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ABSTRACT: Liver cirrhosis is a chronic disease that affects the liver
structure, protein expression, and overall metabolic function. Abundance data
for drug-metabolizing enzymes and transporters (DMET) across all stages of
disease severity are scarce. Levels of these proteins are crucial for the accurate
prediction of drug clearance in hepatically impaired patients using
physiologically based pharmacokinetic (PBPK) models, which can be used
to guide the selection of more precise dosing. This study aimed to
experimentally quantify these proteins in human liver samples and assess how
they can impact the predictive performance of the PBPK models. We
determined the absolute abundance of 51 DMET proteins in human liver
microsomes across the three degrees of cirrhosis severity (n = 32; 6 mild, 13
moderate, and 13 severe), compared to histologically normal controls (n =
14), using QconCAT-based targeted proteomics. The results revealed a
significant but non-uniform reduction in the abundance of enzymes and
transporters, from control, by 30−50% in mild, 40−70% in moderate, and 50−90% in severe cirrhosis groups. Cancer and/or non-
alcoholic fatty liver disease-related cirrhosis showed larger deterioration in levels of CYP3A4, 2C8, 2E1, 1A6, UGT2B4/7, CES1,
FMO3/5, EPHX1, MGST1/3, BSEP, and OATP2B1 than the cholestasis set. Drug-specific pathways together with non-uniform
changes of abundance across the enzymes and transporters under various degrees of cirrhosis necessitate the use of PBPK models. As
case examples, such models for repaglinide, dabigatran, and zidovudine were successful in recovering disease-related alterations in
drug exposure. In conclusion, the current study provides the biological rationale behind the absence of a single dose adjustment
formula for all drugs in cirrhosis and demonstrates the utility of proteomics-informed PBPK modeling for drug-specific dose
adjustment in liver cirrhosis.
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■ INTRODUCTION

Cirrhosis is a global health burden, accounting for over 1
million deaths per annum, and 4.9 to 9.5% of the global
population is believed to have some level of cirrhosis.1−3 It
occurs in late-stage liver fibrosis as a result of different types of
liver disease, such as hepatitis, cholestasis, cancer, and alcoholic
and non-alcoholic fatty liver disease (NAFLD).4 It leads to
alterations to hepatic architecture, which cause changes in
blood flow, protein binding, and expression of drug-
metabolizing enzymes (DMEs).5 These changes lead to
variable pharmacokinetics (PK) of many drugs in cirrhotic
populations, compared with healthy subjects, through multiple
mechanisms, such as a reduction in the absolute number of
functioning cells in the liver, changes in abundance and/or
activity of enzymes in surviving hepatocytes, and impaired drug
and oxygen entry into liver cells.6 This leads to a decrease in
the liver’s capacity to eliminate drugs and may require specific
drug dosage adjustment.7

In drug development, dedicated PK studies on patients with
different degrees of hepatic impairment (HI) are recom-
mended; however, such studies are not conducted for most
drugs approved by regulatory agencies, and patients with HI
currently receive these drugs with no dosage guidance.8 Recent
FDA guidelines recommended the inclusion of HI patients into
the early phases of clinical studies with close monitoring of side
effects.9 Implementation of this recommendation may require
time, and alternate approaches, such as the use of
physiologically based PK (PBPK) models, are therefore
applied for predicting changes in drug exposure and guiding
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dose adjustment in HI populations.10 These HI PBPK models
incorporate either in vitro abundance data from immunoblot-
ting studies or in vivo activity data using selective probe
substrates administered to patients with liver disease.5 The
highlighted strategies are limited to protein targets that have
specific antibodies or probe substrates. More recently, the use
of LC−MS proteomics in the quantification of phase I and II
enzymes as well as transporters has contributed useful data,
which have so far been limited to only the severe stage of
cirrhosis and do not cover some key etiologies of the
disease.11,12 Therefore, the aim of this study was to assess
the impact of cirrhosis at different degrees of disease severity,
classified according to the Child−Pugh (CP) system13 (as
mild, CP-A; moderate, CP-B; and severe, CP-C). Furthermore,
the possible effects of disease etiologies associated with
cirrhosis, such as NAFLD, alcoholic fatty liver, biliary disease,
and cancer, on the expression of enzymes and transporters
were investigated.

■ MATERIALS AND METHODS
Liver Samples and Donor Characteristics. Human liver

microsomal (HLM) samples (n = 46) representing four sets,
that is, the control group in which liver samples were excised
from histologically normal areas adjacent to tumors (n = 14,
Table S1) and three cirrhotic groups (n = 32, Table S2),
divided according to the severity of cirrhosis using CP scoring
into CP-A or mild cirrhosis group (n = 6), CP-B or moderate
cirrhosis group (n = 13), and CP-C or severe cirrhosis group
(n = 13). These 32 cirrhosis samples were also subdivided
according to the liver disease associated with cirrhosis into
NAFLD (n = 8), biliary disease (n = 13), cancer (n = 9), and
alcoholic fatty liver disease (n = 2).
Individual liver tissue samples were provided by Cambridge

