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Objective: To develop and validate a multiregional-based magnetic resonance imaging
(MRI) radiomics model and combine it with clinical data for individual preoperative
prediction of lymph node (LN) metastasis in rectal cancer patients.

Methods: 186 rectal adenocarcinoma patients from our retrospective study cohort were
randomly selected as the training (n = 123) and testing cohorts (n = 63). Spearman’s rank
correlation coefficient and the least absolute shrinkage and selection operator were used
for feature selection and dimensionality reduction. Five support vector machine (SVM)
classification models were built using selected clinical and semantic variables, single-
regional radiomics features, multiregional radiomics features, and combinations, for
predicting LN metastasis in rectal cancer. The performance of the five SVM models
was evaluated via the area under the receiver operator characteristic curve (AUC),
accuracy, sensitivity, and specificity in the testing cohort. Differences in the AUCs
among the five models were compared using DeLong’s test.

Results: The clinical, single-regional radiomics and multiregional radiomics models
showed moderate predictive performance and diagnostic accuracy in predicting LN
metastasis with an AUC of 0.725, 0.702, and 0.736, respectively. A model with improved
performance was created by combining clinical data with single-regional radiomics
features (AUC = 0.827, (95% CI, 0.711–0.911), P = 0.016). Incorporating clinical data
with multiregional radiomics features also improved the performance (AUC = 0.832 (95%
CI, 0.717–0.915), P = 0.015).

Conclusion:Multiregional-based MRI radiomics combined with clinical data can improve
efficacy in predicting LN metastasis and could be a useful tool to guide surgical decision-
making in patients with rectal cancer.
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INTRODUCTION

Colorectal cancer was the third most common type of malignant
tumor and the second leading cause of cancer death in the world
in 2018 (1). Nearly one-third of colorectal tumors are located in
the rectum (2). Lymph node (LN) status plays a vital role in
determining whether to perform adjuvant therapy or additional
surgical resection (2–6). Therefore, accurate preoperative
assessment of LN status or assessment of the N stages of
regional LNs in rectal cancer patients via medical imaging is
essential for precise individualized decision making and patient
prognosis (2, 6, 7). However, preoperative LN staging in rectal
cancer patients remains a challenge for radiologists (4).

Magnetic resonance imaging (MRI) is considered the most
accurate method to assess the primary staging of rectal cancer
(2). However, MRI, computed tomography (CT) and endorectal
ultrasound cannot reliably evaluate LN metastasis (2, 4, 8). All
diagnostic clues rely heavily on the size, shape, and margins of
LNs, but these semantic characteristics alone are insufficient to
reliably distinguish malignant from benign LNs in rectal cancer
patients (2, 4, 5, 9).

Unlike traditional image evaluation methods, radiomics is an
emerging and effective method for quantitatively analyzing the
classification and prognosis of diseases using medical imaging
(10). From standard-of-care medical images, data can be
extracted via high-throughput mining of quantitative image
features, which are undetectable by the naked eye, and applied
within clinical-decision support systems (9–13); radiomics plays
an important role in early diagnosis, treatment evaluation, and
tumor prognosis prediction, ultimately aiding in the achievement
of precision medicine (11, 14, 15).

In previous studies, a CT radiomics signature-based nomogram
(16) and T2-weighted histogram of the primary tumor (17) have
been applied and shown to successfully discriminate LN metastasis
in colorectal- and rectal cancer patients. MRI can provide
multiparameter images different from those obtained by CT, so it
is of interest whether there exists an association between LN status
andmultiregional radiomics features of multiparametricMR images
in rectal cancer patients. To the best of our knowledge, the topic has
not been previously studied.

This study aimed to develop and validate a multiregional
radiomics prediction model based on MRI and combine it with
clinical-semantic data for the individualized preoperative
prediction of LN metastasis in rectal cancer patients. This
would allow clinicians to make personalized treatment plans.
MATERIALS AND METHODS

This retrospective study was approved by the ethics committee of
the First Hospital of Jilin University, and the requirement for
informed consent was waived.

