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Essential genes shape cancer genomes through
linear limitation of homozygous deletions
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Björn Nilsson1,2

The landscape of somatic acquired deletions in cancer cells is shaped by positive and

negative selection. Recurrent deletions typically target tumor suppressor, leading to positive

selection. Simultaneously, loss of a nearby essential gene can lead to negative selection, and

introduce latent vulnerabilities specific to cancer cells. Here we show that, under basic

assumptions on positive and negative selection, deletion limitation gives rise to a statistical

pattern where the frequency of homozygous deletions decreases approximately linearly

between the deletion target gene and the nearest essential genes. Using DNA copy number

data from 9,744 human cancer specimens, we demonstrate that linear deletion limitation

exists and exposes deletion-limiting genes for seven known deletion targets (CDKN2A, RB1,

PTEN, MAP2K4, NF1, SMAD4, and LINC00290). Downstream analysis of pooled CRISPR/Cas9

data provide further evidence of essentiality. Our results provide further insight into how the

deletion landscape is shaped and identify potentially targetable vulnerabilities.
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Deletion of chromosomal material is a common feature of
cancer genomes1. In addition to the target (driver) gene,
these lesions often involve neighboring (passenger)

genes2,3, some of which may be essential for the survival of tumor
cells. While inactivation of the target gene contributes to cancer
development, homozygous loss of a nearby essential gene will lead
to clonal elimination, limiting the extent of chromosomal dele-
tions. Additionally, hemizygous co-deletion of an essential gene
can create a latent vulnerability in the tumor cells4–13, and a
therapeutic window for drugs that further perturb the function of
these genes or the processes in which they are involved8–10,14.

By now, the main sites of recurrent deletions have been iden-
tified. Yet, the essential genes that limit the extent of deletions at
these loci have not been mapped, and the genomic patterns
associated with deletion limitation have not been defined. The
identification of essential genes currently relies on loss-of-
function screens with shRNA/sgRNA libraries7,15–20. Here,
however, we explored the possibility to identify flanking essential
genes through their limiting effect on the extent of homozygous
deletions. We argue that, under basic assumptions on positive
and negative selection, the presence of essential genes near a
deletion target gene gives rise to a statistical pattern where the
frequency of homozygous deletions decreases linearly between the
deletion target gene and the nearest essential genes. Using DNA
copy number copy number data from 9744 cancer specimens
belonging to 39 cancer subtypes, we show that linear deletion
limitation exists, and exploit it to expose deletion-limiting genes
for seven deletion targets (CDKN2A, RB1, PTEN, MAP2K4, NF1,
SMAD4, and LINC00290). Subsequent analysis of CRISPR/Cas9
data further supports that the identified deletion-limiting genes
are essential genes. Our results provide further insight into the
anatomy of cancer genomes and identify potentially targetable
vulnerabilities.

Results
Computational approach. One way to identify essential genes
based on DNA CN data would be to select genes that are never
homozygously deleted. Yet, this simple filter is unspecific, as large
portions of the genome are never homozygously deleted. Instead,

we developed a pattern-based method to identify essential genes
by exploiting their limiting effect on the extent of homozygous
deletions.

Basically, the landscape of somatic deletions is the result of a
random process coupled to clonal selection. Deletion of specific
target genes (e.g., tumor suppressors) is thought to lead to
positive selection, and the deletion breakpoints vary randomly
around these genes. However, in the case of homozygous
deletions, the breakpoints can be expected to be located between
the target gene and the nearest p- and q-terminal essential genes
due to negative selection.

Now, if we assume that all breakpoints between the target gene
and the nearest essential genes are equally probable, the positions
of the p- and q-terminal breakpoints will be uniformly distributed
in their respective intervals. As a result, the homozygous deletion
frequency will decrease linearly from the target gene to the two
nearest essential genes, as the cumulative distribution of a
uniform density distribution is a straight line. This prediction
contrasts with the naïve expectation that essential genes would
create sharp borders in the deletion landscape. When the limiting
essential gene and deletion target are close to each other and there
are many deletion events, the slope of the decay line can become
steep, to the point where it can be perceived as a sharp border.
Technically, however, the homozygous deletion frequency will
still decay gradually, and there will not be a sudden vertical drop
(Heaviside step) at the essential gene. The phenomenon can be
illustrated by simple simulation (Fig. 1 and Supplementary
Fig. 1).

In this context, we recognize that the breakpoints may not
always be perfectly uniformly distributed across the entire interval
between the target gene and the limiting essential gene. For
example, some positions could represent fragile sites with higher
breakpoint probability. Nevertheless, it is a reasonable working
assumption that the breakpoints are approximately uniformly
distributed at least in some neighborhood close to the deletion-
limiting essential gene, and that the homozygous deletion
frequency decays approximately linearly in that neighborhood.

Based on this reasoning, we defined a deletion-limitation score
(DLS) for a given DNA copy number dataset by first selecting
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Fig. 1 Linear deletion limitation illustrated by simulation. Hypothetically, the frequency of homozygous deletions in a recurrently deleted region should
approach to zero at the nearest essential gene (EG). To illustrate this phenomenon, we simulated frequency of hemizygous and homozygous deletions
across a fictive chromosomal region, harboring a deletion target gene surrounded by essential and non-essential genes. In these simulations, we required
both copies of the target gene to be inactivated, however potentially through a variety of different mechanisms: regional deletion, whole-arm deletions,
point mutation, or reduplication of the mutated chromosomes accompanied by deletion of the normal chromosome. The probability of each type of
inactivation was determined by fixed probabilities. This plot shows the results across 1000 simulated chromosome pairs, and probabilities 20% for regional
deletion, 7% for point mutation, and 1% for reduplication. Similar results were obtained with other parameter values. Regardless of parameter values, the
frequency of homozygous deletions drops to zero at the essential genes located closer to the target gene
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genes that are conserved against homozygous deletions, then
define the DLS as the linear correlation between homozygous
deletion frequency and genomic position across a fixed-size
neighborhood p-terminal or q-terminal of each of gene (i.e., the
positive correlation coefficient for a straight line with zero
intercept at the q-terminal end of the gene and raising across a q-
terminal neighborhood; or the negative correlation coefficient of a
straight line with zero intercept at the p-terminal end of the
gene). The final score is given by the correlation coefficient with
the largest absolute values. A DLS with a high absolute value thus
means that the homozygous deletion frequency can be success-
fully modeled as a straight line, which is what we predict to
happen theoretically in the vicinity of EGs. Consequently, if genes
with high DLS can be detected, linear deletion limitation likely
occurs near them.

