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Abstract: Citri reticulatae pericarpium (CRP), the dried pericarps of Citrus reticulata Blanco and its
cultivars, has been widely used in drugs and foods in China for centuries. In this study, an accurate
and feasible analytical method based on HS-SPME-GC-MS coupled with multivariate statistical
analyses was developed to comprehensively compare volatile compounds of pericarps derived
from Citrus reticulata “Chachi” (“Guangchenpi” in Chinese, GCP) and other cultivars of Citrus
reticulata Blanco (“Chenpi” in Chinese, CP). Principal component analysis, hierarchical cluster
analysis, and orthogonal partial least-squares-discrimination analysis were performed to extract
meaningful attributes from volatile profiles based on GC-MS data. Results indicated that samples
from GCP and CP could easily be differentiated, and seven potential chemical markers were screened
for the quality control of CRP. This study illuminated the volatile profile in CRP, and provides a
practical method for the authentication of CRP varieties.

Keywords: Citri reticulatae pericarpium; volatile compounds; HS-SPME-GC-MS; multivariate
statistical analyses

1. Introduction

Citri reticulatae pericarpium (CRP) is the sun-dried pericarp of mature fruits of Citrus reticulata
Blanco (commonly known as tangerine) and its cultivars, and is widely used in drugs and foods in
China, involved in more than 10% of all formulae in the Chinese Pharmacopoeia (2015 edition) [1].
Citrus reticulata Blanco grows throughought southern China, and includes various cultivars, such
as ”Chachi”, ”Unshiu”, ”Zhuhong”, ”Ponkan”, ”Suavissima”, etc. Generally, the pericarp of Citrus
reticulata”Chachi” from Xinhui County (Guangdong province, China), called “Guangchenpi” (GCP) in
Chinese, has always been well-regarded as the best national product with respect to geo-herbalism [2].
Pericarps derived from other cultivars are collectively called “Chenpi” (CP) in Chinese, and their
origins are diverse in the market [3]. As GCP and CP have quite similar appearances and flavor
characteristics, it is difficult to discriminate between them and this could easily lead to economic
adulteration. Actually, due to its premium price, GCP is prone to being superseded by cheaper or
inferior variants so as to get a higher profit margin in the market. Therefore, there exists significant
interest in the development of accurate methods differentiating GCP and CP.

Chemical profiling has been increasingly applied in the authentication of traditional Chinese
medicines (TCMs) [4–6]. Until now, flavonoids contained in CRP have been analyzed and reported
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in many studies [7–9], while volatile constituents have been rarely focused on. Given that volatile
bioactive compounds possess potent efficacy, it is meaningful to compare them in GCP and CP.
Extraction is a crucial procedure in the analysis of volatile compounds in CRP, and several methods of
doing so (hydro-distillation, carbon dioxide supercritical fluid extraction) have been reported [10–12].
However, these methods are time- and material- consuming. In recent years, headspace solid-phase
microextraction (HS-SPME), which has been proven to be a rapid, simple, and convenient sampling
method, has increasingly been used in the analysis of volatile compounds [13,14].

In this study, an accurate and robust method based on HS-SPME-GC-MS and multivariate
statistical analyses was developed to discriminate between GCP and CP on the basis of potential
volatile compounds. Multivariate statistical methods, including principal component analysis (PCA),
hierarchical cluster analysis (HCA), and orthogonal partial least-squares-discrimination analysis
(OPLS-DA), were employed to screen potential chemical markers for differentiating GCP and CP.
This study facilitated the profiling of volatile constituents of CRP, and provides a practical method for
the authentication of CRP varieties.

