. As all operations in our algo-
rithm depend only on the definition of the local neighborhood,
this abstraction made gala dimension-agnostic. This allowed us
to produce segmentations of the Berkeley segmentation dataset
(Martin et al., 2001) and a 3D EM dataset from the same
code base.

A great many algorithms in computer vision can be parame-
terized by neighboring voxels. Thus, we encourage developers to
write these using n-dimensional logic from the start to increase
the range of applications of their software. The numpy library’s
excellent ndarray object was essential for our n-dimensional
support, making gala a prime example of the success of the
Python ecosystem for scientific computing.

FIGURE 2 | Segmentation results for the focused ion beam scanning

electron microscopy (FIBSEM) dataset of Drosophila melanogaster larva

brain in Nunez-Iglesias et al. (2013). (A) Example automatic segmentation
of an octant of the dataset. The complex shapes of the three highlighted
segments illustrate the difficulty of segmenting neuronal data. (B) Split VI
plot from Nunez-Iglesias et al. (2013), showing superior segmentation

accuracy by gala over competing agglomerative algorithms. Lower and to the
left is better. The stars indicate the point of lowest VI, and the circles indicate
the point at threshold 0.5. Shaded areas show standard error of the mean for
n = 56 observations (“flat,” “agglo”) or n = 8 observations (“mean”). The
point labeled “best” represents the VI of a perfect merging of the initial
(imperfect) superpixels.

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 34 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Nunez-Iglesias et al. Learned agglomeration

3.2. FEATURE MANAGERS AND FEATURE CACHES
An example of a critical feature when determining the probabil-
ity that two segments should be merged is the average pixel-level
probability of boundary (Ren and Malik, 2003). As segments are
merged, the shared surface between them and their common
neighbors increases, thereby making the average a more reliable
estimate of the true probability of a boundary. Recomputing the
mean from scratch, however, results in quadratic time complex-
ity, because we are repeatedly iterating over the same pixels after
each merge. Therefore, a more efficient strategy is to cache a sum
of the pixel probabilities and the count of pixels examined. Then,
when two boundaries are combined, their probability sums are
added together, as are their counts, and the new average probabil-
ity can be computed by dividing the new sum by the new count,
in constant time. This caching turns a quadratic operation into a
linear one.

The above concept can be generalized to a large class of fea-
tures. We found that, in many cases, caching intermediate com-
putations dramatically improved the time complexity of feature
computation. For example, to compute the standard deviation of
the pixel probabilities, we must cache the sum of the squared pixel
probabilities, along with simple sum and counts. To compute a
histogram, we cache the unnormalized histogram, and each bin is
summed when two boundaries are combined.

We therefore devised a single class, which we call a feature
manager, that is responsible for defining the cached values, and
for computing the feature vector from the cached values. This
has enabled less obvious features, including, for example, some
based on the convex hull of the segment. The convex hull feature
manager stores as a cache the convex hull of each node. When
two nodes are merged, the resulting convex hull can be computed
faster by starting from the two initial hulls, rather than from the
newly formed segment, since these have fewer vertices than the
segments themselves. The manager then uses the hull to compute
features such as segment convexity, by comparing the volume of
the convex hull to the volume of the segment.

We have strived to make it easy to develop new feature man-
agers, which will be useful as new, more sophisticated 3D segmen-
tation features are developed (Bogovic et al., 2013). A GitHub pull
request creating a new manager can be found at: https://github.

com/jni/ray/pull/51

3.3. CLASSIFIER ABSTRACTION
Given the vast heterogeneity of our initial feature space, we
wished to use a random forest (RF) as our classifier of choice.
scikit-learn, the present gold-standard in machine learn-
ing Python libraries, did not contain a RF implementation when
we started building gala. We therefore decided to use Vigra, a
C++ image analysis and machine learning library with Python
bindings. However, we recognized that a cross-compatible inter-
face across libraries would allow rapid testing of various machine
learning techniques. We therefore built a wrapper around
Vigra to match scikit-learn’s estimator interface, par-
ticularly the fit(), predict(), and predict_proba()
methods.

