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Abstract: The present paper responds to the challenge of modeling uncertainty in soil strength
parameters concerning its spatial variability in a situation of limited soil information. Understanding
this uncertainty allows for the management of the risk of geotechnical structure failure. In the present
work, this uncertainty is identified based on signals from the cone penetration test (CPT) device.
Signals are directly transformed using existing interpretation methods (typically used as a source of
mean values of parameters for a given range of depths) to obtain depth-varying effective strength
parameters of the soil. The process is performed by incorporating data from two case studies from
different locations in similar soil materials. First, Keswick clay from Australia, for which the results
of both CPT and laboratory tests are available, is examined. Second, to further verify the obtained
results, the soil from Poland called Świerzna clay, for which only CPT signals were available, is also
tested. As shown, the variability of the transformed signals can be a good source of information for
identifying uncertainty in soil strength. It agrees well with literature data and can be used to identify
random fields describing soil parameters.

Keywords: geotechnical survey; soil strength parameters; CPT data; spatial variability

1. Introduction

The identification of model uncertainty using different types of measuring techniques
is a subject of increasing interest [1,2], mainly because understanding the uncertainty
in the model allows for the optimization of the management of specific resources. This
problem also concerns the uncertainty in the values of soil strength parameters used in
numerical models. Despite the constant development of in situ testing techniques for soils,
the geotechnical recognition is still insufficient to determine soil properties at each point
of the considered space. In typical numerical studies, constant values estimated based
on a limited number of samples are used for characterizing specific soils. However, soil
parameters are well-known to be subjected to strong spatial variability [3], which is one of
the primary sources of uncertainty in the stability of geotechnical structures. Identification
and modeling of this uncertainty allow for managing the risk of construction failure using
so-called reliability-based design.

In recent decades, a method of modeling the spatial variability of soil parameters by
stationary random fields (SRFs) has become popular. This is partially because random field
theory (whose use in geotechnics was proposed by Vanmarcke [3]) has been relatively easy to
incorporate into the finite element method [4,5]. In recent decades, the combined approach was
used to analyze uncertainty in different types of geotechnical structures, including slopes [6],
strip and rectangular foundations [7–9], and retaining walls [10]. Using this approach, the
variability in soil properties can be accounted for within the framework of Monte Carlo
simulations. The parameters to define a weak SRF consist of the probability distribution
of the modeled property, estimated based on the measurement values, and the stationary
autocorrelation function (ACF), which determines the correlation structure of the soil. The
satisfactory modeling of structure uncertainty is often obtained even when the identification
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of the probability distribution of soil parameters is limited to its basic characteristics, i.e., the
mean value and the coefficient of variation (COV) (c.f. [11]). However, the identification of
ACF, or particularly its parameters, the so-called scales of fluctuations (SOFs), can have a great
impact on the results [12]. The latter parameters are usually interpreted as the dimension of
“clusters” where the field values are significantly correlated. Most of the existing studies show
that the SRF modeling soil properties should be anisotropic, with the horizontal SOF being
significantly greater than the vertical SOF, e.g., [6–9,13,14].

In most works dedicated to modeling soil material by SRF, the Mohr–Coulomb strength
criterion is assumed. In such cases, shear strength parameters are usually the only properties
modeled by random fields. These parameters are either the undrained shear strength (su) [5],
effective friction angle (φ′) [10], or both shear strength parameters, i.e., cohesion (c) and friction
angle (φ′) (not always defined as the effective value) [4,9]. Sensitivity studies performed in a
few of the mentioned works have shown that the variability of strength parameters has the
greatest impact on the results for most cases where soil’s nonelastic behavior is considered.
This is the case not only for the problem of the bearing capacity of shallow foundations (where
it is intuitive) [7,15] or other problems related to the critical load but also for the deflection of
the sheet pile wall supporting excavation in sands [10].

All data for the identification of the random field should be determined from measure-
ments in the soil. The key to identifying the scale of fluctuations is the long series of data
measured at a close interval. One of the best sources of such information is near-continuous
surveys obtained using cone penetration test (CPT) devices [16,17]. However, the CPT de-
vice does not directly measure soil strength parameters but the values of other parameters
related to soil strength, but not explicitly. For this reason, it is a common practice to assume
that the fluctuation scales determined from the CPT measurements are equal to those for
the strength parameters and to identify the mean and COV of the strength parameters
using the results from laboratory tests that measure them directly [18,19]. These laboratory
tests are time-consuming and expensive (especially in the case of their high quality) and,
therefore, usually limited in number, which affects the accuracy of identification.

Moreover, since the fluctuation scales are identified for the stationary field, the trend
must be subtracted from the obtained field data (measured directly by CPT). After gen-
erating the field of strength parameters, the trend for these values (if they exist) must be
added, which raises additional problems with identifying and subtracting the trend from
CPT measurements that is nontrivial (e.g., [17,20,21]) or determining the trend function for
a limited number of laboratory tests.

As mentioned, the parameters measured by CPT and strength parameters are related.
However, these relationships are not explicit. To reduce the uncertainty of field determined
values, some researchers account for their simultaneous relations using a few different
measurements, which can be statistically modeled using multivariate distributions. Such
an approach can often be found in the works of Ching, Phoon, and their coworkers
(e.g., [12,22]) and is often combined with Bayesian learning. Another idea is presented
in work by Uzielli [16], where quantile regression is used to obtain a safe design value
of φ′ based on CPT measurements. A review of some other approaches can be found in
Cami et al. [23]. However, all of these approaches require a large database, including the
results of field and laboratory tests performed on soil from nearby locations. As it seems to
be a proper approach, these data are rarely available.

