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Abstract

Every day, humans make countless decisions that require the integration of information about potential benefits (i.e.
rewards) with other decision features (i.e. effort required, probability of an outcome or time delays). Here, we examine the
overlap and dissociation of behavioral preferences and neural representations of subjective value in the context of three
different decision features (physical effort, probability and time delays) in a healthy adult life span sample. While
undergoing functional neuroimaging, participants (N = 75) made incentive compatible choices between a smaller monetary
reward with lower physical effort, higher probability, or a shorter time delay versus a larger monetary reward with higher
physical effort, lower probability, or a longer time delay. Behavioral preferences were estimated from observed choices, and
subjective values were computed using individual hyperbolic discount functions. We found that discount rates were
uncorrelated across tasks. Despite this apparent behavioral dissociation between preferences, we found overlapping
subjective value-related activity in the medial prefrontal cortex across all three tasks. We found no consistent evidence for
age differences in either preferences or the neural representations of subjective value across adulthood. These results sug-
gest that while the tolerance of decision features is behaviorally dissociable, subjective value signals share a common repre-
sentation across adulthood.
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Introduction elevator? Should I use a financial windfall to buy bonds or
People face a myriad of decisions every day, ranging from the invest in stocks? Should I purchase a new car now or wait until
crucial to the trivial. Should I walk up the stairs or take the the end-of-the-year sales? Real-world decision making involves
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taking into account factors such as the amount of effort
required to achieve an outcome, the probability that an out-
come will be realized, or the amount of time until an outcome is
realized. Each individual’s decision preferences vary based on
how these features diminish the subjective value of a decision’s
potential outcome. Thus, the choice to pursue financial well-
being, social satisfaction, and physical health depend upon
individual differences in the discounting of these features and
their computation of subjective value. A better understanding
of individual differences in discounting behavior and the repre-
sentation of subjective value in the brain, and whether this
behavior and these representations are consistent across adult-
hood, may provide insights into everyday decision making
across adulthood.

Theoretically, it has been posited that probability and time
discounting share similar cognitive mechanisms (Estle et al.,
2006; Green & Myerson, 2004). However, the empirical literature
examining this conjecture is mixed, with some studies finding
behavioral correlations between probability and time discount-
ing (Mitchell, 1999; Richards et al., 1999), while others only find
correlations within a particular patient group or experimental
condition (Myerson et al.,, 2003; Scheres et al., 2006), and still
others find no evidence of correlated preferences across tasks
(Holt et al., 2003; Ohmura et al., 2005; Olson et al., 2007; Peters &
Biichel, 2009; Reynolds et al., 2004; Weber & Huettel, 2008).
Fewer theoretical and empirical studies have compared effort
discounting to probability or time discounting, with limited sup-
port for behavioral correlations between effort and probability
discounting (Massar et al., 2015; Prévost et al., 2010). To our
knowledge, only two studies have examined the relationships
between discounting behavior across all three features: one
finding correlations across all three features in a small sample
(N=11) of smokers (Mitchell, 2004) and our own study which
only found a small correlation between effort and time dis-
counting in a moderate sample (N=92) of healthy adults
(Seaman et al., 2016). Given that the literature examining behav-
ioral consistency of preferences across decision features is
inconclusive, one goal of this study was to examine behavioral
correlations between preferences across all three decision fea-
tures (effort, probability and time) in healthy adults.

From behavioral preferences, and how they vary as a func-
tion of decision features, one can make inferences about the
subjective value (SV) of each option presented during decision-
making. Variation in SV, or the value of an option after any dis-
counting, across trials within a task can be used to identify
brain regions where neural activity is correlated with SV (Kable
& Glimcher, 2007). One strength of this approach is that SV sig-
nals can be localized independent of individual differences in
decision preferences across subjects. In fact, previous research
has shown similar SV representation in individuals with dra-
matically different discount rates (Kable & Glimcher, 2007,
2010). Comprehensive meta-analyses of human neuroimaging
studies of decision making using these methods suggest a net-
work of regions, where brain activity is highly correlated with
SV that includes the medial prefrontal cortex, posterior cingu-
late cortex and ventral striatum (Acikalin, Gorgolewski, &
Poldrack, 2017; Bartra, McGuire, & Kable, 2013; Clithero &
Rangel, 2014). These studies, mostly in healthy young adults,
suggest a common neural system representing SV across deci-
sion features.