Patients
The data of 238 consecutive patients with rectal cancer from
January 2016 to December 2018 were initially retrieved from the
institutional database. The inclusion criteria were as follows: (i)
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rectal MRI examination was performed within the 2 weeks before
surgery; (ii) the distal border of the tumor was ≤15 cm above the
anal verge based on colonoscopy; (iii) subsequent radical surgical
resection was performed; (iv) postoperative histopathological
examination confirmed rectal adenocarcinoma; and (v) all LNs
were assessed. The exclusion criteria were as follows: (i) distant
metastases; (ii) not undergoing surgery at our hospital or lack of
diffusion-weighted imaging (DWI) or high-resolution T2-
weighted imaging (T2WI) data; (iii) insufficient MRI quality to
obtain measurements (e.g., owing to motion artifacts); and (iv)
lack of presurgical carcinoembryonic antigen (CEA) and
carbohydrate antigen 19-9 (CA19-9) data. A total of 186
patients met the criteria and were included in this study; they
were divided randomly into a training cohort (n = 123) and a
testing cohort (n = 63) at a ratio of 2:1. The process of patient
selection is summarized in Figure 1.

Baseline clinicopathologic data, including age, gender, and
levels of CA19-9 and CEA, were derived from medical records.
Laboratory analyses of CEA and CA19-9 were conducted within
1 week before surgery. The threshold value for CEA was 5 ng/ml
and that for CA19-9 was 39 U/ml, according to the clinically
normal range.

Radiomics Workflow
The radiomics workflow is illustrated in Figure 2 and includes
(1) medical image acquisition, (2) tumor segmentation, (3)
radiomics feature extraction, and (4) feature selection and
predictive model construction (described in detail in the
Statistical Analysis section).

Medical Image Acquisition
All rectal MRIs were performed using a 3.0T MR scanner
(Philips Ingenia, the Netherlands) with the patient in the
supine position. To reduce colonic motility, 20 mg of
anisodamine was injected intramuscularly 30 min before the
MRI scan. All patients underwent the standard rectal MRI
protocol including sagittal, axial, oblique axial, and coronal
T2WI and DWI. DWI images were obtained with two b-
factors (0 and 1,000 s/mm2), a repetition time (TR) of 2,800
ms, an echo time (TE) of 70 ms, a field of view (FOV) of 340
mm× 340 mm, a matrix of 256 × 256, a thickness of 4.0 mm, and
a gap of 1.0 mm. Apparent diffusion coefficient maps were
generated automatically and included both b-values. High-
resolution T2WI images were obtained using turbo spin-echo
with a TR of 3,500 ms, a TE of 100 ms, a FOV of 180 mm×
180 mm, an echo train length of 24, a matrix of 288 × 256, a
thickness of 3.0 mm, and a gap of 0.3 mm.

Semantic and Pathological Evaluation
Two radiologists with 3 years and 8 years of experience in rectal
cancer MRI interpretation who were blinded to the
histopathology results evaluated the MR images.

Conventional semantic evaluation indicators included MRI-
reported LN status, which were performed using the qualitative
criteria of the LNs according to the updated recommendations
from the 2016 European Society of Gastrointestinal and
Abdominal Radiology (ESGAR) consensus meeting (18). AN LN
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with a short-diameter of ≥9 mm is considered metastatic. An LN
with a short diameter of 5–8 mm and at the same time satisfying
any two of the following three items is considered metastatic: the
edge of the LN is not smooth, the signal inside the LN is not
uniform, and the LN is round. An LN with a short-diameter of
<5 mm LN meeting all three of the above items is considered
metastatic. The location of the primary tumor was measured on
the approximate luminal center of the rectum on the sagittal T2WI
sequence and categorized as lower (0–5 cm from the anal verge to
the lowest edge of the tumor), middle (5.1–10 cm from the anal
verge to the lowest edge of the tumor), or higher (10.1–15 cm from
Frontiers in Oncology | www.frontiersin.org 3
the anal verge to the lowest edge of the tumor) (5, 19). The tumor
length (measured on the sagittal T2WI), tumor thickness
(measured on the oblique axis T2WI), extramural depth of
invasion (measured on the oblique axis T2WI), invasion of
mesorectal fascia (MRF; >1 mm was diagnosed as negative and
≤1 mm diagnosed as positive), maximum LN short diameter
(measured on the axis T2WI) were also evaluated. Cases of
disagreement on the evaluation of semantic features were
resolved through discussion between the two radiologists.