When interpreting the DLS, one needs to bear in mind that the
regression integrates information across a chromosomal neigh-
borhood with a certain size. Thus, scores may be smoothed across
genes with overlapping regression neighborhoods, and the size of
the neighborhood determines the degree of smoothing. Using a
smaller neighborhood will capture deletion-limiting phenomena
at higher resolution (less smoothing), while producing scores
based on fewer deletion events. Conversely, a larger neighbor-
hood will produce scores based on more deletion events, while
increasing smoothing.

To call homozygous (complete) deletions in order to identify
deletion limitation, we applied dataset-specific thresholds to
the copy number data. To select these thresholds, we recognize
that we need to identify a set of lesions that are likely
homozygous, with as little contamination from hemizygous
deletions as possible, whereas it is not necessary to identify all
homozygous deletions in an exhaustive manner. For this reason,
we identified thresholds that call homozygous lesions conserva-
tively (Supplementary Fig. 2). The thresholds were also justified
using a theoretical model that accounts for variation in tumor cell
fraction (see Methods and Supplementary Fig. 3) as well as the
possibility that cancer genomes may contain more than two
copies of the original chromosomal region.

Identification of deletion-limiting genes. We applied our
approach to pre-existing DNA copy number profiles of 7268
primary tumor samples from 24 tumor types from the Cancer
Genome Atlas (TCGA)21. We calculated DLS using a 0.5-, 1- and
2-Mb neighborhood, selected genes with DLS greater than 0.8
based on at least 15 deletion events and assessed the robustness of
the scores by bootstrapping. To focus our analysis on genes that
have a potentially targetable vulnerability, we limited our analysis
to genes with a reasonable (>5%) frequency of hemizygous
deletions.

Using these criteria, we detected deletion limitation at 48 genes
in seven distinct genomic regions (Table 1). For six of these, the
deletion peaks map to well-known tumor suppressor genes
(CDKN2A, PTEN, RB1, MAP2K4, NF1, and SMAD4) that are
frequently deleted in multiple cancer types (Supplementary Fig. 4).
For the seventh region, the deletion peak maps to a long intergenic
non-coding RNA of putative cancer relevance (LINC00290)22. The
candidate deletion-limiting genes were located p-terminal and/or
q-terminal of their respective target genes, adjacent to the points
where the homozygous deletion frequency approaches zero
(Fig. 2a–g). For further validation, and to exclude that the results
were due to admixture of non-tumor cells, we examined the seven
loci in DNA copy number profiles of 1043 cancer cell lines from
the Cancer Cell Line Encyclopedia (CCLE)23. In all seven regions,
we observed deletion limitation patterns and DLS scores
(Supplementary Fig. 5a–g, Supplementary Table 1) analogous to

those observed in TCGA. Additionally, in a second set of DNA
copy number profiles of 2476 tumor specimens from 39 tumor
types (Tumorscape24), we observed deletion limitation in the
CDKN2A,MAP2K4, and PTEN regions (Supplementary Fig. 6a–g)
whereas the results were inconclusive in the other four regions,
most likely because the latter data set was generated using lower-
resolution microarrays (Affymetrix 250k) and lower-purity
samples (median tumor cell fraction 58% compared to 89% and
99% for TCGA and CCLE; Supplementary Fig. 3), making it
harder to detect homozygous deletions.

Since the DLS reflects how well homozygous deletion
frequency is explained locally by a linear model whose intercept
with the zero baseline, these results indicate that linear deletion
limitation occurs in human cancer, at least at these seven loci.

Deletion-limiting genes at the identified loci. The genes with
the highest DLS were located around CDKN2A on chromosome
9p21 (Fig. 2a and Table 1). Here, we found that the frequency of
homozygous deletions drops quickly, and almost perfectly line-
arly, at RPS6. This observation, along with the fact that RPS6
encodes one of the proteins of the small (40S) ribosomal subunit,
indicates that RPS6 is an essential gene and limits the p-terminal
extent of regional, homozygous deletions targeting CDKN2A.
Interestingly, RPS6 also marks the q-terminal boundary of a 400-
kb region that is never homozygously deleted, and thus likely
harbors additional essential genes. On the q-terminal side, the
frequency of homozygous deletions reached zero around ACO1.
However, in contrast to the p-terminal side, where the homo-
zygous deletion frequency drops to zero within a short distance of
2.5 Mb from CDKN2A and it is easy to identify RPS6 as a likely
limiting gene, the homozygous deletion frequency decays across a
broader region of 10.4 Mb on the q-terminal side, making it more
difficult to pinpoint the limiting gene based on the copy number
distribution (as there will be fewer deletion events within the
regression window). On the q-terminal side, ACO1 thus marks
the start of a region that is never homozygously deleted and
harbors several likely essential genes such as SMU1, encoding a
DNA replication regulator and spliceosomal factor25, and NOL6,
encoding a protein required for ribosome biogenesis26.

The second strongest DLS signals were found around RB1 at
chromosome 13q14. Here, we predicted MED4 as limiting gene
on the p-terminal side (Fig. 2b, Table 1). This gene encodes a core
subunit of the mediator complex that links transcription factor
binding to the RNA polymerase II machinery27, and has
previously been reported as a limiting gene for RB1 deletions28.
While no genes on the q-terminal side fulfilled our requirement
for 15 homozygous deletion events, we noted that the
homozygous deletion frequency dropped at INTS6 (Fig. 2b),
which encodes one of the components of the integrator complex
involved in transcription27 (DLS 0.98 with a 2.0 Mb neighbor-
hood based on 12 deletion events).