University Hospitals Tissue Bank (Cambridge, UK), and HLM
fractions were prepared by differential centrifugation, as
reported previously.14 This study is covered by ethical approval
from the Health Research Authority and Health and Care
Research Wales (HCRW) (Research Ethics Committee
Approval Reference 18/LO/1969). Anonymized demographic
and clinical data for the donors were previously reported14 and
are summarized in Tables S1 and S2. The average age for the
control group was 66 years (range: 36−83 years). The average
age of cirrhosis patients was 60 years (range: 39−70 years).
The percentage of female subjects was 29% in the control
group and 39% in the cirrhosis group. In addition to individual
samples, a pool of normal samples was prepared by mixing 6
μL from each individual HLM fraction and was used to assess
the analytical variability between and within batches of
samples.
Sample Preparation for Proteomics. Three concaten-

ated concatemers (QconCATs) were spiked into 70 μg of each
individual HLM sample as internal standards: 0.351 μg of
MetCAT [QconCAT standard for the quantification of
cytochrome P450 enzymes (CYPs) and uridine-5′-diphos-
pho-glucuronosyltransferases (UGTs)], 0.450 μg of NuncCAT
[QconCAT for the quantification of non-CYP, non-UGT
enzymes], and 0.165 μg of TransCAT [QconCAT for the
quantification of transporters]. The samples were also spiked
with a mixture of unlabeled exogenous protein standards
[0.126 μg of bovine serum albumin, 0.037 μg of yeast aldehyde
dehydrogenase (ADH), and 0.168 μg of horse myoglobin] to
monitor experimental conditions and enable label-free
quantification of the liver proteome.

Filter-aided sample preparation15 was used for sample
preparation, as previously described with minor modifica-
tions.16,17 Sample mixtures were solubilized by incubation with
sodium deoxycholate (10% w/v final volume), 1,4-dithiothrei-
tol was added at a final concentration of 100 mM, and the
protein mixture was incubated at room temperature for 10
min. Reduction of protein disulfide bonds was carried out by
incubation at 56 °C for 30 min. Amicon Ultra 0.5 mL
centrifugal filters, 10 kDa molecular weight cut-off, (Millipore,
Nottingham, UK) were conditioned by brief centrifugation of
400 μL of 0.1 M Tris-HCl, pH 8.5, at 14,000g at room
temperature. Protein samples were then transferred to the
conditioned filter units, followed by centrifugation at 14,000g
at room temperature for 30 min. Alkylation of reduced cysteine
residues was performed by incubation with 100 μL of 50 mM
iodoacetamide in the dark for 30 min at room temperature.
After alkylation, deoxycholate removal was performed by buffer
exchange using two successive washes with 8 M urea in 100
mM Tris-HCl (pH 8.5), 200 μL each. To reduce urea
concentration, additional washes (3 × 200 μL) were
performed using 1 M urea in 50 mM ammonium bicarbonate
(pH 8.5). For each wash, the buffer (200 μL) was added to the
filter, without mixing, and centrifuged at 14,000g at room
temperature for 20 min, leaving a volume of approximately 20
μL in the filter. The filtrate, containing small molecules such as
detergent, was discarded. Protein digestion was achieved using
lysyl endopeptidase (Lys-C) twice (Lys-C: protein ratio 1:50, 2
h each, at 30 °C), then trypsin digestion was carried out
(trypsin: protein ratio 1:25) for 12 h at 37 °C, and another
equivalent treatment for an extra 6 h incubation. Peptides were
recovered from the filter by centrifugation (14,000g, 20 min); a
second collection was achieved by adding 0.5 M NaCl (100
μL) to the filter and centrifugation at 14,000g for another 20
min. The collected peptides were lyophilized to dryness using a
vacuum concentrator at 30 °C and with vacuum in the aqueous
mode; the time required was in the range 1−3 h and was
sample-dependent. The lyophilized peptides were reconsti-
tuted in 20% (v/v) acetonitrile in water, acidified with 2% (v/
v) trifluoroacetic acid, and then desalted using C18 spin
columns according to the manufacturer’s instructions (Nest
Group, USA). The peptides were lyophilized and stored at
−80 °C until mass spectrometric analysis.

Liquid Chromatography with Tandem Mass Spec-
trometry. Lyophilized peptides were resuspended in 70 μL of
3% (v/v) acetonitrile in water with 0.1% (v/v) formic acid.
Digested samples were analyzed by liquid chromatography
with tandem mass spectrometry (LC−MS/MS) using an
UltiMate 3000 Rapid Separation LC (RSLC, Dionex
Corporation, Sunnyvale, CA) coupled to a Q Exactive HF
Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo
Fisher Scientific, Waltham, MA). Mobile phase A was 0.1%
formic acid in water and mobile phase B was 0.1% formic acid
in acetonitrile, and peptides were eluted on a CSH C18
analytical column (75 mm × 250 μm inner diameter, 1.7 μm
particle size) (Waters, UK). A 1 μL aliquot of the sample was
transferred to a 5 μL loop and loaded onto the column at a
flow rate of 300 nL/min for 5 min at 5% B. The loop was then
taken out of line, and the flow was reduced from 300 to 200
nL/min over 0.5 min. Peptides were separated using a gradient
from 5 to 18% B in 63.5 min, then from 18 to 27% B in 8 min,
and finally from 27% B to 60% B in 1 min. The column was
washed at 60% B for 3 min before re-equilibration to 5% B in 1
min. At 85 min, the flow was increased to 300 nL/min until the

Molecular Pharmaceutics pubs.acs.org/molecularpharmaceutics Article

https://doi.org/10.1021/acs.molpharmaceut.1c00462
Mol. Pharmaceutics 2021, 18, 3563−3577