In addition to the evidence for a unitary corticostriatal sys-
tem for SV representation, there is also evidence for regional
specialization depending on the particular decision feature
being considered. For instance, studies have suggested that SV

representations during effort discounting are significantly
stronger in the anterior cingulate and insula cortices compared
to time discounting (Massar et al., 2015; Prévost et al., 2010) and
in the midcingulate and supplementary motor area during
effort discounting compared to probability discounting (Burke
et al., 2013). SV representation during probability discounting
has been shown to be greater in the superior parietal cortex and
middle occipital lobes compared to time discounting (Peters &
Blichel, 2009) and anterior insula compared to effort discounting
(Burke et al., 2013). Finally, SV representations during temporal
discounting have been shown to be significantly greater in the
posterior cingulate, frontopolar, and lateral-parietal cortices
compared to probability discounting (Peters & Biichel, 2009) and
in the ventral-medial prefrontal cortex, ventral striatum, and
right supramarginal and superior temporal gyri compared to
effort discounting (Prévost et al., 2010). In summary, there is less
clarity in the existing studies regarding regional specialization
for different decision features. The varying regions and effects
across studies could be due to differences in tasks or the small
samples sizes (N range=18-23), creating a lack of power and
contributing to a lack of reliability and reproducibility (Poldrack
etal., 2017). It should also be noted that these studies only tested
young adults. It remains unclear whether these patterns in the
overlap and dissociation of SV representation between dis-
counting tasks are reliable and generalizable across adulthood.

Emerging theories suggest that changes in cognition, emo-
tion, motivation, and experience across adulthood influence
age differences in decision making (Brown & Ridderinkhof,
2009; Hsu et al., 2008; Mather, 2006; Peters et al., 2007; Samanez-
Larkin & Knutson, 2015). Behavioral work has begun to investi-
gate the differential effects of various decision features (effort,
probability and time) on decision making across adulthood.
While there is only one published study of preferences for physi-
cal effort in older adults (Seaman et al., 2016) that showed no age
differences in effort discounting on a hypothetical task, studies
of cognitive effort using an incentive-compatible task suggest
that older adults discount effort more than younger adults
(Westbrook, Kester, & Braver, 2013). In the probability domain, a
quantitative meta-analysis of studies of probabilistic decision
making revealed that choice behavior does not consistently dif-
fer between younger and older adults; instead, age effects vary
depending on cognitive task demands (Mata et al., 2011). The
research is also inconclusive in the time domain, with some
studies reporting a decrease in temporal discounting with age
(Eppinger, Nystrom, & Cohen, 2012; Green, Fry, & Myerson,
1994), while other studies find no age differences (Roalf,
Mitchell, Harbaugh, & Janowsky, 2012; Samanez-Larkin et al.,
2011) or an increase in discounting with age (Read & Read,
2004). In summary, behavioral studies suggest potential differ-
ential effects of aging on decision making across different deci-
sion features, although there is no strong evidence for
consistent age differences in preferences. If there are differen-
ces, it would be interesting to investigate how these decision
features and SVs are differentially represented by younger,
middle-aged, and older adults. Further, it is not clear whether
the same or different neural systems are computing and repre-
senting SV across adulthood.

There is currently very little empirical evidence directly link-
ing specific psychological and neural systems with adult age
differences in SV representation. The vast majority of emerging
studies on decision making across adulthood document age dif-
ferences in behavior or choice without specifying the underly-
ing psychological, computational and neural mechanisms. Due
to marked age-related changes in the structure and function of
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the medial prefrontal cortex (Fjell et al., 2014; Raz et al., 2005), as
well as age-related differences in connectivity between the
medial prefrontal cortex and other regions (Bennett et al., 2010;
Samanez-Larkin et al., 2012), it is plausible that SV representa-
tion may change in the aging brain. To our knowledge, only one
study has examined SV representation in older adults. The
study found that older adults with stronger representation of
SV during intertemporal choice also had lower neural signal
variability and performed better on a separate probabilistic deci-
sion-making task (Halfmann et al., 2016). This suggests weaker
SV representations could be due to greater neural signal varia-
bility, and this nosier representation leads to worse decision
performance. However, this study did not compare SV represen-
tations across adulthood, so the question remains whether or
not SV representation is consistent from young adulthood
through middle age and into older adulthood. If there is weaker
and more variable SV-related neural signal in older age, this
could make decision making more difficult or more inconsistent
as people age (Tymula et al., 2013).