In the present work, a much simpler approach for identifying the SRF of strength
parameters is proposed. The known methods for interpreting either undrained shear
strength (su) or effective shear strength parameters (c′ and φ′) from CPT measurements
are used. However, while these methods are typically used to determine mean values for
relatively large soil layers of the considered CPT profile, in the present work, they are used
to transform the whole CPT signal (at each point where it was measured). Based on the
transformed values, statistical information, i.e., mean values (or trends), coefficients of
variation (COVs), and in the case of estimating both shear strength parameters, their cross-
correlation coefficients (ρ) are investigated. The obtained values describing the uncertainty
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of soil strength parameters are then verified against laboratory tests from the literature. It
is also checked whether the transformation formulas used for CPT measurements influence
SOF values (i.e., whether the SOF determined for directly measured and transformed
signals are different). All these procedures are performed to answer the following questions:

• Is it possible to identify stationary random fields only based on appropriately trans-
formed CPT results?

• Do the variability and trends of selected strength parameters determined by CPT signal
transformation behave similarly to the same values obtained from laboratory tests?

• Do any of the existing methods of estimation c′ and φ′ based on CPT provide reliable
results for identifying random fields for these parameters, and do they also allow
obtaining a reliable value for the cross-correlation coefficient between these fields?

From the presented results, based on surveys performed for the two cohesive soils, it
appears that the proposed approach, although very simple, is promising. The obtained
information is in good agreement with the literature data and the available laboratory
tests. Thus, it seems that identification of random fields can be made directly from the
transformed CPT signal in the absence of more accurate data. This information can be then
further used in stochastic numerical analyses of geoengineering problems.

2. Materials and Methods
2.1. Method of Measurement

The cone penetration test (CPT) is a testing technique based on registering the re-
sistances of a standardized probe (with a conic tip) when it is driven vertically into the
soil at a constant speed. The technique started to be used in the 1930s in Denmark [24].
Initially, tests were performed using mechanical cones registering two parameters, i.e., cone
tip resistance (qc) and sleeve friction (f s), along with the survey profile with an interval
of tens of centimeters. This large interval is directly related to the design of mechanical
cones [25]. Today, mechanical cones are used less and less, and the name CPT refers rather
to the quasi-continuous surveys performed with electrical cones (with typical intervals of
0.5–2 cm). Within the EU, the guidelines on cone geometry (both electrical and mechanical)
and test methodology are given in the standards [26,27]. Figure 1 shows a typical cone
with a 10 cm2 base and 150 cm2 external surface at the tube shape. The cone tip diameter is
between 35.7 and 36.1 mm. In addition to the above-standardized cone parameters, other
geometries, sizes, and shapes of coneheads exist and are used, e.g., for special measurement
conditions in organic soils.
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Figure 1. Schematic view of CPTu piezocone probe.
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Despite the standardized external geometry of the electric cone, its internal construc-
tion, i.e., the measurement and transmission system used, can vary considerably from
one device to another. For example, inside the cones, measuring elements based on strain
gauges or piezoelectric crystals and transmission systems may be based on electrical cables,
radio waves, or even acoustic waves transmitted through the rods. The most commonly
used electric cones are devices called piezocones characterized by the ability of quasi-
continuous registration of three quantities, i.e., the already-mentioned cone tip resistance
(qc), sleeve friction (fs), and also pore pressure at the shoulder (u). The test performed
with such a cone is referred to as CPTU. Three possible locations for pore pressure filters
have been developed over the years. One is with the filter placed in the middle of the tip
height; the measurement is then referred to as u1. Second, the pore pressure filter is placed
between the tip and the friction sleeve; the registration is then referred to as u2. If the filter
is just above the friction sleeve, the measurement is referred to as u3. In research practice,
it is very rare to use devices equipped with all three filter sensors. Due to their location,
the u1 and u3 recorders are often damaged during the test. Thus, the most commonly
manufactured and used electrical cone tips do not have any filter (register only qc and fs in
the small interval) or are equipped with a u2 filter [28] (Figure 1).

With the development of electronics and the miniaturization of various measuring
devices, various types of additional measuring equipment began to be attached to the basic
piezocone devices [24,28]. Among others, modules equipped with geophones or accelerom-
eters for downhole seismic measurements are used (SCPTU–seismic cone penetration
test) [29,30]. It is also possible to attach a camera to locate chemical contaminants in the soil
or verify the soil’s grain size (VisCPT–Vision Cone Penetrometer) [31], although it should
be noted that this technique can be difficult to apply in cohesive soils. It is also popular
to install additional temperature recording sensors or various electrical measurements to
record the electrical conductivity or resistivity (RCPTU–resistivity piezocone penetration
test). The information from this type of module is mainly useful in hydrated environments
for identifying the different geological structures of the subsoil [32] or assessing possible
liquefaction [33]. All these additional modules are usually applied locally to investigate
the detailed features of the considered soil. Most of these tests do not affect the basic CPT
registrations, although they may sometimes force an additional stop of the measuring
column, which prolongs the test and will disturb the continuity of the measurement.