The pathological LN status of each patient was recorded
following the histopathological reports.
FIGURE 2 | The workflow of radiomics in this study. T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; GLCM, Gray Level Cooccurence Matrix; GLSZM,
Gray Level Size Zone Matrix; GLRLM, Gray Level Run Length Matrix; NGTDM, Neighboring Gray Tone Difference Matrix; GLDM, Gray Level Dependence Matrix;
LASSO, least absolute shrinkage and selection operator; AUC, area under the curve; SVM, support vector machine.
FIGURE 1 | The process of patient selection. MRI, magnetic resonance imaging; pLN+, pathological lymph node positive; pLN−, pathological lymph node negative.
February 2021 | Volume 10 | Article 585767
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Tumor Segmentation
All MRI scans were retrieved from the picture archiving and
communication system (Agfa) for tumor masking and image
feature extraction.

One radiologist who was blinded to the histopathology results
segmented the volumes of interest (VOIs) on high-spatial
resolution T2WI and DWI images using IntelliSpace Discovery
(Philips, Best, the Netherlands). For each patient, three VOIs
were defined as follows: (i) the volume of the whole primary
tumor on T2WI, which was manually drawn along the contour
of the tumor on each slice; (ii) the volume of the whole primary
tumor on DWI (b-value of 1,000 s/mm2), manually drawn on
each slice on the high signal intensity region; and (iii) the volume
of the peritumoral mesorectum on un-fat-suppressed T2WI,
drawn along the MRF and the outer edge of the tumor and
rectal wall, respectively, retaining the area between the
two circles.

To assess intra-reader and inter-reader reproducibility,
randomly selected T2WI images of 20 cases was segmented
again by the same radiologist a month following the same
procedure, as well as by another radiologist with 8 years’
experience in interpreting pelvic MRI.

Radiomics Feature Extraction
For each patient, we used three different VOIs for radiomics feature
calculation. Radiomics feature extraction was implemented using a
Philips Radiomics Tool (Philips Healthcare, China); the core
feature calculation was based on pyRadiomics (20).

For each VOI, a total of 1,653 three-dimensional (3D)
radiomic features, including direct features, indirect features,
Wavelet transform features, and Laplacian of Gaussian filtered
features, were extracted. The types, introduction of extracted
features, and the number of each type are shown in
Supplementary Table 1. For each patient, we integrated all
4,959 radiomics features from three VOIs.

Statistical Analysis
The statistical analysis of clinicopathological features and
semantic indicators were performed with SPSS software
(version 22.0, Chicago, IL, USA). The lasso algorithm and
SVM model construction were implemented with the scikit-
learn package in Python(3.7). P <0.05 was considered statistically
significant using two-tailed testing.

Demographic Comparison of the Training and
Testing Cohorts
The differences in continuous variables, including age, tumor
length, tumor thickness, extramural depth of invasion, and
maximum LN short diameter, between the training and testing
cohorts were compared using a two-sample t-test or Mann–
Whitney U test, according to the normality of data distribution
tested using the Kolmogorov–Smirnov method. Chi-square or
Fisher’s exact tests were used, as appropriate, to compare
differences (including LN prevalence) in categorical variables
(gender, location of the primary tumor, levels of CEA and CA19-
9, invasion of MRF and MRI-reported LN status). The same
statistical analysis was applied to assess differences in the
Frontiers in Oncology | www.frontiersin.org 4
characteristics between patients with pLN− (pathological N0
stage) and pLN+ (pathological N1–N2 stage) in the two cohorts.

Inter- and Intra-Observer Reproducibility of Tumor
Segmentation
Dice similarity coefficient (DSC) was calculated to evaluate the
inter-and intra-observer agreements of tumor segmentation.
DSC greater than 0.75 indicates good agreement.

Feature Selection
First, all features (including baseline clinicopathological data,
semantic indicators, and radiomics features) were normalized
using the Min–Max scaling algorithm, as shown below:

Xnormal =
X − Xmin

Xmax − Xmin

Next, Spearman’s rank correlation coefficient analysis
between each feature and label was performed. Features with a
coefficient lower than an absolute value of 0.2 or P values greater
than 0.05 were removed due to the low correlation between these
features and the pathological labels. We then used the least
absolute shrinkage and selection operator (LASSO) algorithm for
dimensionality reduction (21).