Further, at MAP2K4, we identified the mitochondrial genes
SCO1 and ELAC2, involved in mtRNA processing29 and the
cytochrome c complex30, respectively, as deletion-limiting
(Fig. 2c). At NF1, we identified TEFM, required for mitochondrial
transcription elongation31, ADAP2 which binds beta-tubulin and
increases the stability of microtubules32, and COPRS, a putative
oncogene33 (Fig. 2d). At SMAD4, we identified CXXC1, encoding
for a DNA methylation regulating CpG-binding protein, and
SKA1, involved in mitotic spindle and kinetochore assembly, as
the p-terminal deletion-limiting genes. Interestingly, downregula-
tion of this gene has been reported to lead to reduced cell
proliferation and invasiveness in cancer34 (Fig. 2e). At
LINC00290, we identified DCTD, which encodes a dCMP
deaminase required for nucleotide synthesis35, as the q-terminal
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deletion-limiting gene, while the p-terminal limiting point
mapped to a gene desert (Fig. 2f). Lastly, at PTEN, which shows
an unusual deletion distribution, the candidate deletion-limiting
genes wereWAPAL, encoding a cohesin-associated protein36, and
FAM22A on the p-terminal side and RPP30, encoding a part of
the RNase P complex37, on the q-terminal side (Fig. 2g).

Altogether, our results identify the limit points for homozygous
deletions for several well-established tumor suppressor genes. The
fact that the genes located at these points are involved in key
metabolic processes (ribosomes, mitochondria, and transcription)
supports that the deletion-limiting genes are essential for cell
survival.

Analysis of essentiality in the 9p21/CDKN2A region. To explore
further the essentiality of deletion-limiting genes at all seven loci,

we first examined genome-wide CRISPR loss-of-function screen
data from 558 cell lines from the Cancer Dependency Map20,38.
Among the computationally identified deletion-limiting genes,
HAUS6 and RPS6 (near CDKN2A),MED4 and INTS6 (near RB1),
ELAC2 (near MAP2K4), WAPAL, FAM22A and RPP30 (near
PTEN), CXXC1 and SKA1 (near SMAD4), and TEFM, ADAP2,
and COPRS (near NF1) showed depletion by CRISPR-Cas9 in
these data, further supporting essentiality (Fig. 3a–g, Supple-
mentary Table 2 and http://www.depmap.org). We also noted
that SMU1, NOL6, RPS6, and WAPAL are completely conserved
against germline loss-of-function mutations in the GNOMAD
database39 (pLI > 0.98), and TEFM and COPRS partly conserved
(pLI= 0.51 and 0.25, respectively), though it is not given that a
gene that is conserved against heterozygous loss-of-function
variants in the germline (which is mainly what the pLI score
reflects) is essential for the survival of tumor cells, or vice versa.

Table 1 Genes with high DLS scores in the TCGA dataset

GeneSymbol Chr Start End 0.5Mb 1Mb 2Mb

r 90% CI N r 90% CI N r 90% CI N

4q34.3 LINC00290
LOC90768a 4 183,060,158 183,065,668 −0.976 [−0.988 to −0.921] 25
MIR1305a 4 183,090,445 183,090,531 −0.971 [−0.988 to −0.911] 25
DCTD 4 183,811,243 183,838,630 −0.924 [−0.958 to −0.839] 25
FAM92A1P2a 4 183,958,817 183,961,272 −0.906 [−0.956 to −0.81] 25

9p21.3 CDKN2A
FAM154A 9 18,927,890 19,033,256 0.932 [0.893 to 0.951] 40 0.991 [0.983 to 0.993] 86
RRAGA 9 19,049,371 19,051,021 0.944 [0.913 to 0.959] 41 0.992 [0.984 to 0.994] 93
HAUS6 9 19,053,134 19,102,940 0.962 [0.936 to 0.972] 41 0.993 [0.985 to 0.995] 102
SCARNA8a 9 19,063,653 19,063,784 0.949 [0.919 to 0.962] 41
PLIN2 9 19,115,758 19,127,604 0.968 [0.945 to 0.977] 42 0.993 [0.984 to 0.995] 109
DENND4C 9 19,230,762 19,374,137 0.993 [0.971 to 0.995] 29 0.996 [0.985 to 0.997] 50 0.989 [0.975 to 0.995] 141
RPS6 9 19,376,253 19,380,235 0.997 [0.983 to 0.996] 32 0.996 [0.986 to 0.997] 50 0.988 [0.973 to 0.994] 141
ACO1 9 32,384,600 32,450,832 −0.919 [−0.944 to −0.716] 17
DDX58 9 32,455,299 32,526,322 −0.910 [−0.943 to −0.682] 17

10q23.31 PTEN
WAPAL 10 88,195,012 88,281,541 0.913 [0.893 to 0.923] 63
FAM22A 10 88,985,204 88,994,733 0.973 [0.944 to 0.984] 38 0.906 [0.883 to 0.922] 59
FAM22A-AS1a 10 88,998,423 89,102,315 0.995 [0.984 to 0.995] 58 0.913 [0.884 to 0.931] 62
LOC439994 10 89,102,167 89103,331 0.994 [0.981 to 0.995] 56 0.913 [0.885 to 0.929] 62
FAM22D 10 89,117,476 89,130,452 0.965 [0.951 to 0.968] 56 0.911 [0.881 to 0.929] 63
HTR7 10 92,500,575 92,617,671 −0.933 [−0.959 to −0.867] 33
RPP30 10 92,631,708 92,668,312 −0.915 [−0.946 to −0.832] 28
ANKRD1 10 92,671,856 92,681,032 −0.908 [−0.941 to −0.819] 28

13q14.2 RB1
SUCLA2 13 48,516,790 48,575,462 0.962 [0.908 to 0.972] 25
NUDT15 13 48,611,702 48,621,282 0.975 [0.922 to 0.982] 26
MED4 13 48,649,863 48,669,277 0.971 [0.916 to 0.979] 26
MED4-AS1a 13 48,651,272 48,654,129 0.975 [0.924 to 0.982] 26

17p12 MAP2K4
MYH13 17 10,204,182 10,276,322 0.977 [0.933 to 0.982] 20
MYH8 17 10,293,641 10,325,267 0.968 [0.924 to 0.977] 20
MYH4 17 10,346,607 10,372,876 0.960 [0.909 to 0.973] 20
MYH1 17 10,395,626 10,421,859 0.950 [0.894 to 0.969] 20
MYH2 17 10,424,464 10,452,940 0.943 [0.883 to 0.966] 20
MYH3 17 10,531,842 10,560,626 0.912 [0.838 to 0.946] 20
SCO1 17 10,583,648 10,600,885 0.901 [0.825 to 0.94] 20
ELAC2 17 12894928 12921381 −0.989 [−0.991 to −0.946] 19