2. Results and Discussion

2.1. Optimization of SPME Conditions

Unlike exhaustive extraction through hydro-distillation, the volatile profiles of extracts obtained
using SPME deeply depend on fiber type, sampling temperature, and sampling time [10]. In order
to evaluate the feasibility of SPME conditions, volatile profiles of a CP sample (S5) were obtained
through SPME, and compared with those that flowed from hydro-distillation. The hydro-distillation
process was conducted in accordance with the procedure described in the Chinese Pharmacopoeia [15].
The volatile profile of S5 extracted through hydro-distillation is shown in Figure 1a. Monoterpenes were
found to be the predominant compounds, including D-limonene, γ-terpinene, α-pinene, β-pinene,
etc. The volatile profiles extracted through HS-SPME were basically consistent with that of the
hydro-distillation method. Furthermore, when the sampling temperature was 50 ◦C, the components
with higher boiling points received a relatively high response (shown in Figure 1b,c). As extraction time
increased, the percentage of monoterpenes (components with lower boiling points) decreased, and the
proportion of components with higher boiling points increased (shown in Figure 1d). The percentage
peak areas of the two main monoterpenes (D-limonene and γ-terpinene) and the two sesquiterpenes
(D-germacrene and α-farnesene), obtained using various extraction methods and parameters, are
presented in Table 1. As shown in previous studies [16,17], SPME can be used for quantitation
in a non-equilibrium state. In order to obtain more comprehensive information about the volatile
compounds of CRP, SPME conditions were selected so as to obtain a relatively high response for
components with higher boiling points, which were proportionally low in CRP. The reproducibility
of the method was evaluated through the determination of five replicates of a specified sample.
The relative standard deviation (RSD) was found to oscillate between 6% and 14% (generally close to
or lower than 10%). Acquired results showed that the conditions for extraction and GC-MS analysis
were robust and reliable.
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Figure 1. GC-MS typical total ion chromatograms (TICs) of volatile compounds in the “Chenpi” (CP)
sample (S5). (a) Extracted through hydro-distillation. (b) Extracted through headspace solid-phase
microextraction (HS-SPME) at 30 ◦C for 10 min. (c) Extracted through HS-SPME at 50 ◦C for 10 min.
(d) Extracted through HS-SPME at 50 ◦C for 30 min.

Table 1. Main terpenes identified in the analyzed “Chenpi” (CP) sample (S5) using various extraction
methods and parameters.

Retention Time
(RT) (min)

Compound

Peak Area (%)

Hydro-Distillation
Solid-Phase

Microextraction (SPME)
at 30 ◦C for 10 min

SPME at 50 ◦C
for 10 min

SPME at 50 ◦C
for 30 min

13.84 D-Limonene 81.52 61.46 52.35 28.09
14.77 γ-Terpinene 7.44 8.37 4.51 3.05
26.60 D-Germacrene 0.33 1.94 1.18 4.22
27.03 α-Farnesene 1.11 7.18 8.44 14.26

2.2. Volatile Compounds

A total of 51 volatile compounds, mainly monoterpenes and sesquiterpenes, were identified in the
CRP extract processed by SPME. The detailed information is shown in Table S1. Results were consistent
with reported data obtained through hydro-distillation and other methods [11]. Meanwhile, HS-SPME
provided an easier sampling procedure in a shorter time (30 min). As shown in Table 2, 21 peaks,
which were simultaneously detected in all 54 samples, were finally selected, and the peak-area ratios
relative to that of n-tridecane were imported to form a dataset. Collectively, they made up an average
of 85.2% of the total peak area, thus covering the majority of the information contained in the volatile
profiles. Based on a previous report [18], volatile components which appeared in minute quantities
were excluded for better repeatability of quantification.
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Table 2. Identification of volatile compounds in Citri reticulatae pericarpium (CRP).

No. a Compound RT b (min) LRI c Reference

Relative Area d

“Guangchenpi”
(GCP)

(n = 31)

CP
(n = 23)

1 α-Pinene 10.83 936 [19] 0.26 ± 0.14 0.41 ± 0.24
2 β-Pinene 12.19 977 [20] 0.25 ± 0.12 0.27 ± 0.15
3 β-Myrcene 12.62 990 [21,22] 0.35 ± 0.16 1.06 ± 0.88
4 o-Cymene 13.65 1022 [23] 1.33 ± 0.66 1.02 ± 0.53
5 D-Limonene 13.84 1028 [21,22,24] 24.29 ± 7.45 55.61 ± 26.24
6 γ-Terpinene 14.77 1058 [25] 8.55 ± 3.43 6.77 ± 3.95
7 trans-4-Thujanol 15.04 1066 [21] 0.97 ± 1.24 0.46 ± 0.29