Model Training and Validation
Five support vector machine (SVM) classification models were
built using selected clinical and semantic features, single-regional
radiomics features, multiregional radiomics features, and
combinations thereof. The clinical model was developed based
on selected clinical and semantic factors. The radiomics model of
the tumor (TR) was developed based on selected radiomics
features of two VOIs of the primary tumors. The radiomics
model of tumor and mesorectum (TMR) was developed based on
selected radiomics features of three VOIs of the primary tumors
and peritumoral mesorectum. Selected clinical and semantic
factors and radiomics features of two VOIs of the primary
tumors were used to develop a clinical-tumor radiomics model
(CTR). Selected clinical and semantic factors and radiomics
features of all three VOIs were used to develop a clinical-
tumor and mesorectum radiomics model (CTMR).

The performance of the models in predicting LN status
was first evaluated in the training cohort, then in the testing
cohort by plotting a receiver operating characteristic (ROC)
curve and calculating the area under the curve (AUC).
The corresponding accuracy, sensitivity, specificity, negative
predictive values (NPV), and positive predictive values (PPV)
were then calculated. The differences in the AUCs of the five
models were compared using DeLong’ test.
RESULTS

Patient Characteristics
The demographic characteristics of patients in the training and
testing cohorts are shown in Table 1. There were no significant
differences between the two cohorts in LN prevalence (P =
February 2021 | Volume 10 | Article 585767
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0.892). LN metastasis positivity was 43.9 and 42.9% in the
training and testing cohorts, respectively. The characteristics of
the two cohorts did not differ significantly, which justifies their
use as training and testing cohorts (P values ranged from 0.121 to
0.906). The maximum LN short diameter differed significantly
between the pLN+ and pLN− groups in both cohorts (P = 0.001
and P = 0.004, respectively). The location of the primary tumor
differed significantly between the pLN+ and pLN− groups in the
training cohorts (P = 0.008). Good inter- and intra-observer
reproducibility of tumor segmentation was achieved. The DSC
for intra-observer agreement ranged from 0.793 to 0.865; for
inter-observer agreement, it ranged from 0.773 to 0.847, which
demonstrates good consistency.

Feature Selection and Model Construction
Selected features after Spearman’s rank correlation coefficient and
LASSO regression and corresponding coefficients and the intercept
of the constructed five SVM prediction models in the training
cohort are shown in Supplementary Tables 2 to 6. The possibility
of LN metastasis was calculated for each patient via a linear
combination of selected features that were weighted by their
respective coefficients in the SVM model and adding the intercept.

Performance of the Models
The ROC curves and corresponding AUC values that distinguish
between pLN+ and pLN− in the five models are shown in Table
2 and Figure 3. The clinical model performed moderate when
Frontiers in Oncology | www.frontiersin.org 5
classifying between pLN+ and pLN−, with an AUC of 0.717 (95%
confidence interval (CI), 0.629–0.795) and 0.725 (95% CI, 0.598–
0.830) in the training and testing cohorts, respectively. There was
no significant difference between the AUC of the clinical and
single-regional TR models in the two cohorts (training: AUC =
0.786 (95% CI, 0.702–0.854), P = 0.222; testing: AUC = 0.702
(95% CI, 0.573–0.810), P = 0.801). Compared with the single-
regional TR model, the multiregional-based CTMR model
showed improved AUCs in the two cohorts (training: AUC =
0.837 (95% CI, 0.801–0.926), P = 0.009; testing: AUC = 0.832
(95% CI, 0.717–0.915), P = 0.030). The single-regional CTR
model outperformed the TR model only in the testing cohort
(AUC = 0.827 (95% CI, 0.711–0.911), P = 0.016). Compared with
the multiregional TMR model, the CTMR model showed
improved AUCs in the testing cohort (P = 0.015). The TMR,
CTR, and CTMR models outperformed the clinical model only
in the training cohort (P values ranged from <0.001 to 0.014),
while no significant differences were seen in the testing cohort.

Table 3 summarizes the accuracy, sensitivity, specificity, PPV,
and NPV of the five models in detail. The clinical model was able
to discriminate between pLN+ and pLN− in the training and
testing cohorts with an accuracy of 0.650 and 0.635 respectively.
All the performance indexes of the TR model were better than
those of the clinical model in the training cohort; in the testing
cohort, only specificity was higher in the clinical model. When
tumor features were combined with mesorectum features, the
resulting TMR model showed an improved accuracy with values
TABLE 1 | Characteristics of patients in training and testing cohorts.