17q11.2 NF1
GOSR1 17 28,804,425 28,853,832 0.901 [0.824 to 0.923] 18
SUZ12P1 17 29,036,625 29,097,068 0.951 [0.897 to 0.961] 18
CRLF3 17 29,109,701 29,151,778 0.974 [0.928 to 0.981] 18
ATAD5 17 29,159,022 29,222,295 0.964 [0.893 to 0.983] 17
TEFM 17 29,226,000 29,233,286 0.959 [0.899 to 0.982] 18
ADAP2 17 29,248,753 29,286,211 0.910 [0.823 to 0.953] 18
COPRS 17 30,178,883 30,186,326 −0.951 [−0.975 to −0.854] 15
LRRC37B 17 30,348,154 30,380,519 −0.925 [−0.946 to −0.852] 18
SH3GL1P1a 17 30,367,354 30,369,851 −0.932 [−0.95 to −0.867] 18
RHOT1 17 30,469,472 30,552,746 −0.916 [−0.933 to −0.856] 18
ARGFXP2a 17 30,477,386 30,478,590 −0.913 [−0.931 to −0.851] 18

18q21.2 SMAD4
CCDC11 18 47,753,562 47,792,865 0.914 [0.843 to 0.925] 15
MBD1 18 47,793,251 47,808,144 0.916 [0.841 to 0.928] 15
CXXC1 18 47,808,712 47,814,692 0.916 [0.841 to 0.928] 15
SKA1 18 47,901,391 47,920,538 0.920 [0.838 to 0.942] 15

Candidate deletion-limiting genes show a DLS > 0.8 (r) within a 0.5-, 1- and/or 2-Mb neighborhood based on at least 15 homozygous somatic deletion events within the neighborhood (N), as well as
>5% frequency of hemizygous deletions. Positive and negative r-values indicate candidate genes at the p- and q-terminal, respectively. To estimate the robustness of DLS scores, we assigned 90%
confidence intervals using 200-fold bootstrapping. The identified genes map to seven distinct genomic regions, characterized by a high frequency of somatic acquired deletions with well-known deletion
targets
aNon protein coding gene
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The strongest evidence for deletion-limitation was observed in
the CDKN2A region. Because of the prominence of CDKN2A as a
deletion target, and because the limiting gene on the q-terminal
side was not clearly identified, we also carried out a focused
CRISPR/Cas9 negative selection screen targeting a set of 68 genes
flanking CDKN2A. The screened region ranged from 16.5 (BNC2)
to 34Mb (UBAP2), targeted by 398 sgRNA sequences from the
human GeCKO v2.0 library40 (Supplementary Table 3). The
resulting pooled sgRNA library was transduced into the human
acute lymphoblastic leukemia (ALL) Jurkat and RCH-ACV. The
representation of each sgRNA was assessed by deep sequencing of
integrated sgRNA sequences at day 14 and compared to the
representation at day 3 after puromycin selection. Gene depletion
was quantified as the log2 fold change of each sgRNA. We
considered genes for which at least two sgRNAs showed greater
than 25% depletion as potential essential genes. We observed
depletion of HAUS6, RPS6, SMU1, and NOL6 in both cell lines,
and selective depletion of RRAGA in RCH-ACV cells and
DNAJA1 in Jurkat cells (Supplementary Figs. 7a–c, 8a–c).

Both RPS6 and NOL6 genes are involved in ribosome
biogenesis26. RPS6 knockdown impairs ribosome biogenesis,
activates p5326, and alters rRNA processing41. Knockdown of
nol6 in C. elegans disrupts nucleolar integrity and induces p5326.
SMU1 is a chromatin-bound protein involved in the regulation of
DNA replication25. HAUS6 is a key component of the HAUS-
Augmin complex required for recruiting γ-tubulin to mitotic
spindle microtubules42. Knockdown of both of these genes has
been reported to result in cell cycle arrest and cell death25,42. As
for the genes showing cell-line specific essentiality, RRAGA
encodes a regulator of mTORC1 and knockdown leads to
enhanced p53 translation and p53-dependent senescence43 via
the PI3K/AKT pathway44. Thus, RRAGA knock-down could
selectively affect the survival of cells with intact TP53, including
RCH-ACV. On the other hand, DNAJA1 binds mutant p53 and
prevents its degradation45, and shows depletion only in Jurkat
cells, which carry an inactivating TP53 mutation (p.Arg196*)46.
Thus, the different results for RRAGA and DNAJA1, and the more
modest effect of RPS6 and NOL6 knockout seen in Jurkat could
be explained by differences in TP53 status.

In all, these observations further support that the identified
deletion-limiting genes are essential and identify additional
essential genes in the CDKN2A region.

Exploiting haploinsufficiency of identified essential genes.
While conserved for homozygous deletions, the identified
essential genes are regularly co-deleted with their respective dri-
ver genes (Fig. 3a–g). For all identified essential genes except
FAM22A, we observed a correlation between DNA copy number
and transcript level across 947 human cancer cell lines from the
CCLE23 (Supplementary Fig. 9), and data from pooled CRISPR/
Cas920,38 and shRNA knockdown screens2,5,47 indicate that
hemizygous deletion of HAUS6, RPS6, SMU1, NOL6, RPP30,
MED4, INTS6, and ELAC2 increases the sensitivity to further
knockdown of these genes (Supplementary Table 2). These data
suggest that the haploinsufficiency for at least a subset of the
identified essential genes could potentially be exploited for
selective targeting. The identification of concrete ways to exploit
haploinsufficiency for selective targeting is however beyond the
scope of this study.

Discussion
We have carried out a systematic analysis to identify genes that
limit the extent of homozygous deletions in cancer genomes.
Identifying genes that are essential for the survival of cancer
cells (not to be confused with genes that are essential for cancer

initiation) is potentially clinically relevant as they tend to be
located close to key deletion target genes and tend to be fre-
quently hemizygously deleted. It is conceivable that hemizygous
loss (haploinsufficiency) of an essential gene creates a cancer
cell-specific vulnerability in the form of a therapeutic window
for drugs that further perturb the function of the essential gene.