3564

https://pubs.acs.org/doi/suppl/10.1021/acs.molpharmaceut.1c00462/suppl_file/mp1c00462_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.molpharmaceut.1c00462/suppl_file/mp1c00462_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.molpharmaceut.1c00462/suppl_file/mp1c00462_si_001.pdf
pubs.acs.org/molecularpharmaceutics?ref=pdf
https://doi.org/10.1021/acs.molpharmaceut.1c00462?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


end of the run at 90 min. Mass spectrometry data were
acquired in a data-dependent manner for 90 min in the positive
mode. Peptides were selected for fragmentation automatically
by data-dependent analysis on the basis of the top 12 peptides
with m/z between 300 and 1750 Th and a charge state of 2+,
3+, and 4+ with a dynamic exclusion set at 15 s. The MS
resolution was set at 120,000 with an AGC target of 3E6 and a
maximum fill time set at 20 ms. The MS2 resolution was set to
30,000, with an AGC target of 2E5, a maximum fill time of 45
ms, an isolation window of 1.3 Th, and a collision energy of 28
eV.
Proteomic Data Analysis. Proteins were identified by

searching peptide MS/MS data against the UniProtKB
database (http://www.uniprot.org/) using MaxQuant version
1.6.10.43 (Max Planck Institute of Biochemistry, Martinsried,
Germany). QconCAT-based quantification was carried out as
previously described18−20 to measure 15 CYPs and 9 UGTs
(MetCAT), in addition to UGT2B17, 22 non-CYP/non-UGT
DMEs (NuncCAT), and 30 transporters (TransCAT). A
protein was considered quantifiable in liver microsomal
samples if (a) there was evidence of its expression in the
liver (Human Protein Atlas, https://www.proteinatlas.org/),
(b) it was localized in a membrane (Uniprot, https://www.
uniprot.org/), (c) it was identified by at least one razor or one
unique peptide, and (d) it was detected in a sufficient number
of samples (at least 3 samples/group). A list of the peptides
that constitute the QconCATs used in this study is presented
in Table S3. The abundance of each target protein was
calculated using eq 1.

I IProtein QconCAT /i i,L ,H[ ] = [ ] × (1)

where [Protein] is the protein abundance based on the
surrogate peptide i, measured in units of pmol/mg microsomal
protein. Ii,L/Ii,H is the ratio of the intensity of the light
(analyte) to the heavy (QconCAT-derived) surrogate peptide,
and [QconCAT] is the concentration of the QconCAT
standard measured using eq 2.

I IQconCAT NNOP /j j,H ,L[ ] = [ ] × (2)

where Ij,H/Ij,L is the ratio of the intensity of the heavy
(QconCAT-derived) to the light (spiked in) NNOP standard
peptide, and [NNOP] is the concentration of the NNOP
peptide standard expressed in units of pmol/mg microsomal
protein analyzed by the mass spectrometer. The intensity ratios
were corrected for isotope labeling efficiency prior to use in the
equations.21,22 Unlabeled NNOP peptides, EGVNDNEEGFF-
SAR, GVNDNEEGFFSAR, and AEGVNDNEEGFFSAR, were
added for every 70 μg of starting protein samples at 376, 700,
and 156 fmol, respectively, to quantify the TransCAT,
MetCAT, and NuncCAT, respectively. The three QconCATs
have shown comparable results to label-free quantification
methods in a previous study.23

The measured abundance values of each protein were scaled
up to their corresponding levels in tissue (pmol/g liver) using
individual microsomal protein content per gram of liver
(MPPGL) for each sample. The preparation of the microsomal
fraction and details on the determination of MPPGL for the
same set of samples is explained in detail in our previous
publication.14 Briefly, the microsomes were separated by
sequential ultracentrifugation and the protein content in the
resulting fraction was measured using bicinchoninic acid assay
and corrected for the microsomal protein loss using the activity

of a specific marker enzyme namely cytochrome P450
reductase.14

Assessment of the Degree of Technical and Ana-
lytical Variability. Nine samples, representing all disease
groups (2 normal, 2 cancer, 1 alcohol, 2 cholestasis, and 2
NAFLD samples), were prepared in triplicate and analyzed by
LC−MS/MS under the same conditions. The data were used
to assess technical variability in quantification. A pool of
normal samples (n = 14) was prepared once and analyzed
twice in each of 5 batches of samples (10 overall runs) to
assess intra- and inter-batch variability. Technical and batch-to-
batch variability was evaluated using the coefficient of variation
of replicates from different analyses in each set and across
batches.

Comparing Abundance of Enzymes and Transporters
Among Disease Groups. The absolute abundance values of
the quantified liver enzymes and transporters in cirrhotic livers
(classified either according to CP score or according to the
disease etiology or associated liver disease) were compared and
assessed against abundance in the control group. Targets that
were detected in at least 3 samples per group were included in
the comparison; therefore, the alcohol-related cirrhosis group
(2 samples) was excluded from the etiology comparison. To
rule out the confounding effect of disease severity, this
comparison was restricted to moderate disease, which was the
only disease grade that included a sufficient number of samples
in each etiology.