Here, we examined sensitivity to and tolerance of effort,
probability and time in monetary decision-making tasks across
adulthood. Young adults, middle-aged adults and older adults
completed three different two alternative, forced-choice deci-
sion tasks assessing tolerance for effort requirements, proba-
bility and temporal delays while undergoing functional
magnetic resonance imaging (fMRI). Given inconsistent results
in the literature examining behavioral correlations across these
three decision features, we predicted there would be little to no
association between discounting behavior in this study. Based
on the aging literature, we hypothesized that on incentive-com-
patible tasks, effort discounting would increase with age, while
probability and temporal discounting would remain relatively
stable. Given the age-related structural and functional declines
in frontostriatal regions described above, we predicted an age-
related decrease in representation of SV in the ventral striatum
and medial prefrontal cortex. However, we also considered the
possibility that there would be no age-related differences in SV
representation, given the preservation of function in these
regions for relatively simple decision tasks (Samanez-Larkin &
Knutson, 2015).

Method
Participants and procedures

Seventy-five  participants (age: M=49.71, s.d.=17.92,
range = 22-83 years old) were included in all the analyses. They
were a subset of 89 healthy volunteers who completed the fMRI
tasks described below as part of a multiday multimodal neuroi-
maging study that included MRI and positrom emission tomog-
raphy imaging. Fourteen of the 89 subjects were excluded due
to poor data quality (see Supplementary Methods) leaving a
final sample of 75. Participants were recruited from the
Nashville community using the Vanderbilt School of Medicine
subject database of healthy adults, Research Match (www.
researchmatch.org), and a combination of newspaper, radio and
local television advertisements (Seaman et al, 2016). The
Vanderbilt University and Yale University Institutional Review
Boards approved all experimental procedures. Participants gave
informed consent and were compensated with at least $350 for
the entire study, with a potential for additional money (up to
$60) based on task performance.
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Table 1. Participant characteristics

Variable R[95% CI] with age M (s.d.)

Age 49.71(17.92)
Gender 42F/33M
Digit span -0.44 [-0.61,-0.23]  16.24 (4.04)
Letter-Number Sequencing -0.58[-0.71, -0.4] 11.31 (2.98)
Numeracy? -0.26 [-0.46,-0.04] 11.85(3.16)
Paired associates delayed recall® )

Shipley Vocabulary Subscale
Trails test®

0.13 [-0.11, 0.34] 33.37 (5.4)

(
(

-0.62[-0.74,-0.45]  5.82 (2.42
(

0.39[0.18,0.57]  38.17 (30.22)

Notes: Digit Span and Paired Associates Delayed Recall from the WMS-III,
Wechsler Memory Scale, Third Edition, (Wechsler, 1997b); WAIS-III, Letter-
Number Sequencing, (Wechsler, 1997a); Numeracy, (Peters et al., 2007); Shipley
Vocabulary Subscale, (Shipley, 1940); Trails Test, (Corrigan & Hinkeldey, 1987).
Significant correlations denoted in bold.

#Numeracy score for one participant was not recorded.

®Delayed Recall not recorded for four participants.

“Trails test score is the difference in time to complete Trail A and Trail B.

Cognitive assessment

Participants completed a battery of cognitive assessments dur-
ing the study. Table 1 displays the mean performance on this
test battery and correlation of each measure with age. As in
Seaman et al. (2016), this sample displayed normal performance
on neuropsychological tests, with the expected significant age
differences in measures of fluid intelligence (e.g. Digit Span)
and lack of age differences in crystallized intelligence
(e.g. Vocabulary) across adulthood.

Tasks

We sought to examine individual differences in neural SV repre-
sentation across three decision features (effort, probability and
time) in a within-subjects design. Participants completed the
same 82 unique trials in the same order on each of the three
two-alternative forced-choice tasks. E-Prime code and trial-level
stimulus information for all three tasks are available on Open
Science Framework (OSF; https://osf.io/bths8/). Each task was
completed in its own block, and task blocks were performed in
the order that they are described below (Figure 1) while under-
going fMRI. Participants were compensated with the payout
from one trial from each task using Amazon gift cards that were
scheduled for electronic delivery at the chosen time. On an ear-
lier study visit, participants also completed effort, probability
and time discounting tasks for monetary (as well as social and
health related) rewards, but the outcomes were hypothetical
(results reported in Seaman et al., 2016). For all three tasks, on
each trial, the smaller reward was randomly chosen from a uni-
form distribution between $5 and $15, and the larger reward
was 25%, 50%, 100%, or 150% greater. There were also two con-
trol trials per task, one where both options had the same reward
(but different decision features) and one where the options had
the minimum difference possible in decision features (but
vastly different reward).