Characteristic Training cohort Testing cohort P※

pLN+
n = 54

pLN−
n = 69

P pLN+
n = 27

pLN−
n = 36

P 0.892

Gender 0.090a 0.184a 0.906a

Male 33(61.1) 52(75.4) 16(59.3) 27(75.0)
Female 21(38.9) 17(24.6) 11(40.7) 9(25.0)

Age, years 60(53−67) 60(51.5−70.5) 0.520c 57.6 ± 12.7 59.3 ± 10.2 0.571b 0.388b

CEA level 0.508a 0.052a 0.324a

Normal 39(72.2) 46(66.7) 13(48.1) 26(72.2)
Abnormal 15(27.8) 23(33.3) 14(51.9) 10(27.8)

CA19-9 level 0.289a 0.643a 0.684a

Normal 47(87.0) 64(92.8) 24(88.9) 34(94.4)
Abnormal 7(13.0) 5(7.2) 3(11.1) 2(5.6)

Location of primary tumor 0.008a* 0.128a 0.397a

Upper 7(13.0) 1(1.4) 0(0) 1(2.8)
Middle 29(53.7) 31(44.9) 17(63.0) 15(41.7)
Lower 18(33.3) 37(53.6) 10(37.0) 20(55.6)

Tumor length(cm) 5.2 ± 2.2 5.3 ± .3 0.858b 5.4 ± 2.0 4.8 ± 1.9 0.199b 0.594b

Tumor thickness(cm) 1.3(1.1−1.5) 1.3(1.1−1.6) 0.910c 1.1(0.9−1.6) 1.3(1.0−1.6) 0.512c 0.194c

Extramural depth of invasion(mm) 5.0(2.0−7.3) 4(0-6) 0.126c 5.0(3.0−8.0) 4.0(0.3−8.0) 0.212c 0.268c

Maximum LN short diameter(mm) 6.0(4.0−8.0) 6.0(3.0−6.0) 0.001c* 7.0(5.0-9.0) 5.0(3.3−6.8) 0.004c* 0.121c

Invasion of MRF 0.708a 0.504a 0.598a

Negative 43(79.6) 53(76.8) 19(70.4) 28(77.8)
Positive 11(20.4) 16(23.2) 8(29.6) 8(22.2)

MRI-reported lymph status 0.063a 0.059a 0.271a

Negative 14(25.9) 29(42) 4(14.8) 13(36.1)
Positive 40(74.1) 40(58) 23(85.2) 23(63.9)
February 2021 | Volu
me 10 | Article 5
pLN-, pathological N0 stage; pLN +, pathological N1-N2 stage; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; MRF, mesorectal fascia; a, Chi-square test or
Fisher’s exact test, data are number of patients, with percentages in parentheses; b, Independent sample t test, data are mean ± SD; c, Mann-Whitney U test, data are median, with
Interquartile range in parentheses.* p value <0.05; ※The comparison between the training cohort and testing cohort. The threshold value for CEA level was 5ng/mL and >5 ng/mL, and the
threshold value of CA 19-9 level was 39 U/mL and >39 U/ml, according to the normal range used in clinics.
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of 0.722 and 0.635 in the two cohorts, outperforming the clinical
model in the training cohort and having the same accuracy as in
the testing cohort. When the single-regional and multiregional
radiomics models were combined with clinical factors, the
resulting CTR and CTMR models had higher accuracies and
Frontiers in Oncology | www.frontiersin.org 6
better performance indexes than the uncombined models in the
two cohorts. With the exception of the CTR and CTMR models,
which had the same sensitivity in the testing cohort (0.815), the
CTMR model had the highest performance indicators in the
two cohorts.
TABLE 2 | The detailed AUC vaues and p values among models on the training cohort and testing cohorts.