In this study, we consider the possibility of identifying
essential genes from DNA copy number data. We predict the-
oretically that, under basic assumptions of deletions arising
through a random process coupled to both positive and nega-
tive selection, there should exist a statistical pattern where the
frequency of homozygous deletions decays approximately lin-
early between the deletion target gene and the nearest essential
gene. Using DNA CN data from 9744 cancer specimens, we
demonstrate that linear limitation occurs in human cancer.
This is evidenced by the detection of seven loci harboring genes
with high DLS, which reflects how well homozygous deletion
frequency is explained by a linear model with zero baseline
across a neighborhood upstream or downstream of the limiting
essential gene. For validation, we carry out replication analyses
in CCLE, with good results, and in Tumorscape, where some
patterns replicate but not all, probably due to lower resolution
and lower tumor cell fraction. The reason for using microarray
data, as opposed to for example whole-exome sequencing
(WES) data, is that it provides dense copy number data across
the entire genome, not just coding regions. This allows iden-
tification of linear relationships between homozygous deletion
frequency and genome position. With WES data, one would
only have deletion frequencies in coding regions (about 2–3%
of the genome), which would be too sparse for this type of
analysis.

The clearest example of linear deletion limitation was found
at the CDKN2A region at 9p21, which is commonly deleted in
several cancer types, including ALL, lymphoma, glioblastoma,
and melanoma24. Here, we found that homozygous CDKN2A
deletions are constrained by RPS6 and identify HAUS6 and
RRAGA as additional essential genes in the p-terminal con-
served region. On the q-terminal side, we identify SMU1, NOL6,
and possibly DNAJA1, as likely essential genes. Both RPS6 and
SMU1, as well as several other predicted deletion-limiting genes
are involved in key metabolic processes (e.g., ribosomes, cell
division, mitochondria). Candidate limiting essential genes
were also identified in the other regions, including WAPAL,
FAM22A, and RPP30 (near PTEN), MED4 and INTS6 (near
RB1), SCO1 and ELAC2 (near MAP2K4), CXXC1 and SKA1
(near SMAD4), and TEFM, ADAP2, and COPRS (near NF1), all
of which supported both by high deletion limitation scores and
by varying degrees of depletion in shRNA and/or CRISPR-Cas9
screens.

At some of the detected loci, we noted that the homozygous
deletion frequency appears to reach zero before the likely limiting
essential gene. A likely explanation for this is that the number of
deletion events in the available data sets is small. Theoretically,
when the number of deletions with end points between the
deletion target and the limiting essential gene is finite, one of
them must be closest to the essential gene. Yet, this closest
deletion does not have go all the way up to the essential gene. It
can end before. Moreover, since the end points are randomly
distributed between the deletion target and the limiting essential
gene, the distance between the essential gene and closest end
point will likely be larger when there are fewer deletions in the
data set (i.e., data are locally sparse). Thus, for a gene to be a
limiting essential gene, it is not correct to require that there exists
an individual deletion that goes all the way up to that gene in a
given data set. This criterion is only correct when the number of
available deletion events is infinite, or at least very high.
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A possible advantage of identifying essential genes via dele-
tion frequencies is that this approach exposes genes that are
essential under in vivo conditions, thereby avoiding the risk of
detecting genes that are essential only to cancer cells in culture.
Its main limitation is that it requires sufficient numbers of
deletion events locally and that it smooths information across
genes within the neighborhood used to calculate the DLS. Other
limitations, which this approach shares with in vitro screens,
are that it is not guaranteed to identify genes that are essential
only to cancer cells and it is unclear to what extent it only detect

genes that are fully essential or also genes that somewhat reduce
fitness. Further, our model obviously has certain theoretical
limitations in that it assumes that deletions are continuous, and
the deletion breakpoints are approximately uniformly dis-
tributed in some neighborhood around the limiting essential
gene. While these are appropriate working assumptions, and
our approach appears to give reasonable results in practice, we
firstly recognize that not all deletions are continuous. In some
cases, the underlying lesion is more complex, involving for
example chromothripsis that could generate lesions that are
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Fig. 2 Computationally identified genomic regions harboring deletion-limiting genes. To test whether linear deletion limitation phenomenon exist in human
tumors, we developed a score (DLS that captures the correlation between homozygous deletion frequency and genomic position along a straight line that
extends across a neighborhood of a fixed size from either the annotated gene start or gene end. Applying this method to DNA copy number profiles of
7,268 tumor samples from the Cancer Genome Atlas (TCGA), we identified deletion limiting gene near seven deletion targets: CDKN2A (a), RB1 (b),
MAP2K4 (bc), NF1 (d), SMAD4 (e), LINC00290 (f) and PTEN (g). The positions of the deletion-limiting genes identified in each region are indicated. At all
seven loci, the homozygous deletion frequency decays to zero between the deletion target gene towards and the limiting genes in an approximately linear
manner. For SMAD4 and PTEN, we noted an unusual deletion pattern of homozygous deletions that appears to spare the target genes themselves. The
reason for the latter is unclear, and could reflect a technical artifact (e.g., superposition of signal from non-deleted DNA with sequence homology with
SMAD4 or PTEN)
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Fig. 3 Correspondence of gene dependency scores with deletion patterns. This figure shows the gene dependency scores from pooled CRISPR-Cas9
screens for 558 cancer cell lines from the Cancer Dependency Map (DepMap AVANA 19Q1) for all genes located in the seven genomic regions where
deletion-limitation was detected using copy number data: CDKN2A (a), RB1 (b), MAP2K4 (c), NF1 (d), SMAD4 (e), LINC00290 (f) and PTEN (g). As shown,
most of the computationally predicted that were located closest to the deletion targets showed depletion, albeit with varying effect sizes. Genes from
Table 1 and Supplementary Table 2 indicated in blue. Remaining genes indicated in black
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punctuated rather than continuous. Secondly, we also note that
the breakpoint probability could be influenced by other factors,
including fragile sites. Developing refined statistical models
represents an interesting challenge ahead.

As an alternative to our model (which is based on random
deletion and negative selection), a linear or near-linear trend
could be consistent with a localized process. For example, if
deletion lengths were distributed around some mean length
related to the structure of that chromosomal region, then a
similar decay could be observed in the absence of a limiting
essential gene. While it is impossible to exclude this alternative
model completely, it appears less likely as it would generate decay
patterns not only for homozygous deletions, but also for hemi-
zygous deletions at the same loci, which we do not see in Fig. 3,
Supplementary Figs. 5 and 6.