Because of this, it is trivial to try different classifiers for
the learning and agglomeration steps of gala. In particu-
lar, we have been able to use the recently vastly improved

RandomForestClassifier from scikit-learn version
0.14 with no code changes.

In short, by using established interfaces, we were able to future-
proof our software. We recommend that anyone looking to build
software in the Python ecosystem take a long look at related
libraries to match interfaces as closely as possible.

4. DISCUSSION
Although we have discussed many of gala’s strengths and its pos-
itive design aspects, it does currently have limitations, which we
describe here, along with potential fixes.

4.1. COMPLETE GOLD STANDARD REQUIREMENT
As currently implemented, gala requires a fully segmented vol-
ume from which to learn. In our experiments, this has become
the major bottleneck when starting segmentations on new data.
Therefore, a priority in gala development going forward is the
ability to mask volumes so that partial ground truth can be used.

4.2. MEMORY AND TIME INEFFICIENCY
Gala’s implementation, based on NetworkX, is slow and has a high
memory footprint. However, many improvements are within easy
reach.

Firstly, we currently store feature caches and compute feature
vectors as separate arrays. This results in a huge time overhead for
large graphs due to memory allocation, and also in memory usage
because of the dictionaries required to store all the separate arrays.
However, because we are performing a hierarchical agglomera-
tion, we know that the number of nodes and edges is bounded by
twice the initial number. Therefore, we can pre-allocate an initial
array of shape (2 * n_nodes, cache_size) for the node
feature caches, and similarly for the edges, and use an incremen-
tal indexing scheme to keep track of which node or edge in the
hierarchy uses which row of the array.

Additionally, the graph currently stores indices to the vox-
els comprising each node and boundary, which is unnecessary.
Space and time can be saved by keeping only a single voxel and
rebuilding nodes using a flood fill.

Finally, we chose the heavy Graph class of the NetworkX
library for its flexibility and fast node addition and removal.
However, this is ultimately unnecessary: we can store the origi-
nal supervoxel graph using a much more efficient structure, such
as scipy.sparse.csc_graph, and maintain a merge tree.
The graph at any level of the hierarchy can be rapidly constructed
from this.

5. CONCLUSIONS
Like most academic software, gala is a mixture of new algorithms,
some good design, and a variety of questionable decisions left
over from a time of different priorities. We wrote this description
in the hope that the existing and future functionality, the better
parts of the software, and the lessons learned will be of value to
the wider research community. We particularly emphasize that
Don Knuth’s famous maxim that “premature optimization is the
root of all evil” (Knuth, 1974) should not be taken to extremes:
in our case, this has led to time and memory performance issues
that have been difficult to resolve. Still, gala’s success in segment-
ing not only the isotropic EM volume for which it was designed

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 34 | 5

https://github.com/jni/ray/pull/51
https://github.com/jni/ray/pull/51
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Nunez-Iglesias et al. Learned agglomeration

(Glasner et al., 2011; Nunez-Iglesias et al., 2013), but also the
BSDS natural image dataset and the SNEMI3D anisotropic EM
dataset, suggests that it will be useful for some time to come. In
future work, we will explore the potential of gala to segment other
kinds of neuronal data, including 3D light microscopy data and
3D+t neuronal activity data.

ACKNOWLEDGMENTS
This work was supported by the Howard Hughes Medical Institute
and the Victorian Life Sciences Computation Initiative. We thank
Dmitri Chklovskii for financial support and useful discussions,
and Jake VanderPlas for helpful suggestions for the “evaluate”
submodule. We also thank Mathew A. Saunders and the rest of
the FlyEM team for testing and feedback on the software.

REFERENCES
Achanta, R., Shaji, A., Smith, K., Lucchi, A., and Fua, P. (2012). SLIC superpix-

els compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal.
Mach. Intell. 34, 2274–2282. doi: 10.1109/TPAMI.2012.120

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Süsstrunk, S. (2010). SLIC
Superpixels. Available online at: http://ivrg.epfl.ch/research/superpixels

Andres, B., Koethe, U., Kroeger, T., Helmstaedter, M., Briggman, K. L., Denk,
W., et al. (2012a). 3D segmentation of SBFSEM images of neuropil by a
graphical model over supervoxel boundaries. Med. Image Anal. 16, 796–805.
doi: 10.1016/j.media.2011.11.004

Andres, B., Kroeger, T., Briggman, K. L., Denk, W., Korogod, N., Knott, G., et al.
(2012b). “Globally optimal closed-surface segmentation for connectomics,” in
ECCV (Florence), 778–791.

