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Identification of a six-lncRNA 
signature associated with 
recurrence of ovarian cancer
Kai Yang1, Yan Hou1,2, Ang Li1, Zhenzi Li1, Wenjie Wang1, Hongyu Xie1, Zhiwei Rong1, Ge Lou3 
& Kang Li1

Ovarian cancer (OvCa) is the leading cause of death among all gynecological malignancies, and 
recurrent OvCa is almost always incurable. In this study, we developed a signature based on long 
non-coding RNAs (lncRNAs) associated with OvCa recurrence to facilitate personalized OvCa therapy. 
lncRNA expression data were extracted from GSE9891 and GSE30161. LASSO (least absolute shrinkage 
and selection operator) penalized regression was used to identify an lncRNA-based signature using the 
GSE9891 training cohort. The signature was then validated in GSE9891 internal and GSE30161 external 
validation cohorts. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was 
used to explore the possible functions of identified lncRNAs. A six-lncRNA signature (RUNX1-IT1, 
MALAT1, H19, HOTAIRM1, LOC100190986 and AL132709.8) was identified in the training cohort and 
validated in internal and external validation cohorts using the LASSO method (P < 0.05). This signature 
was also independent of other clinical factors according to multivariate and sub-group analyses. The 
identified lncRNAs are involved in cancer-related biological processes and pathways. We selected 
a highly reliable signature based on six lncRNAs associated with OvCa recurrence. This six-lncRNA 
signature is a promising method to personalize ovarian cancer therapy and may improve patient quality 
of life quality according to patients’ condition in the future.

Ovarian cancer (OvCa) is a common gynecological malignancy and the commonest cause of gynecological 
cancer-associated deaths in developed countries1. It is estimated that there will be 22,280 new cases and 14,240 
deaths attributed to OvCa in the United States in 20162. Although there is a high initial response rate to standard 
surgery and chemotherapy, most OvCa patients will develop recurrence within 18 months after standard first-line 
treatment3. More seriously, recurrent OvCa usually develops into platinum-resistant disease and is almost always 
incurable4. Therefore, stratification of patients to identify high-risk patients may provide more effective treatment 
strategies and personalized therapies.

Long non-coding RNA (lncRNA) is a class of non-coding RNAs that are longer than 200 nucleotides in 
length5. Increasing studies have showed that abnormal expression of lncRNAs is associated with human cancers 
and that some play important roles in a variety of biological processes in cancer. Currently, several lncRNA-based 
signatures have been identified as prediction of patient survival in several cancers, such as gastric cancer6, lung 
cancer7, breast cancer8, colorectal cancer9 and esophageal squamous cell cancer10. Recent studies also indicated 
that lncRNAs were associated with OvCa recurrence and survival11. For example, lncRNAs CCAT2, HOTAIR, 
AB073614, and ANRIL have been demonstrated to be associated with poor prognosis of OvCa12–15. A recent 
study identified an eight-lncRNA signature associated with overall survival (OS) of OvCa based on The Cancer 
Genome Atlas (TCGA)16.

In this study, we used LASSO (least absolute shrinkage and selection operator) penalized regression to iden-
tify a six-lncRNA signature associated with OvCa recurrence based on a training cohort. Then we validated it 
in internal and external validation cohorts, analyzed it in sub-groups of OvCa patients, and demonstrated this 
signature was independent from other clinical factors. We also analyzed the correlation between the signature 
and OS of OvCa patients. Furthermore, we found that these lncRNAs were involved in biological processes (e.g., 
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cell adhesion, inflammatory response and immune response) and pathways (e.g., ECM-receptor interaction, focal 
adhesion and cell adhesion molecules) in cancers. Thus, our six-lncRNA signature may be a promising method to 
stratify OvCa patients and identify those at high-risk in the future.