An interesting question is how identified essential genes can be
exploited therapeutically. Here we observe that all the identified
limiting essential genes are also frequently hemizygously deleted
(Fig. 3 and Supplementary Table 4), and most of them show copy
number-dependent expression (Supplementary Fig. 9). This
suggests that a substantial proportion of human cancers could
have a therapeutic window for drugs that further perturb the
function of the identified essential genes or the metabolic pro-
cesses in which they are involved, with limited impact on non-
tumor cells. The next challenge is to identify concrete ways to
achieve this. In all, our results provide further insight into the
anatomy of cancer genomes and identify potentially targetable
vulnerabilities.

Methods
Cancer genome data sets. We obtained segmented copy number data for 7268
primary tumor samples belonging to 24 cancer types from The Cancer Genome
Atlas (TCGA) (http://cancergenome.nih.gov/)21, 2476 samples belonging to 39
cancer types from the Tumorscape compendium (http://www.broadinstitute.org/
tumorscape)24, and 1043 samples representing human cancer cell lines from the
CCLE (https://portals.broadinstitute.org/ccle)23.

Deletion calling. To identify deletion-limitation, we need to identify a set of
homozygous (complete) deletions, with as little contamination from hemizygous
(incomplete) deletions as possible. However, there is no need to find all complete
deletions. Missing some of them may reduce sensitivity, as there will be fewer data
points, but will not create false positives. Thus, what we need is copy num-
ber thresholds that allow us to call homozygous deletions conservatively.

To find appropriate thresholds, we need to know the distribution of copy
numbers for hemizygous deletions. To learn these distributions, one can utilize the
fact that very large deletions (i.e., those encompassing whole chromosomes or big
parts of chromosomes) are almost always hemizygous, as the probability that a very
large deletion will cover at least one essential gene is close to 1. Consequently, we can
learn the distribution of CNs for hemizygous/incomplete deletions by looking at the
CNs of deletions larger than in the order of 50–100 million base pairs. Using this
type of analysis, we identified CN< 0.5 (corresponding to linear depth <−1.5 or log2
ratio <−2.0) as an appropriate threshold for TCGA, <0.75 (corresponding to linear
depth <−1.25 or log2 ratio <−1.4) for Tumorscape, and <0.25 (corresponding to
linear depth <−1.75 or log2 ratio <−3.0) for CCLE (Supplementary Fig. 2). We also
repeated our experiments with other reasonable thresholds, yielding results in broad
agreement with those presented.

The thresholds can also be motivated through theoretical calculations.
Assuming well-normalized microarray data, the deletion depth observed on
DNA copy number microarrays approximately equals the average deletion depth in
the sample multiplied by a constant k that defines the scale of the copy number
signal in linear scale (not in log2 scale). Ideally, k= 1 scale units/copy, but in
practice k is slightly lower (empirically somewhere in the order of 0.95 scale units/
copy for deletions on Affymetrix 6.0 arrays) as deletion depth is calculated by
averaging the signal for several microarray probes and not all probes are efficient.
So, assuming 100% tumor cell fraction, a homozygous deletion should show linear
depth −2k, while a hemizygous deletion should show linear depth -1k. If the tumor
cell fraction t is <100%, the deletion depth will also be proportional to t. Thus, one
simple model is:

Observed deletion depth ffi k � t � deletion depth in tumor

To gain further insight into whether our choice of thresholds is appropriate, we
thus estimated t per every sample in the TCGA, Tumorscape, and CCLE data sets. For
this, we used an optimization-based approach. For a given candidate t, we defined

hypothetical copy number centroids k � t � d; d ¼ �2;�1; 0 and assigned each
segment s= 1,…, S for the sample to its closest hypothetical copy number centroid
k � t � dclosestðsÞ based on its observed deletion depth ds. We then estimated the tumor
cell fraction in the sample by minimizing the penalty function
max k � t � dclosest sð Þ � dsj j � length sð Þover 0 � t � 1. As shown in Supplementary
Fig. 3, this yielded a median tumor cell fraction of 89% for TCGA, 58% for
Tumorscape, and 99% for CCLE, which is consistent with the fact that CCLE
represents cell lines, that TCGA represents tumor samples with >80% tumor cells
microscopically, and that no tumor purity criterion was used when Tumorscape was
generated. We note that log2(0.58/0.89)=−0.62 which is on par with the difference
between the copy number thresholds used for TCGA and Tumorscape we inferred
from CN distributions in Supplementary Fig. 2 (log2 ratio −2.0 vs −1.4).

Finally, for completeness, we note that the deletion depth could be influenced
by the normalization of the microarray data. A basic assumption in the
normalization is that the sample is euploid on average (i.e., that there are about as
many probes in deletions as there are probes in amplifications). In tumors where
the balance between deletions and amplifications is heavily skewed, this
assumption can lead to rescaled copy number estimates. For example, if a tumor
carries a significant surplus of amplifications compared to deletions (e.g., in case of
high hyperdiploidy), the CNs of deletions in the same genome may appear deeper
than normal. As a theoretical example, the CN of a small two-copy deletion in an
otherwise triploid genome (i.e., whole-genome duplication) will be about 2/3
(assuming 100% tumor cell fraction; and closer to 1.0 if lower fraction). While the
latter would be an extreme case, our thresholds should still be appropriate, as for
example 0.5 < 2/3 for TCGA.

In all, the thresholds we use to call homozygous deletions are motivated both by
theoretical and distributional arguments. To call hemizygous deletions, which is
not critical for identifying deletion limitation, we used a threshold of log2 ratio
<−0.4.

Simulation experiments. We performed simulation experiments to illustrate the
distribution of regional chromosomal deletions under combined positive and
negative selection. Here we computationally created copy number data for an
artificial chromosome harboring a fictive deletion target and a set of neighboring
essential and non-essential genes. To simulate the positive selection, we let the
target gene be inactivated through various mutational mechanisms. The first copy
of the target gene was allowed to be inactivated by regional deletion with break-
points positioned randomly along the chromosome, whole-chromosome deletion,
or point mutation. The second copy was allowed to be inactivated by the same
mechanisms as well as reduplication of the mutant first chromosome combined by
loss of the non-mutated chromosome. The mechanism of inactivation was selected
randomly with fixed probabilities. To simulate negative selection, examples where
both copies of a neighboring essential gene were hit by a deletion were rejected.
Simulations were performed until 1000 acceptable examples had been generated.