As the present paper focuses on the interpretation of basic CPT measurements and their
application for the identification of uncertainties in soil strength parameters in both considered
case studies (which will be described in more detail in the following subsection), the results
obtained from the basic version of the electrical cone (without additional modules) were used.
In both analyzed soil cases, the geometry of the cone was following the standard [27] (area of
the base of the tip, 10 cm2, diameter of the tip and friction sleeve 35.7 mm, and area of friction
sleeve 150 cm2). The differences between the cones used are of minor importance and should
not affect the measured values. In the first considered case (Świerzna clay, see Section 2.4),
the piezocone with u2 measurement, which measured all quantities every 2 cm, was used.
In the second case (Keswick clay, see Section 2.4), the cone without filter (no pore pressure
measurement), which registered qc and fs every 0.5 cm, was used.

2.2. Methods of Interpretation of Strength Parameters Based on CPT Data

To date, many relationships between CPT measurements and the strength parameters
of soil have been developed. The most popular relation for undrained shear strength su
was defined by Lunne and Kleven [34] as:

su =
(qt − σvo)

Nkt
, (1)

where σvo denotes the total overburden pressure at the elevation of the cone; qt = qc
+ (1− anet)u2 is the corrected total cone resistance (anet is a parameter associated with
the geometry of the cone). Moreover, Nkt is an empirical coefficient estimated between
14–16 [35]. In the present study, Nkt was assumed to have a constant value of 15. Values of
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σv0 can be derived by integrating unit weight γ from surface to current depth, for example,
using the formula by Bagińska [36].

γ = 11 + 2.4·ln( fs + 0.7), (2)

Two methods can be used to estimate the effective shear strength parameters (cohesion
c′ and friction angle φ′) based on the CPT measurements. The first, much more popular
method, described, e.g., in the papers by Senneset and Janbu [37], is often referred to as
the NTH method. The other one, developed relatively recently, is based on solving two
equations, as suggested in [38].

The NTH is based on the relationship for net cone resistance. According to Senneset
and Janbu [37], in cohesive soils, where excess pore pressure can build up, the latter can be
described as follows:

qn = qt − σv0 = Nm
(
σ′v0 + a′

)
, (3)

where σ′vo is the effective overburden pressure and a′ is the attraction parameter, which is
related to c′ and φ′ as follows:

a′ = c′ cot
(
φ′
)
, (4)

and Nm is cone resistance number defined as:

Nm =
Nq − 1

1 + NuBq
, (5)

where Bq = ∆u/qn (∆u = u2 − u0 denotes the excess pore pressure, where u0 is the pore
pressure in drained conditions) and Nu and Nq can be calculated as:

Nu = 6 tan φ′
(
1 + tan φ′

)
(6)

Nq = Kp exp
[
(π − 2β) tan φ′

]
(7)

In the above formula, Kp = (1 + sin (φ′))/(1 − sin (φ′)) is the passive lateral stress
coefficient, and β is the angle of plastification (−40◦ < β < +30◦), which defines the size
of the failure zone after [34,37]. The value of β depends on the type of soil, its condition,
and stress history.

Substituting Equations (5)–(7) into Equation (3), one obtains a direct relationship
between qn, a′, tan (φ′), Bq, and β. Values of σv0 and σ′v0 can be once again derived using
the formula by Bagińska [36] (Equation (2)).

According to [37], the value of a′ can be determined using the trend in qn drawn
against the effective overburden pressure σvo

′ (Figure 2). For a given Bq and β and the
determined value of a′, the mentioned relationship can be used to find φ′. Knowing a′ and
φ′ c′ can also be obtained from Equation (4).
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The other of the methods mentioned above, which is based on solving a system of
equations (in this paper referred to as Method of Equations–MoE), assume that the effective
cone resistance (qE) calculated as:

qE = qt − u2 (8)

can be estimated with the Terzaghi bearing capacity formula. The first equation is supple-
mented by the second equation describing the frictional behavior of soil on the sleeve of
the CPT device. The complete system can be written as follows:{

c′Nc + σ′v0Nq + 0.5γBNγ = qE = qt − u2
c′ + σ′hc tan δ = fs

(9)

Concerning deep bearing capacity factors by Senneset and Janbu [37] and the analytical
failure model shown by Eslami and Fellenius [39], factors in Equation (9) are proposed to
be calculated as follows:

Nq =

(
tan φ′ +

√
1 + tan2 φ′

)2
exp

(
2ξ tan φ′

)
, (10)

Nc =

(
Nq − 1

)
tan φ′

(11)

Nγ = 2
(

Nq + 1
)

tan φ′, (12)

In the above formulas, ξ denotes the angle defining the shape of the shear surface
around the tip of the cone. The angle ranges from π

3 for soft clays to 0.58π for dense sands.