Statistical Analysis. The samples were classified based on
disease severity, using the CP score, and according to the
associated disease. Statistical analysis of the data was carried
out and graphs were created using GraphPad Prism version 7.0
(La Jolla, California, USA). Shapiro−Wilk normality test was
applied to assess the normality of the distribution of the data.
In the absence of normal distribution, non-parametric statistics
was used, and the data were presented as median and 95%
confidence interval (CI). Equality of variance was assessed by a
modified Levene’s test (Brown−Forsythe test). The abundance
data from different groups were not normally distributed
(Shapiro−Wilk test, p < 0.05), and variance within severity
groups was homogeneous (Brown−Forsythe test, p > 0.05).
Accordingly, non-parametric statistics was used to assess
differences between groups (Kruskal−Wallis and post-hoc
Mann−Whitney tests) with statistical significance cut-off set
at 0.05. Similar ANOVA analysis with post-hoc tests was used
to compare the data for the control group and three disease
etiologies (cancer, cholestasis, and NAFLD) at the same
degree of severity of cirrhosis (moderate set). Statistical
significance was again considered with a cut-off P-value of 0.05
and Bonferroni-corrected for multiple iterations to p < 0.0085*
and p < 0.0017** (six iterations). Correlation between the
abundance of hepatic UGTs or transporters and log-trans-
formed total serum bilirubin for each individual patient was
performed using the Spearman test (Rs) as transporter and
UGT abundances were not normally distributed (Shapiro−
Wilk test, p < 0.05). Linear regression was used to assess the
scatter of the data. Correlations were considered significant if
Rs was at least 0.5 and the probability was <0.05. R2 between
0.3 and 0.7 was considered a moderate relationship, and >0.7
was considered strong.

Application of Proteomic Data in PBPK Models of
Cirrhosis. Three previously verified (tested against studies not
used for building the model) PBPK models were used to
confirm the applicability of the collected proteomic data in the
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Table 1. Input Parameters Used for PBPK Simulations of Repaglinide, Dabigatran Etexilate, and Zidovudine

aDabigatran is the active metabolite that is mainly eliminated by the kidney; the input parameters were kept the same as the default in the Simcyp
V19 library as no abundance data were required to be modified.
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prediction of drug exposure in cirrhosis populations. In this
modeling exercise, we used repaglinide (an antidiabetic agent
and a substrate for CYP2C8, CYP3A4, and OATP1B1),
dabigatran etexilate (a prodrug converted by carboxylesterases
CES1 and CES2 to the active anticoagulant dabigatran, which
is mainly excreted unchanged in urine), and zidovudine (an
antiretroviral drug and a substrate for UGT2B7 and, to a lesser
degree, metabolized by CYP reductase).
For each drug, simulations with virtual cirrhosis populations

were performed using the following two methods and the
outputs were compared:

1 Proteomic_sim_cirrhosis method: The disease-to-nor-
mal abundance ratio from the current study was used as
a scalar for the intrinsic clearance in each cirrhosis
population (CP-A, CP-B, or CP-C). As this ratio was
based on enzyme abundance per gram of tissue, changes
in MPPGL between diseased samples and normal livers
have already been accounted for in this ratio. Therefore,

the functional liver volume hypothesized by Johnson et
al.5 was returned back to normal values measured in
healthy populations. Physiological changes other than
enzyme abundance per g of liver tissue and liver size
scalar were kept the same as those in the population
library in Simcyp simulator version 19 (Sheffield, UK),
as previously reported by Johnson et al.5 and
summarized here in Table S4.

2 Simcyp_cirrhosis method: Default Simcyp V 19 settings
in cirrhosis populations were kept the same including
abundance data and liver volume scalars presented in
Table S4.

Demographic data for both healthy and cirrhosis individuals
were reported previously for repaglinide,24 dabigatran etex-
ilate,25 and zidovudine26 and are summarized in Table S5.
Drug-specific input parameters and changes in the intrinsic
clearance of the three drugs in cirrhosis populations are
presented in Table 1. All parameters were derived from the

Figure 1. Individual abundance values of cytochrome P450 enzymes in pmol per g of liver tissue from normal control compared to different grades
of liver cirrhosis stratified using the Child−Pugh (CP) score [(A) CP-A or mild; (B) CP-B or moderate, and (C) CP-C or severe]. Horizontal lines
represent medians, and error bars are the 95% CIs. Stars represent comparisons with statistical significance (*p < 0.0085 and **p < 0.0017), while
the percentages represent the degree of change from normal control.

Molecular Pharmaceutics pubs.acs.org/molecularpharmaceutics Article

https://doi.org/10.1021/acs.molpharmaceut.1c00462
Mol. Pharmaceutics 2021, 18, 3563−3577

3567

https://pubs.acs.org/doi/suppl/10.1021/acs.molpharmaceut.1c00462/suppl_file/mp1c00462_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.molpharmaceut.1c00462/suppl_file/mp1c00462_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.molpharmaceut.1c00462/suppl_file/mp1c00462_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.1c00462?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.1c00462?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.1c00462?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.1c00462?fig=fig1&ref=pdf
pubs.acs.org/molecularpharmaceutics?ref=pdf
https://doi.org/10.1021/acs.molpharmaceut.1c00462?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


simulator’s library unless otherwise stated, as shown in Table 1.
Simulation trials were set to 10 trials of 10 individuals each.
The ratio of the area under the curve predicted by the model
(AUCpred) and the observed value (AUCobs) was calculated
and considered acceptable if the value was between 0.5- and 2-
fold. The ability of the model to predict changes in exposure
due to cirrhosis was performed by comparing the ratio of AUC
for the diseased population to that for the healthy population
(AUCR) in both simulated and observed data. The model’s
prediction was considered acceptable if the ratio of predicted
AUCR to observed AUCR was between 0.5- and 2-fold.