Results
Demographic and clinical characteristics.  The detailed demographic and clinical characteristics are 
listed in Supplementary Table S1. A total of 311 OvCa patients were included in our study, including 100 in the 
GSE9891 training cohort, 157 in the GSE9891 internal validation cohort and 54 in the GSE30161 external vali-
dation cohort. The median ages (ranges) of the three cohorts were 58 (23–80), 60 (33–80), and 62 (38–84) years, 
respectively. Seventy-four (74%), 111 (71%), and 48 (89%) patients relapsed during follow-up, respectively. The 
tumor stage, tumor grade and histology type are also summarized in Supplementary Table S1.

Identification of lncRNA signature and generation of risk score.  To identify lncRNAs associated 
with OvCa recurrence, LASSO penalized regression was performed using lncRNA expression data. This method 
can select an optimal subset of lncRNAs without collinearity by imposing a penalty and shrinking most regres-
sion coefficients to zero. After 100 times of 10-fold cross validation, the optimal tuning parameter lambda1 was 
16.9841 in our study. As a result, the regression coefficients of six lncRNAs were not zero when lambda1 was 
16.9841, and we selected these six lncRNAs as signatures associated with OvCa recurrence (Table 1). We also 
conducted univariate cox regression for the six lncRNAs, in which the regression coefficients were consistent 
with that in LASSO penalized regression, and all six lncRNAs were statistically significant (P < 0.05). Of these six 
lncRNAs, five were positively associated with DFS (high expression of these lncRNAs led to a high-risk score and 
shorter survival) and one was negatively associated with DFS (the high expression of this lncRNA led to a low-risk 
score and longer survival).

To identify low- and high-risk patients for OvCa recurrence, we developed a prognostic model based on the 
expression of six lncRNAs and their regression coefficient in LASSO penalized regression as follows: Risk scor
e = (0.1078*RUNX1-IT1) + (0.0751*MALAT1) + (0.1083*H19) + (0.111*HOTAIRM1) − (0.0155*LOC10019
0986) + (0.0195*AL132709.8). The patients were then divided into low- and high-risk groups according to the 
median risk score value (2.9232). As a result, the patients in the low-risk group had a better survival outcome 
than the high-risk group, as shown in Fig. 1a (P < 0.0001). The area under the curve (AUC) of time-dependent 
ROC curves for the risk score was 0.813 at three years (Fig. 1c). These results demonstrated a good performance 
of our six-lncRNA signature in predicting DFS for OvCa patients. Risk scores and relative expression levels of all 
patients are shown in Fig. 1b,d.

Validation of the six-lncRNA signature in the GSE9891 internal validation and entire 
cohorts.  To confirm the ability of the six-lncRNA signature in predicting DFS for OvCa patients, we validated 
it in the GSE9891 internal validation and entire cohorts. The same risk formula and cutoff value were used to 
calculate risk scores and divide the patients into low- and high-risk groups. The results of the two cohorts were 
consistent with the GSE9891 training cohort. Patients with higher risk scores had poorer DFS. The differences of 
survival curves between the two groups were statistically significant in two cohorts (Fig. 2a and Supplementary 
Fig. S1a). The AUCs of the two cohorts were 0.665 and 0.697, respectively (Fig. 2c and Supplementary Fig. S1c). 
Risk scores and relative expression levels of all patients in the two cohorts are separately shown in Fig. 2b,d and 
Supplementary Fig. S1b,d.

Further validation of the six-lncRNA signature in the GSE30161 external validation cohort.  We 
further validated our findings in GSE30161 external validation cohort. The same risk formula was used to cal-
culate risk scores for every OvCa patient. The median risk score value in GSE30161 (2.2672) was used to divide 
the patients into low- and high-risk scores. Similar to the result in GSE9891, the patients in low-risk group also 
had a better survival outcome than those in the high-risk group, as shown in Fig. 3a (P = 0.0114). The AUC of 
time-dependent ROC curves for the risk score was 0.711 at three years (Fig. 3c). Risk scores and relative expres-
sion levels of all patients are also shown in Fig. 3b,d.