Effort expenditure for rewards task

The effort expenditure for rewards task (EEfRT) was adapted
from an existing paradigm that used finger pressing as the
physical effort required for earning a reward (Treadway,
Buckholtz, Schwartzman, Lambert, & Zald, 2009). On each trial,
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Fig. 1. Discounting tasks. (a) Trial structure for discounting tasks. Participants had up to 3950 ms to make a choice. (b) Task sequences for button-pressing task. On half
of the effort trials, participants completed the button-pressing task between the choice phase and the intertrial interval (ITI). (c) Sample options for discounting tasks.

Left: effort; Middle: probability; Right: time.

participants chose between a smaller reward available for a
lower amount of physical effort (button presses) and a larger
reward available for a higher amount of effort. The effort
required for the smaller reward was set as 20%, 40% or 60% (of
each participant’s maximum press rate), while the effort
required for the larger reward was set as 20% or 40% higher than
the smaller reward with no effort >80% required. The number
of button presses required for each level of effort was individu-
ally determined based on an initial calibration procedure in
which participants pressed a button with their pinky finger as
many times and as rapidly as possible in a few short intervals.
On half of the trials, after making a choice, participants were
shown a 1-second “Ready” screen and then completed the
button-pressing task.

Probabilistic discounting task

The probabilistic decision-making paradigm is similar to a
number of recent two-alternative forced choice mixed gamble
tasks (Levy & Glimcher, 2011). On each trial, participants chose
between a smaller reward with a higher probability (100%, 75%
and 50%), while the probability of the larger reward was set to
25% or 50% lower than the smaller reward with no probability
lower than 25% included.

Temporal discounting task

The temporal discounting tasks were adapted from a previously
used paradigm (McClure, Laibson, Loewenstein, & Cohen, 2004).
On each trial, participants chose between an early reward and a
late reward. The delay of the early reward was set to today, 2 or

4weeks, while the delay of the late reward was set to 2 or
4weeks after the early reward with no delays >6weeks
included.

Computational modeling

Computational models were used to estimate behavioral prefer-
ences and compute subject-specific SVs for use in brain imaging
analyses. For each participant and each task, SVs were modeled
with a hyperbolic discounting function,

1
SV=R (W)

where R represents the monetary reward, k represents the dis-
count rate, and C represents either: (a) proportion of maximum
finger press rate from the practice run for effort, (b) odds against
winning ((1-P(win))/P(win)) for probability or (c) delay in days for
time. Data were fit with a softmax decision function (see
Supplementary Methods). This model provided a good fit the
data (Supplementary Table S1). The estimated k values per par-
ticipant were used to calculate the SV of the chosen option (SV)
on each trial within each participant, which were used in the
fMRI analyses described below.

fMRI acquisition and preprocessing

Brain images were collected using a 3-T Phillips Intera Achieva
MRI scanner using a 32-channel head coil. High-resolution
structural scans were acquired using T1-weighted, high-
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resolution anatomical scans (repetition time=8.9ms, echo
time =4.6ms, field of view =256 x 256, voxel dimensions=1 x 1
x 1mm), facilitating localization and coregistration of the func-
tional data. Functional scans of the whole brain were acquired
with 38 oblique 3.2-mm-thick slices (in-plane resolution
3 x 3mm, gap=0.35mm) at a repetition time of 2, with a T2*-
weighted (echo time =28 ms, flip angle =79 degrees).

Analysis of functional neuroimaging data was conducted
using analysis of functional neuroimages (AFNI) software (Cox,
1996). Preprocessing of functional time series data included
slice-time correction to account for nonsimultaneous acquisi-
tion, motion correction in six directions to account for motion
between volumes, Gaussian spatial smoothing to minimize
anatomical differences (FWHM =4 mm), normalization to con-
vert to percent signal change relative to the mean activation for
the entire experiment and high-pass filtering (.011Hz) to
remove slow trends. Visual inspection of the motion correction
estimates confirmed that no included subject’'s head moved
more than 4 mm in any dimension from one volume acquisition
to the next. As noted above, 10 participants were excluded for
head motion that exceeded this.

Whole-brain analyses

Following the procedures recommended by the AFNI group
(Coxet al., 2016), voxel-wise statistical thresholds were set to
P <0.001, uncorrected, at the whole-brain level. The minimum
cluster size of 48 contiguous, face-to-face voxels for a cluster-
level correction of P<0.05 was estimated using the updated
autocorrelation function in AFNI's 3dFWHMx and 3dClustSim.
For each participant, the preprocessed time series data were
analyzed with multiple regression models in AFNI. At the sub-
ject level, models included a regressor modeling the choice
period of each trial and a regressor modeling the SV of the
chosen option (SVyo). Before inclusion in the regression mod-
els, these covariates were convolved with a single gamma func-
tion to model the hemodynamic response. Subject-level
regression models also included six covariates for residual
motion. For each contrast of interest, T-statistic maps were
transformed in Z-scores and spatially normalized by warping
into MNI-152 stereotactic space. Anatomical images were
warped into MNI template space (see Supplementary Methods).
The spatial normalization parameters resulting from each sub-
ject’s anatomical image warping were applied to the statistical
maps produced in the first-level fMRI analyses before group
analyses. The residual error time series from these subject-level
models were used to estimate the noise smoothness values for
cluster estimation.