■ RESULTS

Quality and Scaling of the Proteomic Data. Qcon-
CAT-based targeted proteomics was used to determine
changes in the protein expression of liver enzymes and
transporters across three stages of cirrhosis severity relative to
the histologically normal liver. The targets included 14 CYPs, 9
UGTs, 8 non-CYP and non-UGT enzymes, 19 transporters,
and 1 membrane marker. Technical and batch-to-batch
variabilities were within 30% for 96 and 97% of targets,
respectively (Figure S1). The targets that reflected the highest
variability (>30%) were not detected consistently (FMO5,
MGST3, MRP2, and MDR3). The lower limit of quantification
for consistently quantified targets was 0.08 pmol/mg protein
(translating to an average tissue content of ∼2 pmol/g liver)

based on a cut-off technical variability of 20% in quality control
samples.
The abundance levels measured in pmol/mg membrane

protein were scaled up to tissue levels using MPPGL values for
each individual sample. Individual MPPGL values were
previously reported for the same set of samples14 and are
summarized in Table S6. The median (range) MPPGL for the
control group was 37.3 (30.4−63.6 mg/g), whereas for the
cirrhotic samples, it was 30.8 (12.9−49.1 mg/g). The
measured tissue levels of enzymes and transporters were
used in the comparisons among all samples.

Abundance of DMEs and Transporters in Livers with
Different Severities of Cirrhosis. To assess the effect of
cirrhosis on the expression of enzymes and transporters,
abundance levels were compared across the three levels of
disease severity (mild, moderate, and severe). A summary of
the measured abundances is presented in Table S8, and the
median values of the abundances of target protein for each
group of samples are plotted in Figure S4. Figures 1−4 show
the individual abundance values of CYP, UGT, non-CYP non-
UGT, and transporter targets, respectively, with medians and
95% CI in each cirrhosis group, compared to the control.
Figure S2 presents the fold change in the median abundance
values for each enzyme or transporter at all stages of cirrhosis
relative to the control.
The Kruskal−Wallis ANOVA test showed significant

differences (p < 0.05) for most of the targets of interest,

Figure 2. Individual abundance values of UGT enzymes in pmol per g of liver tissue from normal control compared to different grades of liver
cirrhosis stratified using the CP score [(A) CP-A or mild; (B) CP-B or moderate, and (C) CP-C or severe]. Horizontal lines represent medians,
and error bars are the 95% CIs. Stars represent comparisons that are statistically significant (*p < 0.0085 and **p < 0.0017), while the percentages
represent the degree of change from normal control.
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except UGT1A1 (p = 0.051), UGT1A3 (p = 0.34), MDR3 (p
= 0.051), MRP4 (p = 0.25), BCRP (p = 0.78), ASBT (p =
0.18), and OATP1A2 (p = 0.11). For mild cirrhosis, median
abundance was significantly lower than the control for only
four proteins: CES1 (by 47%, p = 0.003*), FMO3 (by 37%, p
< 0.001**), EPHX1 (by 41%, p = 0.005*), MGST3 (by 51%, p
= 0.003*), MRP2 (54%, p < 0.001**), and OATP1B1 (by
54%, p < 0.001**). For the moderate cirrhosis group, some
targets showed a statistically significant reduction from the
control, by 40 to 50%, such as MGST1, MDR1, MRP3, OCT3,
and ATP1A1. Several targets showed a more significant decline
by up to 77% from the control group, including CYP3A4, 1A2,
2C8, 2C9, 2E1, 2D6, 2A6, 2J2, 4F2, UGT1A6/9, 2B4/7,
CES1/2, FMO3, EPHX1, MGST3, OAT2/4, OCT1, MRP2/
6, BSEP, OATP1B1, OATP2B1, NTCP, and MCT1. Only
CYP2C19 showed a very high reduction of 98%. The largest
reduction was observed with most of the targets in the severe
grade of cirrhosis. The level of reduction ranged from 40 to
55% with MDR1, MRP3, ATP1A1, and OCT3, while a decline
of 60 to 78% was noted for CYP2C8/9/18, 2D6, 2A6,
UGT1A4/6, 2B4, 2B15, 1A9, CES2, FMO5, POR, MGST1/3,
BSEP, MRP6, OAT2/4, OATP1B1, 2B1, NTCP, and MCT1.
Furthermore, CYP3A4, 1A2, 2E1, 2J2, 4F2, 2C9/19, UGT2B7,
CES1, FMO3, EPHX1, MRP2, and OCT1 showed 80 to 98%
reduction in the disease group relative to that in the control. By
contrast, CYP2B6 and OATP1B3 did not show a statistically
significant change in any of the three cirrhosis groups
compared to the control in spite of showing significant

differences across groups with the Kruskal−Wallis ANOVA
test (p < 0.05). For both targets, several of the measurements
across the groups fell below the limit of quantification which
precluded the detection of differences.

Relative Distribution of Enzymes and Transporters in
Cirrhotic Livers. The relative distribution of the enzymes and
transporters was determined for each severity stage based on
absolute abundance values. Although there were non-uniform
changes, the rank-order of hepatic enzymes (CYPs and UGTs)
was generally consistent in cirrhosis compared to the control
with few exceptions (Figure S3A−C). CYP2C9 and CYP3A4
were the most abundant CYPs across all groups. Going from
the control group to severe cirrhosis, CYP2E1 dropped down
from the third most abundant CYP to the fifth rank. On the
contrary, for UGTS, UGT1A1 ranked fifth in the control group
and second in the mild and severe cirrhosis groups. UGT2B7
and 2B4 were the dominant UGTs in all groups. Non-CYP and
non-UGT enzymes did not show major differences in their
relative distribution between the control and diseased livers.
For transporters, the relative distributions were consistent

for SLC transporters (Figure S3D), while for ABC trans-
porters, the rank of P-gp was higher and MRP2 was lower in
severe cirrhosis relative to that in the control (Figure S3E).