Sub-group analysis of six-lncRNA signature in GSE9891 and GSE30161.  We then analyzed the 
six-lncRNA signature in sub-groups of OvCa patients. As shown in Fig. 4, the differences of K-M survival curves 
between the low- and high-risk patients were statistically significant (P < 0.05) for late-stage (Fig. 4b), low-grade 

Probe Gene symbol Chromosomal location Ca Cb Pb HRb

220918_at RUNX1-IT1 Chr21q22.12 0.1078 0.5589 <0.0001 1.749

223940_x_at MALAT1 Chr11q13.1 0.0751 0.1514 0.0410 1.163

224646_x_at H19 Chr11p15.5 0.1083 0.1625 0.0004 1.176

228642_at HOTAIRM1 Chr7p15.2 0.1110 0.2776 0.0011 1.320

235167_at LOC100190986 Chr16p12.2 −0.0155 −0.3217 0.0061 0.725

242856_at AL132709.8 Chr14q32.31 0.0195 0.2975 0.0016 1.346

Table 1.  Overall information of six prognostic lncRNAs associated with DFS in GSE9891 training cohort 
(n = 100). aDerived from the LASSO penalized regression in 100 patients of GSE9891 training cohort. 
bDerived from the univariate Cox proportional hazards regression in 100 patients of GSE9891 training cohort. 
Abbreviations: C Coefficient, P P value, HR Hazard Ratio.
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(Fig. 4c), high-grade (Fig. 4d) OvCa patients in the GSE9891 and low-grade (Fig. 4e) OvCa patients in the 
GSE30161. For the early-stage patients in GSE9891 (Fig. 4a) and high-grade patients in GSE30161 (Fig. 4f), the 
differences of K-M survival curves were not statistically significant, but patients in the low-risk group still tended 
to have a better DFS. The ROCs of these sub-groups were in Supplementary Fig. S2.

Independence of six-lncRNA signature and other clinical factors.  To assess whether the six-lncRNA 
signature was independent of other clinical factors, univariate and multivariate cox regression analyses were 
conducted in each patient cohort including risk scores for the six lncRNAs, age, tumor stage, tumor grade and his-
tology type. In univariate cox regression, risk score and tumor stage were significantly associated with DFS. After 
adjusting for age, tumor stage, tumor grade and histology type, risk score still maintained a significant correlation 
with DFS in all GSE9891 and GSE30161 cohorts (Table 2).

Correlation between the six-lncRNA signature and OS.  In addition to the analyses of association 
between the signature and OvCa recurrence, we also explored the correlation between the signature and OS. In 
accordance with the results of DFS, patients with higher risk scores had poorer OS. The differences of survival 
curves between the two groups were statistically significant in GSE9891 training, GSE9891 entire and GSE30161 
external validation cohorts (Supplementary Fig. S3a,c,d). The differences of K-M survival curves were not statis-
tically significant in GSE9891 internal validation cohort (P = 0.0612), but patients in the low-risk group tended 
to have a better OS (Supplementary Fig. S3b). After adjusting for age, tumor stage, tumor grade and histology 
subtype, risk score still maintained a significant correlation with OS in GSE9891 training and entire cohorts. The 
patients in the low-risk group in GSE9891 internal validation and GSE30161 external validation cohorts still 
tended to have a better OS (P < 0.08) (Supplementary Table S2).

Functional characteristics of six lncRNAs.  We further analyzed the possible functions associated with 
the six identified lncRNAs in OvCa by GO and KEGG functional enrichment analysis using the DAVID tool. 
Using Satterthwaite t-test and FDR correction, 3814 genes were found to be differentially expressed between 
the low- and high-risk groups. These DEGs were considered as genes associated with six lncRNAs. After func-
tional annotation in DAVID, 68 GO biological process (BP) terms, 27 GO cellular component (CC) terms, 