8 2-Cyclohexen-1-ol,
1-methyl-4-(1-methylethyl)-, cis- 15.98 1096 [26] 5.51 ± 2.83 11.92 ± 6.29

9 trans-p-Mentha-2,8-dienol 16.64 1119 [22] 0.90 ± 0.45 0.67 ± 0.27
10 4-Terpineol 18.35 1177 [27] 2.69 ± 0.90 1.37 ± 0.87
11 p-Cymen-8-ol 18.49 1181 [21] 0.89 ± 0.28 0.26 ± 0.14
12 α-Terpineol 18.72 1189 [21] 10.22 ± 4.74 6.83 ± 2.50
13 Perilla aldehyde 21.00 1271 [28] 1.34 ± 0.56 1.50 ± 0.68
14 Carvacrol 21.57 1291 [29] 3.35 ± 1.23 2.06 ± 2.81
15 Copaene 23.97 1383 [30] 1.02 ± 0.54 1.57 ± 1.20
16 β-Cubebene 24.31 1396 [30] 0.70 ± 0.35 2.76 ± 2.26
17 Benzoic acid, 2-(methylamino)-, methyl ester 24.55 1406 [31] 40.07 ± 10.44 15.60 ± 10.47
18 Caryophyllene 25.11 1428 [30] 3.41 ± 1.96 1.61 ± 1.37
19 D-Germacrene 26.60 1489 [25] 0.51 ± 0.35 2.72 ± 2.42
20 α-Farnesene 27.03 1507 [32] 11.41 ± 5.14 8.72 ± 8.31
21 Cadinene 27.55 1529 [30] 1.71 ± 0.99 2.85 ± 2.24

a Numbers represent the compound index for the principal-component-analysis (PCA) loading plot shown
in Figure 2b. b Retention time (min). c Linear retention indices. d Peak-area ratios relative to n-tridecane
(internal standard).

2.3. Discrimination Between CP and GCP Based on Multivariate Analysis

To investigate the chemical variation in volatile compounds based on GC-MS data,
both unsupervised and supervised classification methods were employed. Unsupervised PCA analysis
converted the original variables into new irrelevant variables (principal components, PCs). In this way,
reduced dimensionality of the data was obtained while still preserving information from the original
dataset. Thus, PCA revealed trends in the dataset, such as groupings and clusters based on chemical
similarities or differences. In the presented study, four principal components accounting for 83.8%
(R2X) of the total variance were considered significant (PC1 described 32.3% of the sample variability,
and PC2 described 23%). The predictive ability of the model (Q2) was 68.8%, which indicated that
it was a good model (Q2 ≥ 0.50). The PCA score plot and loading plot are shown separately in
Figure 2a,b, respectively. The score plot (PC1/PC2) displayed the relationship between CP and GCP,
and the loading plot showed variables that contributed to the score. Both domains (CP and GCP) were
clearly separated from each other. The variables which possessed the greatest influence on classification
were located at the furthermost position from the main cluster of variables [33]. HCA was performed
based on four PCs from the above PCA model, and displayed relationships between various CRP
samples in the form of a dendrogram, calculated using Ward’s minimum-variance method (shown in
Figure 2c). All samples could be clearly divided into two clusters; all CP samples were classified into
Cluster I (left), and all GCP samples were classified into Cluster II (right).
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Figure 2. Multivariate data analysis of Citri reticulatae pericarpium (CRP). (a) Score plot of the
principal-component-analysis (PCA) result. The variances accounted by the first principal component
(PC1) and the second principal component (PC2) were 32.3% and 23.0%, respectively. Circles represent
“Guangchenpi” (GCP) samples, and triangles represent CP samples. (b) Loading plot of the PCA result
(PC1 vs. PC2). (c) Dendrograms of the hierarchical-cluster-analysis (HCA) result.
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Supervised OPLS-DA was applied in the discrimination, and also to define the most significant
contributors toward discrimination. OPLS-DA extended a regression of the PCA, and used the class
membership (as Y variables) to maximize variation, introducing an orthogonal signal correction filter to
separately handle systematic variation correlated with or uncorrelated with the Y variable. Therefore,
OPLS-DA had better discriminant ability than PCA for samples with larger intra-class divergence [34].
In the presented study, CP and GCP samples were clearly separated in the OPLS-DA score plot (shown
in Figure 3a). The R2X of the OPLS-DA model was 0.633, indicating that 63.3% of the variation in the
dataset could be modeled by the selected components. The R2Y was 0.878, indicating that the model
was well fitted. The Q2 was 0.826, indicating a good predictive ability. The root-mean-square error
of cross-validation (RMSECV) was used to evaluate the deviation between predicted and observed
Y values, by summarizing the cross-validation residuals of observations in the dataset, and had a
measurement unit of 0.164. A plot of the coefficients (shown in Figure 3b) displayed regression
coefficients related to scaled and centered X-variables, which enabled the OPLS model to be rewritten
as a regression model. This scaling of the data made the coefficients comparable, expressing how
strongly the Y-variable was correlated with the systematic part of each X-variable. With the established
OPLS-DA model, more sample data could be imported for discrimination.
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Figure 3. Orthogonal partial least-squares-discrimination analysis (OPLS-DA) models for the
classification of CRP. (a) Score plot of the OPLS-DA results. Circles represent GCP samples, and
triangles represent CP samples. (b) Plot of the coefficients for the OPLS-DA. The constant not displayed
in the plot was 1.150.