In the present study, the following formula was assumed after [38] ξ = 3.05·10−3
(

qt
pa

)
+ 1.2

(pa is the atmospheric pressure). Additionally, B is equal to the cone diameter, and δ denotes
the friction angle between the soil and the penetrometer sleeve, which was assumed to
be 2/3 of the friction angle. The values of γ and σ′v0 can be obtained from Equation (2)
(the latter by integration as mentioned above). Finally, the effective horizontal stress
perpendicular to the penetrometer body σ′hc (Equation (9)) acting on the sleeve according
to [40] can be calculated as:

σ′hc
σ′h0

= 7.89·10−4

[
qt − σhmean

σ′hmean

]1.44

(13)

where σ′h0 is the horizontal effective overburden stress calculated as σho
′ = k0σvo

′ = (1 −
sinφ′)σvo

′ and σhmean and σ′hmean
denote the mean total and effective stresses, respectively.

As presented in the works of many researchers (e.g., [41]), the NTH method exhibits
a good correlation with the results of laboratory tests. Similar conclusions can be drawn
from the work by Motaghedi and Armaghani [38].

Typically, these methods are used to find some mean value of soil strength parameters
for a selected layer (given range of depth). In the following section, all three presented
methods (the method for calculating su as well as two methods for calculating c′ and φ′)
are applied to all points of the CPT profiles obtained from the two considered case studies
to assess both the point and spatial variability in the strength parameters of cohesive soils.

2.3. Method for Identification of Vertical SOF

As mentioned in the introduction section, an important part of identifying the uncer-
tainty of soil strength parameters in modeling them using a random field is identifying the
scale of fluctuation. A typical method of determining the SOF based on CPT results [17,23]
includes fitting the assumed theoretical ACF (with the SOF being the fitting parameter) to
the so-called experimental ACF. The values of the latter are calculated for subsequent val-
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ues of the lag distance between observations in CPT profile (multiplication of observation
interval ∆τ) τj = j∆τ, jεN, as [24]:

ρ̂
(
τj
)
=

1
ν2k

k−j

∑
i=1

(Xi − µ)
(
Xi+j − µ

)
(14)

where Xi is the single observation of the parameter for which the scale is determined, k is
the number of observations in the sample, and µ and ν2 denote the mean value and variance
of the observations. According to the method [17,20,23], before applying Equation (14), all
observations need to be initially detrended and normalized (trends and mean values are
determined separately for each CPT).

For the theoretical ACF, the exponential Markov model is probably the most popular
in geotechnics

ρ(τ) = exp
{
−2|τ|

θ

}
(15)

where θ denotes SOF value.
This method was also used in the present paper to find the value of θ for both sensing

data and transformed/interpreted signals. In all cases, the Markov model was assumed as
the experimental ACF. The obtained values are also presented in the following section.

2.4. Materials–Sensing Data

The examined material is overconsolidated clay. The analysis is based on CPT mea-
surements obtained in two independent case studies. The first considered example is clay
from Świerzna, southwestern Poland. Characteristics for that soil (including OCR and
plasticity index (IP) are collected in Table 1. In this location, a CPT survey consisting of
nine CPTs located in a close-to-regular grid with a spacing of approximately 3 m in both
directions was performed. Some results of that survey were previously presented in [41,42].
No free groundwater table was observed during the drilling and CPT measurements in the
profile. The u2 registrations locally reached values up to several tens of kPa. Due to the lack
of a free groundwater table in further calculations, the value of u0 was assumed to be zero.

As the second example, a case study performed by Jaksa [19,43] in Keswick clay,
Adelaide, South Australia, was selected. The main reason for using the results by Jaksa
was the availability of laboratory test results on the undrained shear strength su carried out
for the same soil, which could be used to verify the results obtained in the present study.
The results of these tests will be presented in the next subsection. The basic characteristics
for the Keswick clay are again collected in Table 1.

Table 1. Basic characteristics of Świerzna and Keswick clay.

Soil Unit Weight [kN/m3]
IP

[%]
OCR

[-]

Świerzna clay
22.02 ± 0.39

(from laboratory test)
19.2 ± 2.3

(from laboratory test)
6.77 ± 0.61

(from CPT korelation)

Keswick clay 18 (Jaksa PhD [44]) 25–88 (Jaksa PhD [44]) 7.64 ± 0.33
(from CPT korelation)

The original study by Jaksa [43] included over 100 CPT readings with a depth of app.
5 m (with the Keswick clay layer located approximately 2.2–2.6 m below the surface). The
authors of the present paper analyzed approximately 40 test results from Jaksa’s database.
In most analyzed cases, the qc registrations for the studied layer indicated a decrease in the
values with depth (which is not typical and can be associated with a changing plasticity
state of soil). For the present study, five test results from Jaksa [43] characterized by linear
increases in qc and fs values (similar to the case of clay from Świerzna) were selected.
Using the notation by Jaksa [19] tests A0, B0, J9, J10, and K9 were chosen. In some other
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tests, strongly variable readings (even for the range of depths that should correspond
to the layer of Keswick clay) were observed. According to [42], none of the performed
CPTs encountered the groundwater table; therefore, in this case, u0 = 0 was assumed for
further calculations.