Figure 1.  Association between the six-lncRNA signature and DFS of OvCa patients in GSE9891 training 
cohort. (a) K-M curve of DFS between low- and high-risk patients. (b) Risk scores of each patient in the 
GSE9891 training cohort (sorted by risk score). (c) Time-dependent ROC curve analysis of the DFS prediction 
based on the risk score with three years as the time point. (d) Expression heat map of the six lncRNAs in OvCa 
patients in the GSE9891 training cohort (sorted by risk score).
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18 GO molecular function (MF) terms, and 6 KEGG pathways were significantly enriched with FDR < 0.05 
(Supplementary Tables S3–S6). The enriched BP terms were involved in some important biological processes in 
cancer, such as blood vessel development, inflammatory response and immune response (Table 3). The enriched 
KEGG pathways were also involved in cancer-related pathways, such as ECM-receptor interaction, focal adhe-
sion and cell adhesion molecules (Table 3). An interaction network of significant BP terms with similar function 
showed the six lncRNAs were mainly associated with inflammatory response, immune system process, cell migra-
tion, cell adhesion, angiogenesis and extracellular matrix organization (Fig. 5). Most of the enriched GO terms 
and KEGG pathways have been found to be closely associated with OvCa initiation and progression, which could 
increase the credibility of the six-lncRNA signature from a biological perspective.

Discussion
OvCa is the sixth commonest cause of female cancer death in developed countries1. Approximately 75% of 
women with OvCa present with late-stage disease, most (78.79% in this study) of whom will develop recur-
rence4, 17. Treatment of OvCa is based on a combination of surgery and chemotherapy, and standard treatment for 
late-stage OvCa combined platinum-based chemotherapy with cytoreductive surgery can achieve a good result18. 
However, for most late-stage patients, cancer recurrence seems to be inevitable. Moreover, recurrent OvCa is 
often insensitive to chemotherapy and is generally incurable4. Thus, it is of great importance to identify low- and 
high-risk patients to enable improved treatment. Once we can identify high-risk patients, we can adopt a more 
effective personalized treatment strategy, such as novel drugs and targeted therapies, to delay the recurrence of 
cancer and improve patient quality of life18.

In our study, LASSO penalized regression was used to identify six lncRNAs associated with OvCa recurrence. 
LASSO penalized regression is optimized to high-dimensional data, which can select a few of the most influential 
variables and avoid collinearity of variables at the same time. These properties are not available in many other 
univariate and multivariate methods. lncRNA may be superior biomarkers in cancer as it is a new area of molec-
ular biology, does not encode proteins, and may have better specificity19. In addition to the inherent virtues of 
LASSO and lncRNAs, we also validated the six-lncRNA signature in internal and external cohorts, and certified 

Figure 2.  Association between the six-lncRNA signature and DFS of OvCa patients in GSE9891 internal 
validation cohort. (a) K-M curve of DFS between low- and high-risk patients. (b) Risk scores of each patient 
in the GSE9891 internal validation cohort (sorted by risk score). (c) Time-dependent ROC curve analysis of 
the DFS prediction based on the risk score with three years as the time point. (d) Expression heat map of six 
lncRNAs in OvCa patients in the GSE9891 internal validation cohort (sorted by risk score).
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its credibility from a biological perspective. The signature also showed a great ability to stratify OvCa patients into 
low- and high-risk subgroup with significantly different overall survival.

Further analysis, including sub-group analysis and adjustment of clinical factors, indicated that the 
six-lncRNA signature could still predict recurrence in most sub-groups and were independent of other clini-
cal factors, including age, tumor stage, tumor grade and histology type. It is well known that the prognosis of 
late-stage OvCa patients is worse than early-stage OvCa patients (Fig. 4a,b). In our study, the six-lncRNA signa-
ture could identify all high-risk patients with late-stage OvCa in different cohorts (Figs 3a and 4b). This could be 
of great use to improve the prognosis of these severe cancer patients.

We also explored the possible functions of these genes. Although the exact mechanism of most of the six 
lncRNAs was unclear, the lncRNAs were still closely related with cancer, as described in the literature, which 
strengthened the reliability and possibility of our six-lncRNA signature as a predictor of OvCa recurrence. In 
addition to the reports in the literature, our functional enrichment analysis of the six lncRNA-related genes may 
also shed new light on the possible functions of these lncRNAs in OvCa.