Arbeláez, P., Maire, M., Fowlkes, C., and Malik, J. (2010). Contour detection
and hierarchical image segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 33,
898–916. doi: 10.1109/TPAMI.2010.161

Arganda-Carreras, I., Seung, S. H., Vishwanathan, A., and Berger, D. (2013).
SNEMI 3D: 3D Segmentation of Neurites in EM Images. Available online at:
http://brainiac2.mit.edu/SNEMI3D/.

Bogovic, J. A., Huang, G. B., and Jain, V. (2013). Learned versus hand-designed
feature representations for 3d agglomeration. E-print: arXiv:1312.6159

Bostrom, H. (2008). “Calibrating random forests,” in Machine Learning and
Applications, 2008. ICMLA’08. Seventh International Conference on (San Diego,
CA), 121–126.

Cardona, A., Saalfeld, S., Preibisch, S., Schmid, B., Cheng, A., Pulokas, J., et al.
(2010). An integrated micro- and macroarchitectural analysis of the Drosophila
brain by computer-assisted serial section electron microscopy. PLoS Biol.
8:e1000502. doi: 10.1371/journal.pbio.1000502

Chklovskii, D. B., Vitaladevuni, S., and Scheffer, L. K. (2010). Semi-automated
reconstruction of neural circuits using electron microscopy. Curr. Opin.
Neurobiol. 20, 667–675. doi: 10.1016/j.conb.2010.08.002

Ciresan, D., Giusti, A., Gambardella, L. M., and Schmidhuber, J. (2012). “Deep
neural networks segment neuronal membranes in electron microscopy images,”
in Proceedings of Neural Information Processing Systems (Lake Tahoe, NV),
2852–2860.

Fowlkes, E. B., and Mallows, C. L. (1983). A method for comparing two hierar-
chical clusterings. J. Am. Stat. Assoc. 78, 553–569. doi: 10.1080/01621459.1983.
10478008

Glasner, D., Hu, T., Nunez-Iglesias, J., Scheffer, L., Xu, S., Hess, H., et al. (2011).
“High resolution segmentation of neuronal tissues from low depth-resolution
EM imagery,” in EMMCVPR ’11 (St. Petersburg), 1–12.

Helmstaedter, M. (2013). Cellular-resolution connectomics: challenges of
dense neural circuit reconstruction. Nat. Methods 10, 501–507. doi:
10.1038/nmeth.2476

Helmstaedter, M., Briggman, K. L., and Denk, W. (2011). High-accuracy neu-
rite reconstruction for high-throughput neuroanatomy. Nat. Neurosci. 14,
1081–1088. doi: 10.1038/nn.2868

Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S., and Denk,
W. (2013). Connectomic reconstruction of the inner plexiform layer in the
mouse retina. Nature 500, 168–174. doi: 10.1038/nature12346

Hubert, L., and Arabie, P. (1985). Comparing partitions. J. Classif. 2, 193–218. doi:
10.1007/BF01908075

Jagadeesh, V., Anderson, J., Jones, B., Marc, R., Fisher, S., and Manjunath, B. S.
(in press). Synapse classification and localization in electron micrographs. Patt.
Recogn. Lett. doi: 10.1016/j.patrec.2013.06.001

Jain, V., Turaga, S. C., Briggmann, K. L., Helmstaedter, M. N., Denk, W., and Seung,
H. S. (2011). “Learning to agglomerate superpixel Hierarchies,” in Advances in
Neural Information Processing Systems (Granada), 24.

Kaynig, V., Vazquez-Reina, A., Knowles-Barley, S., Roberts, M., Jones, T. R.,
Kasthuri, N., et al. (2013). Large-Scale automatic reconstruction of neuronal
processes from electron microscopy images. arXiv:1303.7186

Knuth, D. (1974). Structured programming with go to statements. ACM J. Comput.
Surv. 6, 268.