Cohorts Model AUC (95％CI) P P1 P2 P3 P4

Training Clinical 0.717(0.629–0.795) <0.001*
TR 0.786(0.702–0.854) <0.001* 0.222
TMR 0.834(0.756–0.895) <0.001* 0.014* 0.106
CTR 0.825(0.746–0.888) <0.001* 0.003* 0.198 0.749
CTMR 0.873(0.801–0.926) <0.001* <0.001* 0.009* 0.132 0.043*

Testing Clinical 0.725(0.598–0.830) <0.001*
TR 0.702(0.573–0.810) 0.003* 0.801
TMR 0.736(0.609–0.839) <0.001* 0.903 0.486
CTR 0.827(0.711–0.911) <0.001* 0.061 0.016* 0.116
CTMR 0.832(0.717–0.915) <0.001* 0.068 0.030* 0.015* 0.885
February 2021 | V
olume 10 | Article 5
TR, radiomics model of tumor; TMR, the radiomics model of tumor and mesorectum; CTR, clinical-tumor radiomics model; CTMR, clinical-tumor and mesorectum radiomics model; AUC,
the area under the curve; CI, confidence interval. *P < 0.05; P1, p values between clinical model and other models; P2, p values between TRmodel and other models; P3, p values between
TMR model and other models; P4, p values between CTR model and CTMR models. p values of P1 to P4 calculated using ROC test by Delong test.
A B

FIGURE 3 | The receiver operator characteristic (ROC) curves to discriminate pLN+ from pLN− for the five models on the training cohort (A) and testing cohorts (B).
AUC, area under the curve; TR, radiomics model of tumor; TMR, radiomics model of tumor and mesorectum; CTR, clinical-tumor radiomics model; CTMR, clinical-
tumor and mesorectum radiomics model.
TABLE 3 | Predictive performances among models on the training cohort and testing cohorts.

Model Cohorts Accuracy (95％CI) Sensitivity Specificity PPV NPV

Clinical Training 0.650(0.566–0.734) 0.704 0.609 0.585 0.724
Testing 0.635(0.516–0.754) 0.704 0.583 0.559 0.724

TR Training 0.707(0.627–0.787) 0.741 0.681 0.645 0.770
Testing 0.619(0.499–0.739) 0.593 0.639 0.552 0.676

TMR Training 0.772(0.698–0.846) 0.778 0.768 0.724 0.815
Testing 0.635(0.616–0.754) 0.667 0.611 0.563 0.710

CTR Training 0.764(0.689–0.839) 0.778 0.754 0.712 0.813
Testing 0.746(0.639–0.853) 0.815 0.694 0.667 0.833

CTMR Training 0.789(0.717–0.861) 0.796 0.783 0.741 0.831
Testing 0.778(0.675–0.881) 0.815 0.750 0.710 0.844
The cutoff was 0 for all the models. TR, radiomics model of tumor; TMR, The radiomics model of tumor and mesorectum; CTR, clinical-tumor radiomics model; CTMR, clinical-tumor and
mesorectum radiomics model; CI, confidence interval. PPV, positive predictive value; NPV, negative predictive value.
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DISCUSSION

In this study, we explored the diagnostic value of multiple models
which included clinical factors, single-regional radiomics,
multiregional radiomics, and combinations of clinical and
radiomics models based on MRI to preoperatively predict LN
metastasis in patients with rectal cancer. Our results showed that
the established models had good predictive performance, and a
multifactorial model based on multiregional radiomics combined
with clinical factors had better classification performance and
diagnostic accuracy, suggesting that it can act as a relatively non-
invasive auxiliary evaluation tool for clinical decision-making.

Preoperative LN staging in patients with rectal cancer remains a
challenge for radiologists. Previous studies have reported the use of
clinical and semantic factors such as CEA and serum angiopoietin-
like protein 2 levels, histopathological features, the diameter of LN,
and morphological features (22–25) to predict LN status in patients
with rectal cancer. However, these features are not enough to
reliably diagnose LN metastasis in patients with rectal cancer (2,
5, 25). In this study, we found that the maximum LN short diameter
was significantly different between the pLN− and pLN+ patients in
both the training and testing cohorts, with a bigger LN diameter
indicating an increased probability of metastasis. Several previous
studies have shown that some clinical characteristics were related to
LNmetastasis (3, 24). However, in our study, clinical characteristics
such as CEA and CA19-9 had no additional value for predicting LN
status. These results may be related to characteristics of the study
population itself, such as the sample size. After feature selection, two
semantic indicators, namely the maximum LN short diameter and
tumor location, were included in the final clinical model. Our
results also showed that a model based purely on semantic variables
had relatively low sensitivity and specificity for the prediction of LN
status, which may lead to moderate accuracy for diagnosis.
However, this result should be interpreted with caution, as
clinical variables vary from population to population.