RUNX1-IT1, MALAT1, H19, and HOTAIRM1 have been widely associated with cancer in recent years. 
RUNX1-IT1 is an oncogenic lncRNA that can promote tumor progression and metastasis20. RUNX1-IT1 was 
overexpressed in non-responder chronic myeloid leukemia21. MALAT1 was found to be upregulated in a variety 
of human cancers, such as lung cancer, breast cancer, prostate cancer, colon cancer, and liver cancer22–24. Some 
studies showed this lncRNA was involved in the regulation of cell mobility25, which was consistent with our 
findings about cell migration (Fig. 5). H19 has been widely linked to oncogenesis, although the exact mechanism 
remains unclear26. H19 is a precursor of mir-675, which down-regulates tumor suppressor genes in cancer27. H19 
is also up-regulated in basal cell cancer compared with normal skin specimens28, and is associated with poor 
prognosis in breast cancer29. However, it should be note that H19 is down-regulated in high-risk patients in our 
study, which is inconsistent with these studies. HOTAIRM1 is a kind of lncRNA that plays an important role in 
the development of immune cells30. HOTAIRM1 is also reported to be a tumor suppressor by affecting a series of 
genes related to cell proliferation in colon cancer31.

There were still relatively few studies describing LOC100190986 and AL132709.8 in cancer research. 
LOC100190986 is associated with HCV genotype 1b transfection in the HepG2 cell line32. AL132709.8 was 
up-regulated in neural precursor cells from patients of lethal congenital contracture syndrome33.

Figure 3.  Association between six-lncRNA signature and DFS of OvCa patients in GSE30161 external 
validation cohort. (a) K-M curve of DFS between low- and high-risk patients. (b) Risk scores of each patient in 
GSE9891 internal validation cohort (sorted by risk score). (c) Time-dependent ROC curve analysis of the DFS 
prediction based on the risk score with three years as the time point. (d) Expression heat map of six lncRNAs in 
OvCa patients in the GSE30161 external validation cohort (sorted by risk score).



www.nature.com/scientificreports/

6Scientific Reports | 7: 752  | DOI:10.1038/s41598-017-00763-y

The selected six lncRNAs were highly reliable from the perspective of both statistics and biology, since we 
conducted rigorous internal validation, external validation, and biological explanation. However, our study has 
some limitations. First, we used different cutoff values for GSE9891 and GSE30161. The overall expression levels 
of lncRNAs in GSE30161 were lower than that of GSE9891. The main reason for this phenomenon was the differ-
ent experimental conditions in different labs. We can solve this problem by using a rigorous experimental proce-
dure and adopting a unique cut-off value in the future. Second, the differences of K-M survival curves between 
low- and high-risk patients were not statistically significant for early-stage patients in GSE9891 (Fig. 4a) and 
high-grade patients in GSE30161 (Fig. 4f), although patients in the low-risk group still tended to have better DFS. 
This may be because the sample sizes of these sub-groups were too small (28 cases and 29 cases, respectively). 
Hence further studies are needed to validate the signature in these groups.

We applied the LASSO method to high-dimensional lncRNA expression data and identified a six-lncRNA 
signature that was highly associated with OvCa recurrence. This signature was validated in internal and external 
validation cohorts and was independent of other clinical factors. Furthermore, from a literature review and our 
functional analysis, we found that the six lncRNAs were closely related with cancer. Thus, this six-lncRNA sig-
nature may be a promising method to personalize OvCa therapy and improve patient quality of life according to 
patients’ condition in the future.