In the first step of analyzing sensing data from Świerzna, the homogeneous layer of
cohesive soil was selected based on values of the nonnormalized soil behavior type index
(ISBT) following the classification given in [44]. The ISBT parameter is defined as follows:

ISBT =

√[
3.47− log

(
qc

pa

)]2
+

(
log
(

100 fs

qc

)
+ 1.22

)2
(16)

where pa denotes atmospheric pressure (equal to 100 kPa).
In Figure 3, the results for qc and fs and ISBT values for Świerzna clay are presented. A

homogeneous layer of cohesive soil can be observed between 4.0 and 8.0 m below the surface.
For that layer, qc values ranged from 1.06 to 4.0 MPa with the mean value of 2.15 MPa, and
fs values ranged from 0.01 to 0.163 MPa with the mean value of 0.09 MPa The ISBT values
obtained for that material are once again presented in Figure 4 in Robertson’s classification [44].
As seen, the material is indeed very homogeneous. The soil data shown in Figure 3 are
mostly classified as SBT 4 (silty clay to clay). Based on the granulometric analysis performed
independently, the soil was recognized as clay with the addition of sand.

Using a similar procedure for the case of Keswick clay, a homogeneous layer between
3.0 and 5.0 m below the surface was found and selected for further analysis. The results
of qc, fs, and ISBT for the considered tests are shown in Figure 5. This time the qc values
ranged from 1.23 to 2.51 MPa with the mean value of 190 MPa, and fs values ranged from
0.07 to 0.19 MPa with the mean value of 0.13 MPa. Figure 6 presents the results from the
selected layer in Robertson’s classification [44].
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Figure 3. Results of nine CPTs from Świerzna [42]; (a) cone resistance qc and sleeve friction fs vs. depth; (b) nonnormalized
SBT index (ISBT) vs. depth.
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Figure 4. The values of ISBT in the selected homogeneous layer (4–8 m below the surface) for CPTs
from Świerzna [42] presented in Robertson’s classification [44].
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Figure 6. The values of ISBT for the selected homogeneous layer (3.0–5.0 m below the surface) for
CPTs performed in Keswick clay [43] presented in the Robertson’s classification [44].

2.5. Materials–Verification Data

Previously mentioned laboratory tests for strength parameters of Keswick clay (which
can be used as reference values for identification of the uncertainty of strength parameters
for that soil) are mainly su tests consisting of several triaxial UU (unconsolidated undrained)
and CU (consolidated undrained) tests carried out on samples taken at depths up to over a
dozen meters. These results can be found in Appendix C of the PhD thesis by Jaksa [43].
For the present study, values representing the test from depths up to 10 m (a total of 87 UU
and CU) were used as reference values.

These laboratory tests show a clear increasing trend with depth. The linear trend
equation obtained from these results and COV values calculated for three different series
of samples (taken at depths of approximately 3.2, 4.7, and 7.7 m) is summarized in Table 2.
Mean values used to calculate those COVs were taken as the value of the trend function for
the respective depth. Additionally, in Figure 7, the considered results for su with depth are
presented together with the determined linear trend. In the following part of the work, we
will compare the trend obtained from interpreted CPT measurements with these data.

Table 2. Variability of Keswick clay according to Appendix C to [43].

Soil Triaxial Test Type No. of Samples
(up to 10 m Depth)

Trends Equation
[kPa] Depth z [m] COV [-]

Overconsolidated clay
(Keswick clay) UU and CU 75 UU and 12 CU su = 16.202 z + 55.128

3.2 0.33
4.7 0.19
7.7 0.13
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In the case of both considered locations, i.e., Świerzna and Keswick, the results
of laboratory tests concerning c′ and φ′ were not available (or their number was not
sufficient to verify their variability). Therefore, it was decided that the verification of
variability measures of c′ and φ′ would be based on literature data obtained in cases where
a satisfactory number of laboratory tests were performed for similar soils. Several studies
are investigating the variability in the effective shear strength parameters of soils. Values
of COV and cross-correlation coefficient ρ for many different cohesive soils were presented,
e.g., in a paper by Greco [45]. Table 3 shows some typical values from this work and some
other works obtained in triaxial and direct shear tests. It appears that despite the test type,
the COV for effective cohesion c′ is usually much higher (three times or more) than the
COV for friction angle φ′.

Additionally, based on the analysis of both direct shear and triaxial tests of cohesive
soils, it appears that in the case of c′ and φ′, very weak trends (if any) of these values
with depth are observed (e.g., [46]). Thus, the COV and correlation coefficient ρ form
probably the satisfactory set of measures of point variability (and cross-correlation) for these
parameters. In further analysis, the data shown in Table 3 will be used as reference values.

Table 3. Typical values of COV and ρ for effective shearing parameters of cohesive soils.

Reference Soil Type Test Type No. of Samples COV for φ′ COV for c′ Parsons Coeff. P

Sevaldson [47] Lightly overconsolidated clay
(Lodalen landslide) Triaxial CD 10 0.060 0.210 −0.070

Wolff et al. [48] Bois Brule Levee embankment
and foundation clay Triaxial CD 9 0.099–0.0165 1.280–1.310 −0.388–−0.694

Hata et al. [49]
The cohesive

soil-forming subsoil
of Airports in Japan

APIII
Triaxial

14CU 0.192 1.068 -

APIX 14CU 0.105 0.880 -

APX 10CD 0.115 0.958 −0.557

Di Matteo et al. [50] Silty clay Direct shear 16 0.030 0.210 −0.925
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3. Results

In this section, the results of the transformation of sensing data presented in Section 2.4
obtained for every point of the considered layers using the interpretation methods pre-
sented in Section 2.2 are shown. Based on the transformed data, the variability of shear
strength parameters of the considered soil is investigated. Additionally, the vertical SOF
for the original and transformed signal and cross-correlation coefficients for c′ and φ′

are identified.