Statistical maps were then generated using a single general
linear model to examine the mean effect of SV,, across sub-
jects (i.e. regression intercept) and the linear effect of age on
SVcho. We then performed conjunction analyses (Nichols et al.,
2005) to identify regions where the correlation of brain activity
with SV exceeded a threshold of Z=3.291. We examined this
conjunction for all three tasks as well as this conjunction for
each pair of tasks (effort & probability, effort & time and proba-
bility & time). Finally, we used paired t-tests to identify regions
where there were significant differences in SV representation
between each pair of tasks.

Data: Code and data used in the manuscript can be viewed
60 and downloaded from https://osf.io/26mqt/. Unthresholded
statistical maps for neuroimaging results available at: https://
neurovault.org/collections/3184/.
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Results

Decision preferences and discount rates

Decision preferences were quantified in two ways. First, we
computed a score indicating the proportion of lower effort/
higher probability/sooner options selected. This score has been
commonly used in the literature. It does not make specific
assumptions about the curvature of the discount function but
also likely lacks sensitivity. We also used computational model-
ing with hyperbolic discount functions to estimate each sub-
ject’s discount rate (k) for effort, probability and time. As
expected, for each task there was a strongly significant relation-
ship between the simple proportion choice score and discount
rate (Figure 2), and these relationships remained significant
controlling for age (Table 2).

There was no significant relationship between age and
effort discounting (Supplementary Figure S1). Like our prior
study (Seaman et al., 2016), there was a pronounced floor
effect in the effort data, making it difficult to detect an age
effect if it exists. As predicted, there was no relationship
between age and probability discounting. However, contrary
to our predictions, there was a small, significant relationship
between age and temporal discounting, with older age having
higher discount rates. Because this relationship did not extend
to the full behavioral sample (R=0.12, 95% CI [-0.1, 0.32],
N=89), nor did it replicate in a hypothetical version of this
task (Seaman et al., 2016), the age difference does not appear
to be reliable.

To determine whether there was consistency in behavioral
preferences across tasks, we examined the correlation
between preferences (using both the simple proportion score
and discount rates) across each pair of features. For the effort
and time tasks, there was a significant relationship between
the proportion scores (Figure 3a, Table 2) but not between the
discount rates (k; Figure 3b; Table 2). There was no evidence
suggesting proportion scores or discount rates were correlated
between any other pair of tasks. Thus, there is very limited
evidence for consistency in behavioral preferences across
tasks.

Neural representation of subjective value

Using the discount rates (k) described above, the subjective
value of the chosen option (SVo) Was calculated for each trial.
First-level regression models in individual subjects examined
the neural representation of SV, across the brain. Second-
level regression analyses examined averages across subjects
(intercept) and linear effects of age on SV representation.
Whole-brain analyses found several regions where brain activ-
ity correlated with SV, within each task (Table 3; Figure 4),
controlling for age. During the effort task, SV, correlated with
activity in a large bilateral medial prefrontal region, including
the anterior (pregenual) cingulate, neighboring medial frontal
gyrus/medial frontal pole, and subcortical regions, including the
bilateral thalamus and left caudate. During the probability task,
SVano correlated with activity in a set of large bilateral regions,
including the anterior (pregenual) cingulate, medial frontal
gyrus/pole, and middle/posterior cingulate. SV, during the
probability task also correlated with activity in subcortical
regions, including the thalamus, and insula, as well as the cere-
bellum. During the time task, SV, correlated with bilateral
activity in the pregenual cingulate cortex, adjacent medial wall,
and the right precuneus.
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Fig. 2. Decision preferences and discount rates. Robust correlations between decision preferences (proportion of lower effort/higher probability/sooner options chosen)
and log-transformed discount rates (k values). Left: effort; Middle: probability; Right: time. The color bar on the far right represents the number of individual partici-
pants represented by that data point.