Molecules 2018, 23, 1235 7 of 10

To screen potential chemical markers that contributed to the differences between CP and GCP
samples, seven compounds with variable importance in projection (VIP) scores greater than 1.2 were
listed (shown in Table 3), demonstrating that they possessed the most influence on the discrimination
between both types of CRP.

Table 3. List of potential chemical markers.

No. RT
(min) Compounds Variable Importance in Projection

(VIP) Scores

1 18.49 p-Cymen-8-ol 1.78
2 24.55 Benzoic acid, 2-(methylamino)-, methyl ester 1.66
3 13.84 D-Limonene 1.44
4 18.35 4-Terpineol 1.30
5 26.60 D-Germacrene 1.25

6 15.98 2-Cyclohexen-1-ol,
1-methyl-4-(1-methylethyl)-, cis- 1.25

7 24.31 β-Cubebene 1.25

3. Materials and Methods

3.1. Materials

A total of 54 batches (23 batches of CP, and 31 batches of GCP) of mature tangerine fruits of
various cultivars were collected from the main producing districts throughout China, between October
2016 and December 2016 (Table S2). They were all authenticated by Professor Wen-bo Liao (Sun Yat-sen
University, China) according to their morphological characteristics. The samples were stored at the
School of Life Sciences, Sun Yat-sen University, China.

After the fruits were washed, their flesh was manually removed. Then, their pericarps were
removed according to criteria in the Chinese Pharmacopoeia. Finally, they were dried in sunless
condition once impurities were discarded and stored under dry conditions.

3.2. Hydro-distillation Extraction

According to the Chinese Pharmacopoeia [15], 50 g of sample powder (S5) was dissolved in
500 mL of distilled water, and then subjected to hydro-distillation for 5 h in a standard extractor. Neat
essential oils were collected and used for subsequent GC–MS analysis.

3.3. HS-SPME Extraction

Before extraction, the pericarps were powdered using a mill, and passed through a 60-mesh sieve
(aperture size of 0.25 mm). Individual samples (20 mg) were accurately weighed, and placed in a
10-mL crimp-top headspace vial for SPME. After adding 5 µL of n-tridecane (0.1646 mg/mL dissolved
in methanol) as an internal standard, the above-mentioned vials were sealed with magnetic caps and
polytetrafluoro-ethylene (PTFE)-coatedsilicone septa.

The volatile compounds were sampled by HS-SPME with 50/30 µm divinylbenzene/carboxen
fibre/polydimethylsiloxane (DVB/CAR/PDMS), supplied by Anpel Laboratory Technologies
(Shanghai, China). Incubation and extraction were performed at 50 ◦C for 5 min and 30 min,
respectively, under continuous agitation. Desorption was carried out in the injector at 220 ◦C for
10 min. Incubation, extraction, and desorption of volatile compounds was automatically performed by
a TriPlus™ RSH autosampler (Thermo Fisher Scientific, Milan, Italy).