Correlations of Transporter and UGT Abundance
with Total Serum Bilirubin Levels. Enzymes and trans-
porters are involved in the metabolism and elimination of
endogenous substances, such as bilirubin; this is used to
determine the severity of liver impairment. Therefore, the total

Figure 3. Individual abundance values of non-CYP and non-UGT enzymes in pmol per g of liver tissue from normal control compared to different
grades of liver cirrhosis stratified using the CP score [(A) CP-A or mild; (B) CP-B or moderate, and (C) CP-C or severe]. Horizontal lines
represent medians, and error bars are the 95% CIs. Stars represent comparisons that are statistically significant (*p < 0.0085 and **p < 0.0017),
while the percentages represent the degree of change from normal control.
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serum bilirubin data obtained for each patient were correlated
with corresponding UGT and transporter expression levels.
The mean total serum bilirubin level (±SD) was 11 ± 6.1 for
the control group, 18.2 ± 6.0 in mild, 36.8 ± 21.7 in moderate,
and 132.7 ± 135.3 μmol/L in severe cirrhosis. The Spearman
correlation analysis was used to investigate the relation
between UGT or transporter abundances and log-transformed
total bilirubin level in the serum (see the Supporting
Information). UGT1A4/6/9 and UGT2B4/7/15 showed

moderate negative correlations with log-transformed total
bilirubin with R2 ranging from 0.3 to 0.4, Rs from −0.6 to
−0.8, and p < 0.0006 (Figure S5).
Negative correlations between the transporter abundance

and log-transformed total bilirubin were observed (R2 from 0.3
to 0.5; Rs from −0.5 to −0.8, p < 0.002) in the case of bile
efflux transporters, MDR1, BSEP, MRP2, MRP3, and MRP6,
and also uptake transporters, NTCP, MCT1, OCT1, OCT3,
OATP2B1, OAT2, OAT4, and OATP1B1/1B3 (Figure S6).

Figure 4. Individual abundance values of transporters in pmol per g of liver tissue from normal control compared to different grades of liver
cirrhosis stratified using the CP score [(A) CP-A or mild; (B) CP-B or moderate, and (C) CP-C or severe]. Horizontal lines represent medians,
and error bars are the 95% CIs. Stars represent comparisons that are statistically significant (*p < 0.0085 and **p < 0.0017), while the percentages
represent the degree of change from normal control.
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Effect of Etiology of Liver Cirrhosis on the
Abundance of Enzymes and Transporters. To assess the
effect of different etiologies, at the same degree of liver
cirrhosis, on the expression of enzymes and transporters, data

were compared for samples in the CP-B group. Cancer and
NAFLD were associated with a more significant reduction in
the levels of most targets, relative to the control, than
cholestasis-related cirrhosis (Figure 5). Targets affected only

Figure 5. Individual abundance values of drug-metabolizing enzymes and transporters in moderate cirrhosis groups classified by the associated liver
disease into cancer; CHOL, cholestasis; and NAFLD, non-alcoholic fatty liver disease, compared to the control group. Horizontal lines represent
medians, and error bars are the 95% CIs. Stars represent comparisons that are statistically significant (*p < 0.0085 and **p < 0.0017).
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by NAFLD-associated cirrhosis were CYP2C8, MGST1,
MGST3, UGT2B4, FMO5, and BSEP, while targets that
showed a significant reduction only with cancer-associated
cirrhosis were CYP2E1 and UGT1A6. Targets significantly
affected by both diseases (cancer and NAFLD) were CYP3A4,
FMO3, UGT2B7, OATP2B1, EPHX1, and CES1. The only
target showing a significant reduction in cholestasis-associated
cirrhosis was MRP2; expression of this transporter was also
reduced with cancer but not with NAFLD. Furthermore, the
degree of difference across the disease groups was not
statistically significant in the current study (Table S7).
Impact of Applying the Generated Proteomic Data

on the Performance of PBPK Models of Cirrhosis. To
simulate the impact of disease progression on drug PK, the
proteomic data at different grades of severity were applied in
PBPK models for repaglinide (in mixed CP-B and -C
populations) and dabigatran etexilate (in CP-B population).
For dabigatran simulations, both models (with proteomic
changes in CES1/2 in cirrhosis relative to normal and the
default Simcyp settings) were able to capture drug exposure in
cirrhosis (<1% difference in AUCpred) (Figure 6). For
repaglinide, the AUCRpred using proteomic data from the
current study was 4.9 compared to 2.8 with default Simcyp
population settings (Table S9). The ratio of the predicted
AUCR (AUCRpred) to the observed value (AUCRobs) was 1.19
using abundance data from the current study and 0.68 using
default Simcyp population data.
For zidovudine, the predicted simulations adjusted with

proteomic data showed AUC levels within 2-fold of the

observed data (Figure 7). Predicted-to-observed AUCR for
CP-A, B, and C with proteomic data were 0.62, 0.97, and 1.2,
respectively. By contrast, with default Simcyp abundance data,
these values were outside the 2-fold range (0.38, 0.46, and
0.49, respectively), as shown in Table S9. Because non-
parametric statistics was applied, we note that the intrinsic
clearance values are scaled in disease populations using relative
changes in median protein abundances generated in this study.