Table 2. Decision preferences and discount rates: partial correlations [95% BCa CI] controlling for age

Decision feature 1 2 3 4 5

1) Preferences for effort
2) Preferences for probability ~ 0.007 [-0.208, 0.232]

3) Preferences for time 0.317[0.15, 0.462]  -0.032[-0.23, 0.188]

4) Effort log (k + 1) 0.865 [0.721, 0.915] -0.032[-0.232,0.207]  0.254 [0.091, 0.415]

5) Probability log (k + 1) -0.038[-0.24,0.154]  0.838[0.734,0.889] -0.04 [-0.253,0.171]  -0.088 [-0.282, 0.124]

6) Time log (k + 1) 0.216 [-0.005, 0.424] -0.044 [-0.219, 0.148]  0.862 [0.76, 0.926] 0.103 [-0.095, 0.299]  -0.037 [-0.211, 0.126]

Notes: Decision preferences quantified as the proportion of lower effort/higher probability/sooner choices. Discount rates are k parameter values from the softmax
hyperbolic discounting function. Because of their skewed distribution, discount rates are log-transformed. Significant correlations are denoted in bold typeface. Bias-
corrected and accelerated bootstrapped confidence intervals (DiCiccio et al., 1996) were computed using 2000 replications.
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Fig. 3. Behavioral consistency across decision preferences and discount rates. (a) Robust correlations between decision preferences for effort, probability, and time and
(b) between effort, probability, and temporal discount rates (log-transformed). Left: probability over effort; Middle: time over effort; Right: time over probability.
Because of their skewed distribution, the discount rates are log-transformed. The color bar on the far right represents the number of individual participants repre-
sented by that data point.



Table 3. Neural representation of subjective value of the chosen
option controlling for age

Region R A S Z #Voxels

Effort

L medial frontal pole/pregenual cingulate -8 50 4 5.50 789
L precentral gyrus -22 -14 66 475 479
L inferior frontal gyrus -32 20 -20 462 268
L ventral striatum -8 10 -2561 237
L cerebellum -20 -50 -20 4.16 88
R thalamus 8-16 4490 55
Probability

L medial frontal pole/pregenual cingulate -8 50 10 5.50 869
L cerebellum -28 -74 -30 5.15 461
R posterior cingulate cortex 2 -44 34590 354
L inferior parietal lobule —44 -62 48 533 182
L inferior temporal gyrus -64 -16 -18 4.33 87

L thalamus -14 -26 0 4.33 60
Linsula -34 -8 10 4.23 55
Time

L medial frontal pole/pregenual cingulate -8 56 0 4.72 286
R precuneus 2 -80 48 4.52 146

-22 34 52460 119
52 -58 52 4.46 54

L superior frontal gyrus
R inferior parietal lobule

Note. RAS are coordinates for peak voxels within a cluster in MNI space. R, right;
A, anterior; S, superior. N=75.

Table 4. Conjunctions of neural representation of the subjective
value of the chosen option

Region R A S #Voxels
Effort & Probability & Time
L pregenual cingulate/medial fontal pole -7 52 1 158
Effort & Probability
L pregenual cingulate/medial frontal gyrus -2 48 9 424
L thalamus -12 -21 5 11
L superior frontal gyrus -24 56 8 9
L claustrum -34 -13 -2 5
Effort & Time
L pregenual cingulate -3 48 4 172
R anterior cingulate 8 38 14 7
Probability & Time
L medial frontal gyrus/pregenual cingulate -2 48 5 221
R anterior cingulate 11 38 14 2
L precuneus -6 -71 42 2

Note. RAS are coordinates for center of mass of each cluster in MNI space.
R, right; A, anterior; S, superior. N=75.

We used a conjunction analysis to identify areas of overlap-
ping SV, representations across the three tasks (Table 4), con-
trolling for age. As predicted, a bilateral region of the medial
frontal cortex, centered on the pregenual cingulate, was signifi-
cantly correlated with SV, for all three tasks (Figure 4, bottom
panel, purple). We also separately examined pairwise conjunc-
tions across each pair of tasks. These analyses revealed a large
bilateral region of overlap for the conjunction of SV, for effort
and probability (Figure 3, bottom panel, green and purple). They
also revealed a smaller region of overlap within the medial pre-
frontal cortex for the conjunction of probability and time (Figure 4,
bottom panel, blue and purple) and a nearly identical region for
the conjunction of effort and time (not shown in Figure 4).
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Fig. 4. Neural representation of subjective value. (a) Subjective value representa-

tion during effort, probability, and time tasks. Unthresholded statistical maps
available at: https://neurovault.org/collections/3184/. (b) Conjunction of subjec-
tive value representation during effort and probability tasks (green), probability
and time tasks (blue), and effort, probability, and time tasks (purple). The con-
junction of subjective value representation during effort and time tasks is
obscured by the other conjunctions in the figure. Results are displayed overlaid
onto the mean structural scan of all participants in the sample and plotted at an
uncorrected threshold of P < 0.001 (corrected to P <0.05).