Methods
OvCa patient dataset and clinical information.  Microarray data for GSE9891 and GSE30161 were 
downloaded from the Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)34, 35. Clinical 

Figure 4.  Sub-group analysis of association between six-lncRNA signature and DFS of OvCa patients. (a) K-M 
curve of early-stage OvCa patients in GSE9891. (b) K-M curve of late-stage OvCa patients in GSE9891. (c) K-M 
curve of low-grade OvCa patients in GSE9891. (d) K-M curve of high-grade OvCa patients in GSE9891. (e) 
K-M curve of low-grade OvCa patients in GSE30161. (f) K-M curve of high-grade OvCa patients in GSE30161.

https://www.ncbi.nlm.nih.gov/geo/


www.nature.com/scientificreports/

7Scientific Reports | 7: 752  | DOI:10.1038/s41598-017-00763-y

information for OvCa patients in these data were extracted from the R curatedOvarianData Bioconductor pack-
age36. The microarray data were measured by the Affymetrix Human Genome U133A Plus 2.0 Array microarray 
platform. Borderline tumor patients and patients without days to tumor recurrence were excluded from this 
study. As a result, 257 patients in GSE9891 and 54 patients in GSE30161 were enrolled in this study. The OvCa 
patients in GSE9891 were randomly divided into a training cohort (n = 100) and an internal validation cohort 
(n = 157). Additionally, the OvCa patients in GSE30161 were analyzed as an external validation cohort (n = 54).

Microarray data preprocessing and lncRNA acquisition.  The downloaded microarray data for 
GSE9891 and GSE30161 were normalized using the robust multi-array average (RMA) method37. The probe 
set IDs of lncRNA were acquired from the study of Zhang et al.38. Briefly, the probe set IDs were mapped to the 
NetAffx Annotation Files. Based on the Refseq transcripts ID and/or Ensembl gene ID in the annotation files, 
non-coding RNAs were retained and other types of non-coding RNA except lncRNA were then filtered. Finally, 
2446 lncRNAs with corresponding probe set IDs were generated in our study.

Univariate analysis Multivariate analysis

Variable C P HR 95% CI of HR C P HR 95% CI of HR

GSE9891 training cohort (N = 100)

Risk score 1.667 <0.0001 5.296 2.925–9.589 1.6849 <0.0001 5.392 2.84–10.237

Age −0.0062 0.6223 0.994 0.970–1.019 −0.0015 0.9129 0.999 0.973–1.025

Stage 1.7276 0.0170 5.627 1.362–23.251 1.4465 0.0554 4.248 0.967–18.656

Grade −0.0052 0.9828 0.995 0.620–1.595 0.1633 0.5308 1.177 0.707–1.962

Histology subtype 0.5031 0.2811 1.654 0.663–4.128 −0.1193 0.8088 0.888 0.338–2.332

GSE9891 internal validation cohort (N = 157)

Risk score 0.79 0.0016 2.203 1.351–3.594 0.5924 0.0255 1.808 1.075–3.041

Age 0.0183 0.0699 1.018 0.999–1.039 0.0152 0.1542 1.015 0.994–1.037

Stage 1.7095 0.0002 5.526 2.246–13.597 1.5578 0.0009 4.748 1.899–11.871

Grade 0.2027 0.3086 1.225 0.829–1.809 −0.1177 0.5633 0.889 0.596–1.325

Histology subtype 1.5048 0.0103 4.503 1.426–14.22 0.846 0.1606 2.33 0.715–7.597

GSE9891 entire cohort (N = 257)

Risk score 1.0096 <0.0001 2.745 1.902–3.962 0.9028 <0.0001 2.466 1.689–3.601

Age 0.0087 0.2618 1.009 0.994–1.024 0.006 0.4587 1.006 0.99–1.022

Stage 1.7306 <0.0001 5.644 2.642–12.058 1.6227 <0.0001 5.067 2.337–10.985

Grade 0.1245 0.4151 1.133 0.839–1.528 −0.0524 0.7384 0.949 0.698–1.291

Histology subtype 0.9768 0.007 2.656 1.305–5.404 0.3133 0.3998 1.368 0.66–2.837

GSE30161 entire cohort (N = 54)

Risk score 1.1528 0.0309 3.167 1.112–9.022 1.5104 0.0114 4.528 1.405–14.597

Age 0.0037 0.8029 1.004 0.975–1.034 0.0064 0.7046 1.006 0.974–1.041

Stage — — — — — — — —

Grade 0.4346 0.1765 1.544 0.822–2.9 0.7009 0.0429 2.015 1.023–3.972

Histology subtype 0.3131 0.4456 1.368 0.612–3.057 1.2788 0.0283 3.592 1.146–11.26

Table 2.  Univariate and multivariate cox regression analyses of DFS in GSE9891 and GSE30161. Abbreviations: 
C Coefficient, P P value, HR Hazard Ratio, CI Confidence Interval.