■ DISCUSSION
Heterogeneity in chronic liver disease and the degree of change
in hepatic metabolic function are a challenge in the selection of
effective drug dosing to patients with an impaired liver
function. Specific alteration in the metabolic pathway by which
a drug is eliminated is one of the contributing factors to this
issue. This is because not all enzymatic reactions are affected
by the liver disease equally as demonstrated by the current
study.
In this study, quantitative LC−MS proteomics was used for

the comprehensive characterization of changes in the
expression of enzymes and transporters in three grades
(mild, moderate, and severe) of liver cirrhosis. We observed
a progressive decline in the abundance of enzymes and
transporters with increasing severity of cirrhosis compared to
the control livers, in line with the progressive decline in
MPPGL, which we reported previously.14 The suppressed
expression of enzymes and transporters, as reported in this
study, is likely due to the downregulation of gene expression by
inflammatory cytokines. This has been reported for several

Figure 6. (A) Repaglinide- and (B) dabigatran-simulated plasma concentration−time profiles with changes in the abundance of metabolizing
enzymes and transporters using proteomic data from the current study (Proteomic_sim_cirrhosis mean; solid black lines) and default settings in
Simcyp V19 (Simcyp_cirrhosis mean; dotted red lines) in cirrhosis populations, compared to profiles in a healthy population (blue line). The
corresponding observed data are presented for diseased (white circles) and healthy individuals (blue circles). 95% CI, 95% CI around the mean.
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chronic inflammatory diseases, such as cirrhosis, rheumatoid
arthritis, and cancer.33−35 Cytokines, such as IL-6 and TNFα,
were reported to increase with cirrhosis progression which
supports the link to downregulation of expression.36

The main advantage of using microsomal fractions (instead
of homogenate or S9) is that enrichment of metabolism- and
disposition-related proteins allows detection of the highest
number of relevant proteins, even those expressed at low
concentrations. Structural changes in diseased samples, such as
scarring, fibrosis, and increased collagen in the extracellular
matrix,37 may affect homogenization and membrane extraction.
Several microsomal targets, such as CYP3A4, 1A2, 2A6, POR,
UGT1A4, and UGT2B7, showed a comparable change in
severe cirrhosis from the control to those reported by others.11

On the other hand, CYP2D6, 2E1, 2C8, 2C9, CES1, and CES2
were more affected by severe stages of cirrhosis in our study
than reported in previous studies.11 The change in CYP2D6
was consistent with earlier reports.5,38 These differences might
be attributed not only to differences in disease causes but also
to the fact that previous reports did not classify samples based
on full criteria of the CP scoring system (as we have done
herein) and only considered transplantation to occur in severe
stages of the disease, which is not always accurate. Therefore,
this misclassification could increase the likelihood of including
moderate, and possibly even mild, cases in the sample
donors.39 The current study has reported, additionally, the
change in earlier stages of cirrhosis (mild and moderate) as
well as the severe stage.

Several older reports have claimed that phase II reactions are
less affected by HI than oxidative phase I reactions.40−42 We
now show that the expression of several UGTs, such as
UGT1A6, 1A9, 2B4, and 2B7, is significantly (to the same
degree as CYP enzymes) impaired by cirrhosis, especially in
moderate to severe stages. We also quantified nine non-CYP
and non-UGT metabolizing enzymes, resident in the
endoplasmic reticulum, in all stages of cirrhosis severity, of
which, MGST1, MGST3, and FMO5 are reported for the first
time in cirrhosis. The NuncCAT is also capable of quantifying
several sulfotransferases and ADH1, ALDH1A1, AOX, NAT,
and EPHX2. These were not explicitly quantified here because
they are cytosolic enzymes. The enrichment achieved by
separating the microsomal fraction and previously reported for
the same samples14 has allowed us to quantify CYP2B6 and
UGT1A1 which have not been reported previously in cirrhotic
livers using other non-enriched fractions such as the S9
fraction.11 Several measurements of CYP2B6 still fell below the
limit of quantification, precluding detection of differences
across groups.
We assessed changes in the relative distribution of enzymes

in cirrhotic livers compared to the control as these changes
might affect the impact of drug−drug interactions (DDIs) in
cirrhosis compared to those in healthy populations. CYP2E1
was noticeably different as it showed a lower relative
abundance in severe cirrhosis compared to other groups.
This non-uniformity in disease impact was similarly observed
in UGT expression and consequently the relative distribution
of UGTs in health and disease. As expected,11,17,43,44 UGT2B7

Figure 7. Zidovudine-simulated plasma concentration−time profile with changes in the abundance of metabolizing enzymes and transporters using
proteomic data from the current study (Proteomic_sim_cirrhosis mean; solid black lines) and default settings in Simcyp V19 (Simcyp_cirrhosis
mean; dotted red lines) in (A) mild, (B) moderate, and (C) severe cirrhosis populations, compared to the profile in a healthy population (blue
line). The corresponding observed data are presented for diseased (white circles) and healthy individuals (blue circles). CI around the mean.
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and UGT2B4 were the most abundant enzymes of this class in
the control samples. The relative abundance of UGT1A1 was,
however, higher in mild and severe stages of cirrhosis
compared with that in the controls as it is barely affected by
the disease. These changes might be important for drugs
cleared by multiple pathways, with expected changes in the
relative contribution of each pathway ( fm) with disease
progression and the response to metabolic DDIs.45,46