Finally, we used paired t-tests to examine significant differ-
ences in SV, representations between each pair of tasks
(Table 5), controlling for age. As displayed in Figure 5a, there
was a left lateralized cortical region extending from the precen-
tral gyrus to the supplementary motor area where the SV, rep-
resentation was significantly greater for the effort compared to
the probability task. There was also a bilateral region of the
middle cingulate gyrus, where the SV, representation was sig-
nificantly greater for effort compared to time (Figure 5b). There
were no significant differences in SV, for probability and time.

We examined linear effects of age on SV representations in
whole-brain analyses for each task. During the effort task, there
were significant age effects in the representation of SV, in the
right middle temporal gyrus and the left superior temporal
gyrus as well as the right lingual and calcarine gyrus
(Supplementary Table S1 and Figure S3), with less SV represen-
tation in these regions with age. There were no significant age
differences in the neural representation of SV during the proba-
bility and time tasks.
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Discussion

Here, we examined preferences for effort, probability, and time
in monetary decisions across adulthood. With one unreliable
exception, we found that preferences for lower physical effort,
higher probability, or shorter time delays were uncorrelated.
Despite this behavioral dissociation, we found overlapping SV-
related activity in the medial prefrontal cortex across all three
tasks. In other words, even if subjects have different discount
rates across tasks, once these differences are accounted for in
calculating SV, SV scales with medial frontal activity regardless
of the objectively-stated value. These results suggest that while the
tolerance of these decision features is behaviorally dissociable,
the decision feature-discounted value signals share a common
neural representation.

Both qualitative (Kable & Glimcher, 2009; Peters & Biichel,
2010) and quantitative (Acikalin et al., 2017; Bartra et al., 2013;
Clithero & Rangel, 2014; Levy & Glimcher, 2012) reviews have
highlighted the role of the medial prefrontal cortex in subjective
valuation. Our results are generally consistent with meta-
analyses of SV signals along the frontal midline (Acikalin et al.,
2017; Bartra et al., 2013; Clithero & Rangel, 2014). Although
researchers have assumed SV is localized in more ventromedial
portions of PFC, meta-analyses consistently show that value
signals are represented in a broad portion of the medial prefron-
tal cortex, including the pregenual cingulate gyrus and medial
portions of superior frontal gyrus. The regions reported here,
particularly for effort and probability, are located within the
superior extent of the clusters identified in these meta-
analyses.

Many studies have reported SV signals in both the MPFC and
the nucleus accumbens/ventral striatum (Acikalin et al., 2017,
Bartra et al.,, 2013; Clithero & Rangel, 2014; Kable & Glimcher,

Table 5. Dissociations in neural representation of the subjective
value of the chosen option

Region R A S Z # Voxels
Effort > Probability
L precentral gyrus -32 -4 54 472 225
Effort > Time
R supplemental motor area 4 -20 48 4.74 153
R cerebellum/fusiform gyrus 20 98 -19 498 69
L precentral gyrus -28 -8 52 4.21 59

Note. RAS are coordinates for peak voxels within a cluster in MNI space. R, right;
A, anterior; S, superior. N=75.

(@) Effort > Probability

~
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2010; Levy & Glimcher, 2012; Peters & Biichel, 2010). However,
one of these meta-analyses, which (similar to this study) exam-
ined parametric modulation of activity with SV, showed that the
signal is stronger in the medial prefrontal cortex (MPFC) than
the ventral striatum (Clithero & Rangel, 2014). Somewhat con-
sistent with these findings, we found a strong representation in
the MPFC, but did not find reliable representation of SV in the
ventral striatum. One possible explanation for the lack of stria-
tal activation across the sample is a subthreshold effect of age
on activity in this region. However, preservation of function in
the striatum with age has been well documented by our lab
(Samanez-Larkin et al., 2007; Samanez-Larkin & Knutson, 2015)
and others (Spaniol, Bowen, Wegier, & Grady, 2015), and we did
not observe a significant effect of age on SV representation in
the striatum in any of the three tasks. Thus, it is possible that
the lack of a ventral striatal effect across the sample is due to
the broad age range, but future studies are needed to fully
examine this explanation.