3.1. Determined Values of Undrained Shear Strength su

Based on qc measurements obtained from both analyzed case studies, the undrained
shear strength (su) was determined using Equation (1). In both cases, only the results for
selected geotechnical layers were used. The Nkt parameter was assumed to be equal to 15.
The total vertical overburden pressure values were obtained using the varying unit weight
of the soil calculated based on Equation (2). Figure 8 shows the variability in the su value
with depth. In both cases, a strong increasing trend of su with depth can be observed. In
Figure 8b, values derived from CPT and their trend and the results of laboratory tests of
su with their trend are shown (the R2 coefficients for both trends displayed are given in
the legend section of the graph). As seen, the two trends (from in situ and laboratory tests)
derived for a given layer are practically identical (although their coefficients are different).
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Figure 8. The su values base on CPT vs. depth. Mean value marked with the black line; (a) CPTs for
Świerzna clay; (b) CPTs for Keswick clay.

From the results obtained, COVs were also determined. The standard deviation value
obtained at a given depth was divided by the value of the trend function at that depth.
Diagrams of COV versus depth are presented for both considered cases in Figure 9. As
seen, the COV plots exhibit a weak decreasing trend with depth, which is more visible
in the case of Świerzna, where a thicker layer of soil is analyzed. However, it seems that
this trend at some point becomes negligible. The range of COV values obtained for the
considered range of depths as well as the mean COV values are summarized in Table 4.

Table 4. Trends in COV values for su obtained based on CPT results (z is depth).

Soil Trends Equation
[kPa]

Range of COV
Values [-] Mean COV [-]

Swierzna clay su = 19.407 z + 19.539 0.068–0.425 0.152
Keswick clay su = 22.495 z + 30.620 0.038–0.186 0.105
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Figure 9. The COV of su (based on CPT) vs. depth (a) CPTs for Świerzna clay (b) CPTs for Keswick clay.

3.2. Shear Strength Parameters φ′ and c′ Determined by the NTH Method

Using the same values of CPTu measurements, the shear strength parameters c′ and
φ′ were determined using the NTH method. The values of a′ were determined separately
for each profile to consider the variability in parameter a′ (and thus variability c′). An
example of such a determination based on the trend obtained in the qn-σvo

′ space for a
single profile section is presented in Figure 2 in the previous section. All obtained values of
a′ are collected in Table 5. For comparison, the values obtained based on the global trend
(values from all CPT profile sections associated with the considered layer) are also shown
in the table.

Table 5. a′ values for the considered sections of CPT profiles.

Global Value
(All CPTs) CPT1 CPT2 CPT3 CPT4 CPT5 CPT6 CPT7 CPT8 CPT9

Świerzna Clay a′

[kPa]
44.19 4.7 46.1 110.0 98.2 15.3 3.4 84.2 35.1 26.2

Keswick clay a′

[kPa]
33.05

CPTA0 CPTC0 CPTJ10 CPTJ9 CPTK9

66.7 45.8 14.2 61.3 1.8

All other steps of the NTH method were performed in the same way as described in
Section 2.2. Using a′ value specified for each profile φ′ was calculated based on Equation (3)
after substituting Equations (5)–(7) and assuming Bq = 0 (due to very low or unknown pore
pressure values) and β = 0. Finally, using the obtained φ′ and a′, c′ values were determined
(also for each point of the profile) according to Equation (3).

The obtained φ′ and c′ values for Świerzna clay and Keswick clay are presented in
Figures 10 and 11, respectively. As seen, the values in the figures are practically trendless.
No trend was also observed when analyzing the COVs as a function of depth. For this
reason, a single global coefficient of variation was determined for each parameter, referring
to the values obtained at all considered points. The obtained values of the COV for
individual cases are presented in Table 6. These results are discussed in the next section.
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Figure 10. NTH results for Świerzna clay: (a) φ′; (b) c′.
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Figure 11. NTH results for Keswick clay: (a) φ′; (b) c′.
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Table 6. Variability measures of parameters according to the NTH method.

φ′ c′

Mean [◦] COV [-] Mean [◦] COV [-]

Świerzna clay 28.88 0.066 24.60 0.767
Keswick clay 29.64 0.058 20.65 0.663

3.3. Shear Strength Parameters φ′ and c′ Determined by the Method of Equations

The values of φ′ and c′ were also investigated using the method of equations (MoE).
To ensure that, the values of qc and fs obtained at each point of the considered CPT profiles
were substituted into Equations (9)–(13). Since, in the case of Świerzna clay, the determined
values of u2 in each considered point were a negligible percentage of the qt value, the
calculation of qt and qE was omitted, as both of them were assumed to be equal to qc. A
similar assumption was made for Keswick clay due to the lack of data on u2. The obtained
values for φ′ and c′ for Świerzna clay and Keswick clay are presented in Figures 12 and 13,
respectively. The value of c′ presented here is several times higher than that derived from
the NTH method in the previous section.

Moreover, both parameters obtained using the MoE are characterized by trends with
depth (similar for both analyzed case studies). For φ′, it is a weak decreasing or increasing
trend (depending on the case), and for c′, it is a strong increasing trend. Despite trends in
parameter values, one global mean and one global COV value were determined (as before
for the NTH method). These data are summarized in Table 7. Once again, the obtained
results will be discussed in the next section.