Calculation of deletion-limitation score. To calculate the deletion-limitation
score (DLS) for a given gene, we first calculate the raw correlation between
homozygous deletion frequency and genomic position across a fixed-size neigh-
borhood upstream or downstream of the gene, and then selected the largest cor-
relation observed in either direction as the final score. The upstream DLS for the
gene becomes

DLSupstream ¼
PN

i¼0 if xstart � ið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼0 i
2
PN

i¼0 f xstart � ið Þ2
q ð1Þ

and the downstream DLS for the same gene becomes

DLSdownstream ¼
PN

i¼0 if xend þ ið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼0 i
2
PN

i¼0 f xend þ ið Þ2
q ð2Þ

where f denotes the homozygous deletion frequency at a given genomic position, as
calculated from the copy number data, xstart and xend the p- and q-terminal
positions of the gene. As our final score, we used the maximum of DLSdownstream
and DLSupstream.

Although the DLS aims to quantify the degree of deletion limitation per gene
basis, it is calculated by integrating information across a neighborhood with a
certain size, which determines the degree of smoothing of information across
nearby genes. A smaller neighborhood will capture deletion-limiting phenomena
with less smoothing, while producing scores that are based on fewer deletion
events. Conversely, a larger neighborhood will produce scores that are based on
more deletion events, but with more smoothing across genes. We calculated DLS
using neighborhood sizes of 0.5, 1, and 2Mb. Because essential genes can be
assumed never to be homozygously deleted (or at least at a low frequency; some
hemizygous lesions may still be misclassified as homozygous), we calculated DLS
for genes that were homozygously deleted in at most two cases in each copy
number data set. Because of the smoothing, multiple genes can be identified as
deletion-limiting at a specific locus. In such cases, we identified the candidate gene
closest to the deletion target gene (deletion peak) as the limiting gene. To estimate
the robustness of DLS scores, we used 200-fold bootstrapping.
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Statistics and reproducibility. The simulations and DLS score calculations were
done using custom C++ programs.

sgRNA oligo synthesis and pooled library cloning. We designed a custom
sgRNA library targeting our locus of interest on chromosome 9p21 flanking
CDKN2A. sgRNA sequences for all 68 genes spanning from 16.5 (BNC2) to 34
Mb (UBAP2) on chromosome 9p were obtained from the human GeCKO v2.0.
library40. Our sgRNA pool consisted of 398 sgRNAs sequences (4–6 sgRNAs per
gene, Supplementary Table 2) synthesized as standard desalted DNA oligos
(Integrated DNA Technologies), phosphorylated with T4 PNK (Thermo Fisher
Scientific), pair-wise annealed and mixed in an equimolar manner. The lenti-
CRISPRv2 plasmid (#52961, Addgene) was digested with the FastDigest Esp3I
restriction enzyme (Thermo Fisher Scientific) and gel purified (Macherey-
Nagel). Plasmid vector and sgRNA pool were mixed at a 1:8 ratio and ligated
using the Rapid DNA Ligation kit (Thermo Fisher Scientific). Unligated plasmid
was digested using Plasmid Safe Exonuclease (EpiCentre), and subsequently the
ligated product was purified using the DNA Clean & Concentrator™-5 (Zymo
Research). MegaX DH10B electrocompetent cells (Thermo Fisher Scientific)
were transformed with 2 µl ligated product by electroporation using a Gene-
Pulser II (BioRad) (settings: 2.0 kV, 200Ω and 25 µF) in duplicates, and cells
were resuspended to 1 ml S.O.C. recovery medium (Thermo Fisher Scientific)
and incubated for 1 h at 37 °C (225 rpm). Duplicates were subsequently pooled
and plated onto 10 cm2 agar plates with ampicillin selection (50 µg/ml), which
yielded 175X library coverage. After 20 h of incubation at 32 °C, colonies were
scraped off and combined, and plasmid DNA was extracted using Endotoxin-
Free Plasmid Maxiprep (Qiagen). The baseline distribution of sgRNAs in the
plasmid pool was determined by single-end next-generation sequencing, and
99.5% (396/398) of sgRNA sequences were successfully represented in the final
library.

Lentivirus production. Lentiviral production was performed as described
before16 with modifications. Briefly, HEK293T cells were seeded at ~40% con-
fluence in T175 flasks one day before transfection in DMEM medium (Invi-
trogen) supplemented with 10% Gibco Fetal Bovine Serum (FBS, Thermo Fisher
Scientific) and 1X penicillin-streptomycin mix. The media was replaced by 13 ml
OptiMEM (Invitrogen) 1 h prior to transfection. For each transfection, 20 µg
lentiCRISPR plasmid library were co-transfected with packaging plasmids (10 µg
pMD2.G (#12259), 15 µg psPAX2 (#12260, Addgene)), 200 µl Plus reagent and 4
µl OptiMEM (Invitrogen). After 5 min of incubation at room temperature, a
Lipofectamine mixture (100 µl Lipofectamine 2000 diluted in 4 ml optiMEM
(Invitrogen)) was added to the plasmid mixture and incubated for 20 min at
room temperature, before being added drop wise to the HEK293T cells. Cells
were incubated at 37 °C, 5% CO2 and the medium was replaced with 30 ml fresh
DMEM (Invitrogen) supplemented with 10% FBS (Thermo Fisher Scientific), 1%
BSA (Sigma Aldrich) and 1× penicillin/streptomycin after 6 and 24 h post-
transfection. Viral supernatant was harvested at 48, 72, and 96 h post transfec-
tion. The supernatant was centrifuged at 2000 rpm at 4 °C for 10 min, filtered
through a 0.45 µm low protein binding membrane (Merck) and stored at 4 °C
until all harvests had been completed. Finally, virus supernatants were pre-
cipitated using PEG virus precipitation kit (AH Diagnostics), aliquoted and
stored at −80 °C.