Although differences in SV across tasks were minimal in our
study, prior studies have identified differences in SV represen-
tation across tasks (Burke et al., 2013; Massar et al., 2015; Peters
& Biichel, 2009). Given that the existing literature examining
neural representation of SV across decision features is very
small (three studies), has small sample sizes (N=18-23) and
uses very different experimental tasks, these inconsistent
effects are not very surprising. More research using larger sam-
ple sizes may be needed to provide enough power to detect
potential differences and reduce false-positive rates (Poldrack
et al., 2017). It is also possible that more consistent differences
in SV representations across tasks could be identified with mul-
tivariate analysis methods (Kahnt, in press).

In the present study, we only found differences in SV repre-
sentation comparing the effort task to the other two tasks. One
potential explanation for this difference is that the effort task
was the only task where participants actually experienced the
consequences of their decision; on half of the trials, participants
actually completed a round of button pressing before progress-
ing on to the next trial. Thus, this difference in activity could be
due to subjects preparing to make a motor response and not
due to differences in subjective valuation. This interpretation is
supported by the fact that the regions differentially activated by
the effort task were regions associated with motor planning and
preparation. Also, as in the previous behavioral study of effort
discounting with hypothetical rewards (Seaman et al., 2016),
there is a strong floor effect in the behavioral data and this
restricted range may have reduced the reliability of our dis-
counting parameter estimates. Future studies should explore

(b) Effort > Time

-7

Fig. 5. Dissociations in neural representation of subjective value. (a) Region where the subjective value representation is significantly greater during the effort task
than during the probability task. (b) Regions where the subjective value representation is significantly greater during the effort task than during the time task. Results
are displayed overlaid onto the mean structural scan of all participants in the sample and plotted at an uncorrected threshold of P <0.001 (corrected to P < 0.05).

Unthresholded statistical maps available at: https://neurovault.org/collections/3184.
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other physical effort-based discounting tasks (Kurniawan et al.,
2011; Kurniawan et al., 2010), cognitive effort-based discounting
(Schmidt, Lebreton, Cléry-Melin, Daunizeau, & Pessiglione,
2012; Westbrook et al., 2013), and different computational mod-
els of behavior (Klein-Fliigge, Kennerley, Saraiva, Penny, &
Bestmann, 2015), to see whether these regions are truly specific
to SV representations involving effort.

Contrary to our predictions, we found no evidence for adult
age differences in behavior, suggesting that decision preferen-
ces may be relatively stable across adulthood. Further, the
absence of age differences in neural representations of SV sug-
gests that neural mechanisms supporting SV are preserved
with age. This may be viewed as somewhat surprising, given
prior work suggesting integration deficits during decision-
making in older age (Samanez-Larkin & Knutson, 2015).
However, these integration deficits were hypothesized to be
most pronounced during more cognitively demanding tasks
(Mata et al., 2011), and the simple choice tasks used here
required relatively minimal integration of information over
time. Our results are also contrary to some prior studies, which
have reported age differences in discounting behavior
(Eppinger et al., 2012), although as noted above this literature is
mixed (Read & Read, 2004; Samanez-Larkin et al., 2011). Studies
that use smaller samples and extreme-group designs (Eppinger
et al., 2012; Green et al., 1994) have been more likely to identify
age differences. Studies with larger samples, comparable to the
one here or larger, have not consistently identified adult age
differences in decision preferences, especially in the time
domain (Lockenhoff et al., 2016, 2017). However, it is important
to acknowledge that our older subjects may be healthier than
average subjects who complete behavioral studies. Due to the
extensive screening for PET imaging that was also part of this
protocol, the older adults in our sample may not be representa-
tive of the aging population as a whole. To the extent that we
can generalize to the larger population, the findings suggest
that discounted value signals are represented similarly from
young adulthood through middle age into older age. Finally, the
null effect of age could be due to the reward used in this study
(money), which may be less motivating for older adults
(Seaman et al., 2016). Our prior study suggested that older adults
may be more motivated than younger adults to obtain health
and social rewards. One challenge for futures studies will be to
design ways to examine discounting for social and health
rewards with incentive—compatible tasks.

Prior studies of SV representation have focused almost
exclusively on young adults (Acikalin et al., 2017; Bartra et al.,
2013; Clithero & Rangel, 2014; Kable & Glimcher, 2007), which
limits the generalizability of those results across adulthood. By
using an adult life span sample, we show that there is consis-
tency in the representation of SV across adulthood in the
medial prefrontal cortex. Together, the results suggest that
value signals are intact and decision preferences may be stable
well into older age, but much variance in brain signals and
behavior between subjects remains unexplained by age. Given
this variance, individual differences within age-groups may
facilitate the identification of individuals who are at risk of
making poor decisions in everyday life (Halfmann, Hedgcock, &
Denburg, 2013; Halfmann et al., 2016).
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