Table 7. Variability measures of parameters according to the MoE.

φ′ c′

Mean [◦] COV [-] Mean [◦] COV [-]

Świerzna clay 23.95 0.103 85.90 0.339
Keswick clay 16.12 0.127 127.16 0.161
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Figure 13. MoE results for Keswick clay: (a) φ′; (b) c′.

3.4. Vertical SOF

For both studies, the values of vertical SOFs for both the original qc and fs signals and
the transformed values of su, φ′, and c′ were determined. For the qc and fs, the obtained
fits of the theoretical models to the experimental ACF averaged over all considered CPTs
(marked with dark lines) together with the corresponding SOF values are presented in
Figure 14. As seen, the Markov function corresponds well to the mean of the experimental
data. Please note that the obtained value of the vertical scale in the case of Keswick clay is
only slightly lower than that presented in work by Jaksa et al. [19]. These small differences
may result from the selection of only a few CPT tests for this study, analyzing them only
within the layer between 3 m and 5 m under the surface and using linear detrending (in
work by Jaksa et al. [19], a quadratic trend for a larger depth range was used).

Similarly, the vertical SOF was also examined for the derived values of su, φ′ an c′.
All obtained values of SOF are reported in Table 8. These values will be discussed in the
following section.

3.5. Cross-Correlation Coefficient ρ between c′and φ′

Additionally, the Pearson’s cross-correlation coefficient ρ between the obtained pa-
rameters was analyzed. All obtained values of both parameters are presented in c′-φ′ space
(for both analyzed cases) in Figure 15, together with the calculated value of the correlation
coefficient. As seen, the obtained images using the NTH method (Figure 15a,b) are not
typical: they consist of sets of points arranged in the form of straight lines. Each line corre-
sponds to different CPT tests. To determine the c′ values using Equation (3) (for a′, which is
constant for each profile), φ′ and c′ are fully correlated (ρ = 1). A more typical filling of the
c′-φ′ space is observed in the case of MoE (Figure 15c,d). In both cases, the resulting global
values of the coefficient ρ in the whole c′ φ′ space are negative and acceptable (similar to
literature data). These results will also be discussed in the next section.

Table 8. The scale of fluctuation values for each method of estimation of strength parameters.

Case Study
The Scale of Fluctuation (m)

Directly Measured by CPT Undrained Drained, MoE Drained, NTH Method

qc fs su φ′ c′ φ′ c′

Świerzna clay 0.192 0.216 0.184 0.183 0.214 0.189 0.188
Keswick clay 0.162 0.171 0.166 0.121 0.166 0.164 0.164
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4. Discussion of Results

As mentioned in the introduction section, this paper aims to test the possibility of
identifying random fields of soil strength parameters based only on transformed CPT
signals. In this section, the results presented in the previous section are discussed in
this context.

4.1. Variability in the Undrained Shear Strength su

The results presented in Section 3 show that su values are well correlated with qc
registration, which is mainly evidenced by obtaining similar su values and trends based on
laboratory tests and selected CPT tests in Keswick clay. Although the obtained trends have
different coefficients, the linear functions in the analyzed layer are almost identical. In the
case of Świerzna clay, the value of the direction coefficient of the trend function obtained
based on the CPT results is similar to that of Keswick clay, which may indicate similar
behavior of this soil.

Comparing the COV values for Keswick clay derived based on CPT results as a
function of depth, with the COV values calculated for the same soil for a few different
depths based on laboratory tests (Table 2), it can be concluded that the values from CPT in
the considered layer are generally lower than those based on laboratory tests. However,
the COVs for samples taken slightly below the considered layer (at a depth of 7 m) are of
the same order as those received based on CPT. The variability in the results of laboratory
tests may be influenced by many additional factors related to collecting the samples or
test methodology. In addition, although CPT tests lying at a certain distance from each
other (two groups at a distance of approximately 70 m) have been selected for analysis,
the authors have no information on the area from which the samples for laboratory tests
were taken for Keswick clay (it is quite likely that they were taken from a larger area). In
this respect, the slightly lower variability of field test results is not surprising, but it seems
justified. The fluctuation scale, mean value, trend, and COV identified based on the CPT
results form a complete set of information needed to identify a weakly stationary random
field. The occurrence of a strong trend in the results indicates that this trend should be
included in the analysis. Thus, for the final modeling, a trend should be added to SRF
(identified based on detrended values). This method of su modeling has been already used
in some works (e.g., [51]).

It should be noted that good agreement between trends based on laboratory and CPT
results was obtained for the results of selected CPTs (with qc values rising with depth)
and analyzing them within a homogeneous soil layer (its homogeneity was decided based
on similar CPT registrations). The authors believe that only under such conditions is it
possible to reconstruct the trend and make a reasonable estimation of the coefficient of
variation of the su parameter (c.f., e.g., [16]).