This study and other recent reports suggest variability in the
impact of cirrhosis on the expression of transporters according
to the disease severity and the underlying pathophysiology
(viral, alcoholic, and biliary diseases).12,47,48 Drozdzik et al.47

showed a progressive decline in the expression of NTCP,
OATP1B1/2B1, OCT1, and MRP2 in line with our findings,
but we also showed a progressive decline in the expression of
BSEP, MRP3, OAT2, OCT3, and OATP1B3 in cirrhosis,
which they did not. It is worth noting that associated diseases
to cirrhosis in the two sets of samples are different (ours
includes NAFLD, cancer, and cholestasis, while Drozdzik et al.
used samples with viral, cholestatic, auto-immune hepatitis,
and alcohol-associated cirrhosis), which might have an impact
on the degree of change. The effect of underlying conditions in
the patient cohort was further investigated at the same level of
severity (moderate cirrhosis). Generally, NAFLD and cancer-
related cirrhosis had a higher impact on the expression of
enzymes and transporters compared with cholestasis. This
difference in impact was previously reported to affect MPPGL
in the same samples.14 Molecular differences in the
pathophysiology between hepatocellular and cholestatic
cirrhosis are thought to be key players in the relative
downregulation pattern for metabolism-related proteins,
response to inflammatory mediators, and mRNA expression
among different cirrhosis causes.49,50 The current CP
classification system does not distinguish different causes or
pathophysiologies of cirrhosis.51 Additional studies with larger
numbers of samples per disease cause are recommended to
better elucidate differences among groups.
Bilirubin level is used as a liver function test and as a

component of the CP scoring system.52 Bilirubin is released
into the blood after the breakdown of hemoglobin, conjugated
in the liver by UGTs, and then excreted into the bile by
transporters.53 Elevated levels (above the normal limit of 20.5
μmol/L) occur in different conditions, including liver
disease.54 Progressive elevation with disease severity was
observed in our data. The negative correlations between total
bilirubin and some UGT levels can be attributed to the
decreased ability of the diseased livers to conjugate bilirubin,
leading to hepatic jaundice. Correlations between transporter
abundances and total serum bilirubin can also be explained
mechanistically; both efflux and uptake transporters have roles
in bilirubin disposition. The drop in their expression leads to
hyperbilirubinemia, which is common in patients with cirrhosis
and can be used as a predictor of poor prognosis.55 These
uptake and canalicular efflux transporters play key roles in
biliary secretion and enterohepatic recycling of some drugs,
which, when taken into account in PBPK models, can help in
predicting their plasma levels, and ultimately, dose adjustment
for these drugs in health and disease.56−58 It is also important
to note that the level of bilirubin is determined not just by its
elimination but also by its synthesis, and therefore, a good
correlation with transporter abundance might indicate that
there was little change in synthesis or the change was
comparable in all patients.

PBPK modeling aims to optimize drug therapy regimens for
patients in clinical practice59 by predicting drug kinetics and
selecting appropriate drug dosage regimens. The use of PBPK
is particularly useful in studying changes in PKs associated with
special physiological populations, such as HI;60 however,
system parameters specific to these populations have generally
been lacking. The reduction in the expression of metabolizing
enzymes is typically associated with reduced drug clearance
and increased AUC.6 However, the degree of this increase is
different from one drug to another according to the sensitivity
of the drug’s kinetics to changes in expression and the impact
of other physiological changes in cirrhosis, such as plasma
protein levels, binding, and hepatic blood flow.61 These factors
can sometimes affect drug exposure in the opposite direction
to changes in enzyme expression. Therefore, direct correlations
cannot be performed and PBPK modeling and simulation are
required to account for these factors simultaneously. Modeling
and simulation platforms have hitherto employed protein
expression data generated by Western blotting,5 but these data
have recently started to be supplanted by data generated by
state-of-the-art proteomics.62 We used our data to simulate the
impact of changes in the abundance of liver enzymes on
exposure of a cirrhotic population to repaglinide, dabigatran,
and zidovudine. The choice of the drugs aimed to cover one or
more proteins from each group (CYPs, UGTs, non-CYP non-
UGT enzymes, and transporters) while prioritizing drugs that
have clinical data in both healthy and cirrhosis patients and
have a verified model that is either available in the simulator’s
library or was reported in a previous publication. The
performance of the models adapted with the current proteomic
data was compared with the output from Simcyp default
cirrhosis settings which were based on a combination of
available Western blotting abundance and in vitro and in vivo
activity studies.5 Simcyp default settings in cirrhosis
populations did not account for changes in OATP transporters
and non-CYP enzyme abundances. Therefore, it was clear that
when proteomic data were applied for repaglinide and
zidovudine, the performance of the models was improved.
However, for dabigatran, a similar outcome to the default
Simcyp output profile was observed. This can be attributed to
the low sensitivity of active drug exposure to changes in the
expression of carboxyesterases.

■ CONCLUSIONS

This study demonstrated, for the first time, a gradual decline in
the expression of enzymes and transporters with the
progression of cirrhosis severity. The rate of this decline was
specific to each target protein. The impact of the underlying
condition was most significant in the cases of cancer and
NAFLD. However, one limitation of this study is the small
sample size in each disease severity and etiology group.
Introducing specific proteomic data related to changes due to
cirrhosis into the population parameters of the PBPK models
can improve the predictive performance of these models in HI
populations. The study provides some biological reasons
behind the lack of a single drug dose-adjustment formula in
cirrhosis and demonstrates the utility of proteomics-informed
PBPK modeling for drug-specific dose adjustment in liver
cirrhosis.
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