Rank Biological Process FDR KEGG pathway FDR

1 Cell adhesion 1.10E-24 ECM-receptor interaction 7.30E-10

2 Biological adhesion 1.40E-24 Focal adhesion 4.00E-09

3 Response to wounding 2.80E-15 Cell adhesion molecules (CAMs) 7.50E-04

4 Vasculature development 2.10E-13 Leukocyte transendothelial migration 2.60E-03

5 Blood vessel development 2.30E-12 Cytokine-cytokine receptor interaction 2.70E-03

6 Inflammatory response 5.10E-10 Chemokine signaling pathway 4.50E-02

7 Immune response 6.30E-10

8 Extracellular matrix organization 1.40E-09

9 Blood vessel morphogenesis 3.00E-09

10 Regulation of response to external stimulus 3.30E-09

Table 3.  Top 10 significant GO BP terms and KEGG pathways enriched with DEGs in OvCa.
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Signature generation and statistical analysis.  LASSO penalized regression was conducted to select the 
lncRNAs associated with OvCa recurrence39. The optimal tuning parameter lambda1 was chosen after 100 times 
of 10-fold cross validation. The function for the selection of lambda1 was “optL1” (fold = 10), and the function for 
LASSO penalized regression was “penalized” (lambda1 = lambda1). Other parameters of the functions were set 
to default values. A risk score was generated using the sum of lncRNA expression values weighted by the coeffi-
cients from LASSO penalized regression40. The OvCa patients were then divided into low- and high-risk groups 
according to the median risk score.

The association of risk score, clinical factors, disease-free survival (DFS) and overall survival (OS) were 
assessed by univariate and multivariate cox regression. Kaplan-Meier (K-M) survival curves were used to esti-
mate DFS and OS for patients in the low- and high-risk groups, and the DFS and OS differences between the two 
groups were assessed using the log-rank test. Time-dependent receiver operating characteristic (ROC) curve 
analysis with three years as the time point was used to compare the sensitivity and specificity of the DFS predic-
tion based on the risk score41. A heat map was used to present the relative expression levels of lncRNAs in this 
study.

Satterthwaite t-test was performed to determine the significance of each gene, and the corresponding false 
discovery rate (FDR) value was estimated for correcting multiple comparisons. Differentially expressed genes 
(DEGs) were selected as FDR < 0.05. Functional annotation of DEGs for Gene Ontology (GO) terms and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways was performed using the Database for Annotation, 
Visualization and Integrated Discovery (version 6.7, DAVID, https://david.ncifcrf.gov/) tool42. Significant GO 
biological process terms with similar function were visualized as interaction networks using the Enrichment Map 
plugin in Cytoscape43, 44.

Figure 5.  Interaction network of significant GO biological process terms with similar functions associated with 
six lncRNAs. Red nodes represent GO biological process terms. Node size is proportional to the total number of 
DEGs in that term. Thickness of green lines is proportional to the shared DEGs of two connected terms.

https://david.ncifcrf.gov/
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LASSO penalized regression, time-dependent ROC curve analysis and heat map analyses were conducted on 
penalized39, survivalROC41 and gplots45 packages, respectively, in the R platform. Univariate and multivariate cox 
regression and log-rank test were performed using SAS (version 9.3, SAS Institute, Cary, NC, USA). K-M survival 
curves and scatterplots of risk score were performed in GraphPad Prism (version 5.0, Graphpad Software, San 
Diego, CA, USA)46. All other statistical analyses were performed in the R platform (version 3.3.2). All statistical 
tests were two-sided and a P value of less than 0.05 was considered statistically significant.
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