Kreshuk, A., Straehle, C. N., Sommer, C., Koethe, U., Cantoni, M., Knott, G.,
et al. (2011). Automated detection and segmentation of synaptic contacts in
nearly isotropic serial electron microscopy images. PLoS ONE 6:e24899. doi:
10.1371/journal.pone.0024899

Le, Q., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G., et al.
(2012). “Building high-level features using large scale unsupervised learning,”
in International Conference in Machine Learning (Edinburgh).

Liu, T., Jones, C., Seyedhosseini, M., and Tasdizen, T. (2014). A modular hierar-
chical approach to 3D electron microscopy image segmentation. J. Neurosci.
Methods 226, 88–102. doi: 10.1016/j.jneumeth.2014.01.022

Liu, T., Jurrus, E., Seyedhosseini, M., Ellisman, M., and Tasdizen, T. (2012).
“Watershed merge tree classification for electron microscopy image segmenta-
tion,” in Pattern Recognition, ICPR 2012 (Tsukuba), 133–137.

Maire, M., Arbelaez, P., Fowlkes, C., and Malik, J. (2008). “Using contours to
detect and localize junctions in natural images,” in Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on (Anchorage, AK), 1–8.

Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001). “A database of human
segmented natural images and its application to evaluating segmenta-
tion algorithms and measuring ecological statistics,” in Proceedings of the
8th International Conference Computer Vision, Vol. 2 (Vancouver, BC),
416–423.

Meila, M. (2005). “Comparing clusterings: an axiomatic view,” in Proceedings of the
22nd International Conference on Machine learning, ICML ’05 (New York, NY:
ACM), 577584.

Nunez-Iglesias, J., Kennedy, R., Parag, T., Shi, J., and Chklovskii, D. B. (2013).
Machine learning of hierarchical clustering to segment 2D and 3D images. PLoS
ONE 8:e71715. doi: 10.1371/journal.pone.0071715

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. J.
Am. Stat. Assoc. 66, 846–850. doi: 10.1080/01621459.1971.10482356

Ren, X., and Malik, J., (2003). “Learning a classification model for segmentation,”
in ICCV 2003: 9th International Conference on Computer Vision, Vol. 1 (Beijing),
10–17.

Sommer, C., Straehle, C., Koethe, U., and Hamprecht, F. A. (2011). “ilastik:
interactive learning and segmentation toolkit,” in 8th IEEE International
Symposium on Biomedical Imaging (ISBI 2011) (Chicago, IL), 230–233. doi:
10.1109/ISBI.2011.5872394

Takemura, S.-Y., Bharioke, A., Lu, Z., Nern, A., Vitaladevuni, S., Rivlin, P. K.,
et al. (2013). A visual motion detection circuit suggested by Drosophila con-
nectomics. Nature 500, 175–181. doi: 10.1038/nature12450

Vincent, L., and Soille, P. (1991). Watersheds in digital spaces: an efficient algo-
rithm based on immersion simulations. PAMI 13, 583–598. doi: 10.1109/34.
87344

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 01 November 2013; accepted: 18 March 2014; published online: 04 April
2014.
Citation: Nunez-Iglesias J, Kennedy R, Plaza SM, Chakraborty A and Katz WT (2014)
Graph-based active learning of agglomeration (GALA): a Python library to segment
2D and 3D neuroimages. Front. Neuroinform. 8:34. doi: 10.3389/fninf.2014.00034
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2014 Nunez-Iglesias, Kennedy, Plaza, Chakraborty and Katz. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original publica-
tion in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 34 | 6

http://dx.doi.org/10.3389/fninf.2014.00034
http://dx.doi.org/10.3389/fninf.2014.00034
http://dx.doi.org/10.3389/fninf.2014.00034
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Graph-based active learning of agglomeration (GALA): a Python library to segment 2D and 3D neuroimages
	Introduction
	API
	Python API
	Segmentation Evaluation Module
	Command-Line Interface

	Design Highlights
	N-Dimensional Array Support
	Feature Managers and Feature Caches
	Classifier Abstraction

	Discussion
	Complete Gold Standard Requirement
	Memory and Time Inefficiency

	Conclusions
	Acknowledgments
	References