Cell culture and cell transduction using the sgRNA library. Pooled lentiviral
libraries were transduced into relevant ALL cell lines identified via the Cancer Cell
Line Encyclopedia (CCLE). RCH-ACV (ACC 548, DSMZ) is a B-ALL cell line
showing no copy number variation on chromosome 9, while Jurkat (ACC 282,
DSMZ) is a T-ALL cell line with a 2.3 Mb homozygous regional deletion containing
CDKN2A and a truncating TP53 mutation. Both cell lines were cultured in RPMI-
1640 supplemented with 10% FCS (RPMI-10) and maintained at a density of 0.5
million cells/ml.

Cells were transduced in triplicates at an average multiplicity of infection
(MOI) of ~0.3 (0.23–0.35 and 0.25–0.41, respectively) to minimize the risk of
multiple sgRNA integration in single cells. One million cells per well were seeded
in 1 ml RPMI-10 supplemented with 8 µg/ml polybrene (Sigma Aldrich) and
transduced in multiple wells of a 12-well plate along with a no-transduction
control. The plate was centrifuged at 2300 rpm for 30 min at 37 °C and incubated
overnight. After 24 h RCH-ACV cells were supplemented with 1 ml RPMI-10,
while Jurkat cells were pelleted and resuspended in 2 ml RPMI-10. After 48 h

(day 0), cells from all wells were combined and medium was replaced with fresh
RPMI-10 supplemented with puromycin for 72 h (0.75 µg/ml for RCH-ACV and
1 µg/ml for Jurkat). A fraction of the cell suspension (2.5–5 × 106 cells) was
sampled every 48 to 72 h (days 0, 3, 5, 7, 10, 12, and 14) for DNA extraction,
while the remaining cells were maintained in RPMI-10 supplemented with
puromycin.

Pooled sgRNA screening and data analysis. Genomic DNA was extracted for all
timepoints using the QIAamp Blood DNA Mini kit (Qiagen). A step of PCR was
performed to amplify lentiCRISPR sgRNAs from genomic DNA and attach Illu-
mina adaptors and indexes to the samples (Herculase II Fusion DNA polymerase
(Agilent), NEBNext® Ultra™ II Q5® Master Mix (New England Biolabs)). Forward
primers include a variable length sequence to increase library complexity, while
reverse primers include a 10-bp index sequence to facilitate multiplexing. Primer
sequences used are shown in Table 2. The amount of input genomic DNA (gDNA)
per reaction required to achieve a 500-fold representation of each sgRNA was 1.31
µg (500× coverage * 398 sgRNAs * 6.6 pg [average DNA weight per cell]), after
compensating for cell viability. PCR amplification was carried out with 22 cycles
and PCR products were gel extracted (Nucleospin Gel and PCR Cleanup,
Macherey-Nagel), quantified (Qubit™ dsDNA HS Assay Kit, Thermofischer Sci-
entific), combined in an equimolar manner and sequenced on a HiSeq 2500
(Illumina).

Raw FASTQ files were demultiplexed and read quality was checked with
FastQC48. After stringent mapping to the reference sgRNA library using BWA
(http://bio-bwa.sourceforge.net/), the number of uniquely aligned reads per sgRNA
was calculated and normalized. The representation of each sgRNA was assessed by
deep sequencing of integrated sgRNA sequences at days 3, 5, 7, 10, 12, and 14 post-
puromycin selection after normalizing the read count for each sgRNA to the total
read count. To infer either depletion or enrichment of specific sgRNA species, the
read counts for each sgRNA at each timepoint were normalized to the read counts
at day 3 (after 72 h of puromycin selection).

CRISPR-Induced Insertion/Deletion Detection. To detect CRISPR-induced
indel mutations, we designed PCR primers flanking the sgRNA target sites for a
selection of 18 genes. We amplified 150 to 270 bp amplicons centered on the
sgRNA recognition site in multiplex PCR reactions of 6–7 targets (Supple-
mentary Table 5). Groups of amplicons were determined using the MultiPLX 2.1
tool49 and 100 ng of genomic DNA was amplified for 25 cycles with the
KAPA2G Fast Multiplex PCR Kit (Sigma Aldrich). Genomic DNA from non-
transduced cells was used as a control to determine PCR or sequencing errors,
while gDNA from transduced cells from day 3 and day 7 was used to quantify
the abundance of CRISPR-induced indels. All reactions were performed in
triplicates.

PCR products were quantified and pooled in an equimolar manner, followed by
purification. Library preparation was performed with the NEBNext® Ultra™ II
DNA Library Prep Kit for Illumina (New England Biolabs) following the
manufacturer’s protocol but using custom adaptors. Briefly, 200 ng of PCR product
was end repaired and ligated with custom barcoded Illumina adaptors, followed by
purification and 3 PCR cycles to enrich the adaptor-ligated DNA. Barcoded
libraries were pooled equimolarly and sequenced on a HiSeq 2500 (Illumina) using
paired-end 125 bp sequencing.

Reads were aligned to the UCSC hg19 reference genome, collected from the
BSGenome package50 and the CrispRVariants Bioconductor package51 was used to
perform variant counting and visualization. We searched for indels/SNVs within a
range of 35 bases flanking each sgRNA sequence (27 bases upstream and 8 bases
downstream the PAM site). We then calculated variant counts and plotted each
sgRNA with CrispRVariants built-in commands. To remove common PCR-
induced mutations from the analysis, observed sequences that occurred in the
corresponding control samples (non-transduced) were discarded.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Segmented copy number data for 7,268 primary tumor samples belonging to 24 cancer
types from The Cancer Genome Atlas (TCGA) (http://cancergenome.nih.gov/),
2476 samples belonging to 39 cancer types from the Tumorscape compendium (http://
www.broadinstitute.org/tumorscape) and 1043 samples representing human cancer cell

Table 2 sgRNA amplification primers

sgRNA primer Sequence

Forward 5′-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT - (1–9 bp variable length sequence) -
tcttgtggaaaggacgaaacaccg -3′

Reverse 5′-CAAGCAGAAGACGGCATACGAGAT – 10 nt Index – GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTtgtgggcgatgtgcgctctg -3′
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lines from the Cancer Cell Line Encyclopedia (https://portals.broadinstitute.org/ccle).
DepMap gene dependency scores were obtained from https://depmap.org/portal/
download/all/ (DepMap Public 19Q1 release). The remaining data are contained within
the paper and Supplementary Files or are available from the authors upon request.

Code availability
Computer code is available on GitHub (https://github.com/LudvigEk/tsimchr) and
request from the corresponding author.
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