3.4. Analysis of Volatile Compounds through GC-MS

Essential oils extracted after hydro-distillation, as well as all SPME samples, were run on a GC-MS
system. GC-MS analysis was carried out using a Trace GC Ultra gas chromatograph coupled with
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a triple quadrupole mass spectrometer (TSQ Quantum XLS, Thermo Fisher Scientific, Milan, Italy).
Injections were performed in split mode (1:50), and volatile compounds were chromatographed on a
TG-5SILMS column (30 m × 0. 25 mm × 0. 25 µm) provided by Thermo Fisher Scientific (Milan, Italy),
with helium as the carrier gas at a constant flow of 1.0 mL/min. The oven temperature was maintained
at 40 ◦C for 3 min, and then increased to 200 ◦C at a rate of 5 ◦C/min, before being subsequently
increased to 250 ◦C at a rate of 10 ◦C/min, and then finally held at 250 ◦C for 3 min. The inlet and ion
source temperatures were both set at 230 ◦C, and MS was scanned at 70 eV in the electronic ionization
mode. The mass spectra were acquired using the full-scan-monitoring mode, with a mass-scan range
of m/z 29–448, equipped using the Xcalibur software (v. 2.2, Thermo Fisher Scientific).

3.5. Data Analysis and Statistics

Compounds were tentatively identified by comparing the mass spectra and linear retention
indices (LRI) with the NIST (version 11) mass spectral database (National Institute of Standards
and Technology, Washington, DC, USA). The mixture of a homologous series of n-alkane standards
(C7–C30) dissolved in n-hexane, employed for LRIs, was supplied by Supelco (Bellefonte, PA, USA),
and analyzed under the same conditions as the samples. Quantitative data of the identified compounds,
which were used for statistical analysis, were based on the peak-area ratios relative to that of n-tridecane
(internal standard).

Multivariate analyses (PCA, HCA, and OPLS-DA) were performed using the SIMCA-P version
13.0 software (Umetrics, Malmö, Sweden) to evaluate relationships on the basis of similarities
or differences between groups of multivariate data. Unit-variance scaling was applied in data
preprocessing for both PCA and OPLS-DA. PCA results were displayed in the form of score plots
and loading plots. HCA was performed based on principal components from the PCA model, and
distances between 54 samples were calculated using Ward’s minimum-variance method, with results
presented as a dendrogram. OPLS-DA was conducted using class information as the Y-variable, and
results were shown in the form of score plots and coefficient-coded loading plots [34]. The quality of
the model was estimated by parameters from a seven-round internal cross validation: R2X showed how
much of the variation in the X variable could be explained by the selected components, R2 Y described
how well the model was fitted, and Q2 showed the predictability of the model. R2 and Q2 values
ranged from 0 to 1, where 1 indicated perfect fitness. In the OPLS-DA model, the root-mean-square
error of cross-validation (RMSECV) also described the predictive power of the model, but did so by
comparing the originally observed Y-variable and the predicted Y-variable using the measurement
unit [35]. The contribution of variables to the analysis was explained using variable importance in
projection (VIP) scores. VIP scores were a weighted sum of squares of PLS weights, with scores larger
than 1 indicating variables were important to the model.

4. Conclusions

In the presented study, an accurate and feasible analytical method based on HS-SPME-GC-MS
coupled with multivariate statistical analyses was developed for objective discrimination between
CRP varieties. Informative chemical profiles of 54 batches of CRP with 11 origins were obtained and
employed in multivariate statistical analyses, including PCA, HCA, and OPLS-DA. Samples from GCP
and CP were found to be easily differentiated, and seven potential chemical markers were screened.
This study provides a practical method for the authentication of CRP varieties, and results from the
comparisons of volatile chemical profiles will facilitate further understanding of their differences with
respect to pharmacology and pharmacokinetics.

Supplementary Materials: The following materials are available online at http://www.mdpi.com/1420-3049/
23/5/1235/s1: Table S1: Identification of volatile compounds by HS-SPME-GC-MS, and Table S2: Details of
mature tangerine fruits from various species collected in this work.
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