4.2. Variability in φ′ and c′ Based on the NTH Method and MoE

In terms of determining values of φ′ and c′, much more reliable values of these
parameters for the analyzed soil were obtained based on the NTH method. Comparing
Figures 13b and 14b with Figure 9, one can obtain the impression that the values of c′ (for
MoE) are closer to su and do not correspond to the effective values of cohesion obtained
in both triaxial and direct shear tests (the obtained values are significantly larger than the
typical values of c′ from laboratory tests). Thus, although the concept of the method of
equations is interesting and tempting, to provide reliable values of effective parameters,
the method needs to be further developed.

The graphs of strength parameters obtained using the NTH method for both analyzed
case studies (Figures 11 and 12) show that both φ′ and c′ are practically trendless. The
results of laboratory tests investigate the values of effective parameters at different depths
in clays (e.g., [39]). This observation also confirms the correctness of the assumption of
stationarity in the construction of random fields of effective strength parameters.
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The variability in soil parameters resulting from the NTH method (Table 6) fits quite
well with the values obtained from laboratory tests for these parameters (Table 3). Similarly,
as in laboratory tests, the variability in c′ is greater than the variability in φ′. The obtained
COV values are also within the ranges given for each parameter. Thus, referring to the
parameters of SRF modeling c′ and φ′, it seems that the estimation of COV values can be
obtained based on the interpretation of the CPT test.

4.3. Vertical Scale of Fluctuation for Original and Transformed Signals

As seen in Table 8, the vertical fluctuation scales for su as well as φ′ and c′ obtained
using the NTH method are similar to those determined for qc and fs. The only case of
significant differences in SOF values is the scale determined for parameter φ′ obtained
from the MoE. Its value is 15–25% lower than the SOF obtained in all other cases. As this is
expected, since some of the transformations are linear or almost linear, it generally confirms
that the scale of fluctuation for strength parameters can be assumed identically as the one
identified for the original signal, which is a common practice.

4.4. Cross-Correlation Coefficient ρ

The presented results show that based on both methods, a reliable value of the
correlation coefficient ρ is obtained. The NTH method gives a specific image of results in
the c′-φ′ space related to the procedure. However, the final values obtained for the whole
space are within the range of literature data.

5. Conclusions

In this work, the procedure for identifying the uncertainty in strength parameters for
cohesive soils using only CPT results and random fields was shown. Existing methods
of interpretation of CPT tests regarding strength parameters of such soils, i.e., su or c′

and φ′, were used to transform the measurements of CPT probe and determine the mean
values, trends (if they exist), COV, and SOF for these parameters. The determination of the
cross-correlation coefficient between the c′ and φ′ parameters was also investigated. For
comparison purposes, the same procedure was used to analyze the CPT results obtained in
two different case studies.

Based on the presented results, the following conclusions can be drawn:

• The uncertainty of the model parameters is an essential issue, which once identi-
fied allows for managing specific resources. In numerical modeling of geotechnical
structures, the problem can refer to the uncertainty in shear strength parameters.
Understanding this uncertainty enables one to manage the risk of failure by designing
the structure for the specific failure probability. While in typical numerical studies,
the strength parameters of soils are modeled as constant, using SRF to describe this
uncertainty is the approach with rising interest.

• When stationary random fields are used to model soil strength parameters, data from
two different sources are typically used for their identification; the scale of fluctuation
is assessed based on CPT and point statistics based on laboratory tests, which are
often limited in number. More sophisticated statistical modeling approaches are based
on large databases of both filed and laboratory test results, which are rarely available
and associated with high costs. The proposed procedure allows for identifying the
parameters of SRF for cohesive soil in the case of insufficient information regarding
laboratory test results, based only on CPT measurements. Despite the relatively simple
approach of analyzing the directly transformed CPT signal, the resulting measures of
variability, which allow identifying the random SRF, appear to agree very well with
the literature data.

• The presented procedure applied to the su parameter in Keswick clay (for which
both laboratory and field test results were available) predicted a similar trend of su to
that obtained based on laboratory tests. Although the COV value obtained based on
those CPTs appeared to be slightly less than ten from laboratory tests, it remains in
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a reasonable range. Moreover, the COV values for the φ′ and c′ parameters as well
as the cross-correlation coefficient ρ for these parameters (obtained using the NTH
method) fall within the range of typical values obtained in laboratory investigations.

• The lack of strong trends of c′ and φ′ resulting from the NTH method confirmed by
laboratory test results proves that modeling these parameters by stationary random
fields (which is a common practice) is correct. However, that is not the case for su.
The strong trend obtained for that parameter should be accounted for in its random
field representation.

• The performed analysis shows that the fluctuation scale determined for qc or fs does
not change when the obtained values are transformed to su, or φ′ and c′ (particularly
in the case of the NTH method). As the transformations used are practically linear,
it is not surprising. These results, however, are in line with the commonly used
assumption that the fluctuation scales for different parameters should be equal.

• The value of c′ obtained using the method of equations significantly differs from the
values obtained from the NTH method. It seems that the value of cohesion obtained
with this method does not represent the effective value of cohesion c′, and the method
probably needs to be further developed. The concept of the method is, however, very
interesting and seems worthy of further investigation.

The proposed approach seems promising. It seems that in the absence of large
databases, random fields of strength parameters can be identified using only the trans-
formed CPT signals. Such identification allows for stochastic modeling of geoengineering
structures located in the investigated soil. However, before the actual application, the pro-
posed method should be verified based on dedicated field and laboratory tests in specific
soils. This verification is currently the subject of further investigation by the authors.
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