At present, several studies have reported the role of radiomics in
predicting LN metastasis in rectal cancer. In comparison, none of
the rectal MRI studies had ever focused on peritumoral tissue and
the microenvironment. Huang et al. (16) used an enhanced CT-
based radiomics model to discriminate LN metastasis in colorectal
cancer patients with a concordance index of 0.736–0.778. However,
previous studies focused on both colonic and rectal lesions using
CT data in regions of interest (ROIs) of the primary tumor region
alone. In our study, the segmentation of images was performed
layer by layer, and 3D VOIs were constructed. Previous studies
have shown that 3D VOIs are more representative of the
heterogeneity of the whole lesion than 2D ROIs (26). Moreover,
the LN status of rectal cancer is important for clinical decision
making. MRI is considered to be the optimal imaging modality for
the primary staging of rectal cancer (2). Yang et al. used T2WI
histogram features of the primary rectal tumor to predict the
existence of LN metastasis with moderate-to-good diagnostic
power and an AUC of 0.648 to 0.750 (17). Yang et al. segmented
the single-regional ROIs of rectal cancer images to extract
histogram features. Previous studies have indicated that
multiregional MRI radiomics allows for a comprehensive
Frontiers in Oncology | www.frontiersin.org 7
characterization of the tumor heterogeneity (27, 28). In addition
to the region of the tumor, the surrounding mesorectal tissues may
also exhibit abnormal microscopic changes in the microvascular
and lymphatic networks, the extracellular matrix, and the
interstitial pressure, which should not be ignored (3, 29). A
central hypothesis driving radiomics research is that radiomics
has the potential to quantitatively measure intra- and intertumoral
heterogeneity (11). When the current multiregional radiomics
signature was introduced into the prediction model of rectal
cancer, the performance improved when compared to that of the
single-regional model (3). Hence, the radiomics model constructed
in our study included the VOIs of the primary tumor and the
mesorectum at the lesion level on the morphological T2WI
sequence and the VOIs of the primary tumor on the functional
DWI sequence. Our study found that the multiregional radiomics
model showed minor non-significant improvements in AUC
compared with a single-regional radiomics model (P = 0.486),
but the former had better accuracy.

Considering the global nature of the model, clinical,
treatment, and biological or genetic information should be
included in the radiomics analysis process (12). Our results
showed no significant difference in AUCs between the clinical,
single-regional radiomics, and multiregional radiomics models,
which showed that clinical models and radiomics models have
similar predictive performance. The combination of clinical
factors with single-regional and multiregional radiomics
features improved the performance of the model, and the
model with the combination of clinical factors and
multiregional radiomics features had the highest AUC and
accuracy values. This indicated that the clinical information in
the combined models may contribute relatively more to the
prediction performance than the radiomics features. So, clinical
and semantic factors also play an important role in the prediction
of LN metastasis of rectal cancer. The sensitivity and NPV of the
combined models were high, indicating that the models can
accurately identify true pLN+ and true pLN− patients. The need
for a model to determine LN metastasis—one that can accurately
identify patients who need neoadjuvant chemoradiotherapy—is
high. For patients with tumors confined to T0 and T1 staging,
accurate identification of pLN− patients may actually change
clinical decision-making; that is, only local excision would be
performed to avoid the pain caused by surgery, and it is possible
for patients with lower-stage tumors to maintain anal sphincter
function. Therefore, from a clinical perspective, the significance
of accurately identifying pLN− patients is great, and we conclude
that the addition of clinical factors to radiomics analysis
potentially creates a substantial biomarker for assessing the
risk of LN metastasis and could be applied in clinical practice.

Our study had several limitations. Firstly, the sample size was
relatively small, and the retrospective study lacked independent
external validation. In the future, our results should be
prospectively validated in multicenter clinical trials. Secondly,
genomic characteristics were not considered. Radiogenomics,
which focuses on the relationship between imaging phenotypes
and genomics, has emerged in the field of cancer research and
has attracted increasing interest (29). Thirdly, manual
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segmentation was used in this study, which is time-consuming
and error-prone. Therefore, a reliable and robust automatic
segmentation tool is necessary to solve this problem.
CONCLUSIONS

In conclusion, our findings demonstrated that multiregional-
based radiomics features from multiparametric MRIs of patients
with rectal cancer combined with clinical data can improve
efficacy in non-invasively predicting LN metastasis and could
serve as a useful tool to preoperatively guide individualized
surgical decision-making of patients with rectal cancer.
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