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Abstract

Background: Green tea consumption has been shown to have cancer preventive qualities. Among the constituents of green
tea, (-)-Epigallocatechin-3-O-gallate (EGCG) is the most effective at inhibiting carcinogenesis. However, the concentrations of
EGCG that are required to elicit the anticancer effects in a variety of cancer cell types are much higher than the peak plasma
concentration that occurs after drinking an equivalent of 2–3 cups of green tea. To obtain the anticancer effects of EGCG
when consumed at a reasonable concentration in daily life, we investigated the combination effect of EGCG and food
ingredient that may enhance the anticancer activity of EGCG on subcutaneous tumor growth in C57BL/6N mice challenged
with B16 melanoma cells.

Methodology/Principal Findings: All-trans-retinoic acid (ATRA) enhanced the expression of the 67-kDa laminin receptor
(67LR) and increased EGCG-induced cell growth inhibition in B16 melanoma cells. The cell growth inhibition seen with the
combined EGCG and ATRA treatment was abolished by treatment with an anti-67LR antibody. In addition, the combined
EGCG and ATRA treatment significantly suppressed the melanoma tumor growth in mice. Expression of 67LR in the tumor
increased upon oral administration of ATRA or a combined treatment of EGCG and ATRA treatment. Furthermore, RNAi-
mediated silencing of the retinoic acid receptor (RAR) a attenuated the ATRA-induced enhancement of 67LR expression in
the melanoma cells. An RAR agonist enhanced the expression levels of 67LR and increased EGCG-induced cell growth
inhibition.

Conclusions/Significance: Our findings provide a molecular basis for the combination effect seen with dietary components,
and indicate that ATRA may be a beneficial food component for cancer prevention when combined with EGCG.
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Introduction

Tea (Camellia sinensis L.) is one of the most widely consumed

beverages in the world. (-)-Epigallocatechin-3-O-gallate (EGCG),

which is the major green tea catechin present in the leaves, is believed

to the compound most responsible for the health benefits attributed

to tea. EGCG was reported to have antioxidative [1,2], antimuta-

genic [3], anti-inflammatory [4], and anticarcinogenic activities [5].

Although the EGCG concentrations required to elicit the

anticancer activity have been shown to be more than 1 mM, the

blood level of EGCG after consuming the equivalent of 2–3 cups

of green tea was 0.1–0.6 mM and for an equivalent of 7–9 cups was

still lower than 1 mM [6,7]. In a cohort study, daily consumption

of ten cups of green tea was required for the cancer preventive

effect [8]. Moreover, adverse effects of green tea, mainly hepatitis,

by consumption of high doses of green tea have been reported [9].

Therefore, it is important to enhance the pharmacologic effect of

EGCG to obtain the health benefit in reasonable concentration in

daily life.

We have reported that the cell-surface binding of EGCG and its

derivatives is involved in their biological activities [10–15]. We

have identified the 67-kDa laminin receptor (67LR) as a cell

surface receptor for EGCG that mediates the anticancer activity of

EGCG [16]. 67LR has been shown to be overexpressed on the cell

surface of various tumor cells [17]. It was postulated that 67LR

plays a significant role in the tumor progression and speculated

that studies conducted to define the function of 67LR could

provide a new approach to cancer prevention. Indeed, expression

of 67 LR confers EGCG responsiveness to tumor cells in vivo [18].

Vitamin A, also known as retinol, participates in physiological

activities related to the immune system, maintenance of epithelial

and mucosa tissues, growth, reproduction, and bone development.

It comes from animal sources, such as eggs, meat, milk, cheese,

cream, liver, kidney, cod and halibut fish oil. In vitro and in animal

models, it has been demonstrated that vitamin A is involved in the

regulation and promotion of growth and differentiation of many

cells [19]. The visual function of vitamin A depends on its natural

and synthetic derivatives, retinoids [20]. All-trans-retinoic acid
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(ATRA), the active derivative of vitamin A, has been well

documented as a growth and differentiation factor in many tissues

and cells, and proved to be an effective treatment to many diseases

including cancers [21,22].

Retinoids exert their physiological activities through retinoid

receptor nuclear proteins that belong to the superfamily of steroid/

thyroid hormone receptors, of which there are two classes, retinoic

acid receptors (RARs) and the retinoic-X receptors (RXRs), each

of which has three subtypes, a, b, and c [23,24]. The natural

ligands for the RARs are ATRA and its stereoisomers 9-cis-RA

and 13-cis-RA, whereas RXRs are activated by 9-cis-RA only.

ATRA acts through RAR to transcriptionally activate target

genes, such as cytochrome P450 and CRABI [24].

This study was designed to identify a food component that could

be effectively used in combination with EGCG and to investigate

the mechanism of action of this combination. By using in vitro and

in vivo systems involving a highly metastatic mouse B16 melanoma

cell line [25], we found that ATRA enhances the antitumor

activity of EGCG by upregulating the 67 LR expression through

RAR.

Results

ATRA enhances the 67LR expression and EGCG-induced
cell growth inhibition in B16 cells

We previously reported that ATRA enhances the expression of

67LR on MCF-7 cells [16]. To determine whether ATRA

enhances anti-tumor effect of EGCG in vivo model, we examined

the 67LR expression on B16 melanoma cells by using Western blot

analysis after treatment with different concentrations of ATRA.

ATRA enhanced the expression of 67LR in a dose dependent

manner (Fig. 1A). We also found that ATRA treatment increased

the cell surface expression of the 67LR as compared with the

expression in the control cells (Fig. 1B).

Figure 1. ATRA enhances the expression of 67LR and cell growth inhibitory activity of EGCG. A) Structure of EGCG and ATRA. B) 67LR
protein levels in B16 cells exposed to the indicated concentrations of ATRA for 48 h were analyzed by Western blot analysis. Levels of 67LR expression
were detected with anti 67LR serum, and were normalized to b-Actin. Band intensities were quantified using NIH Image J software. C) Anti-67LR
antibody conjugated with Alexa Fluor 488 (1 mg/ml) was used at a dilution of 1:100. Photographs were taken under Keyence BZ-8001 fluorescence
microscope. D) Cells were counted after treatment with or without 0.5 mM EGCG and/or 0.1 mM ATRA in DMEM supplemented with 1% FCS for 48 h
and 96 h each. Cell proliferation was evaluated by counting the number of cells using a Counlter Counter. Data shown are means 6 S.D. for three
samples. Data containing asterisk marks are significantly different from the values in control at ***p,0.001.
doi:10.1371/journal.pone.0011051.g001
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We next examined the effects of combined EGCG and ATRA

treatment on cell growth of B16 cells. Combination treatment with

ATRA (0.1 mM) and EGCG at a physiological concentration

(0.5 mM) significantly suppressed the number of B16 cells to 52.4%

of the control, whereas treatment with EGCG or ATRA alone did

not inhibit cell growth (Fig. 1C). These results suggest that ATRA

enhances EGCG-induced cell growth inhibition through 67LR

upregulation in B16 cells.

ATRA induced the cell growth inhibitory activity of EGCG
through the enhancing of EGCG binding to 67LR

Cell surface binding of EGCG was assessed using SPR

biosensor assay (Fig. 2A). We found that ATRA significantly

enhances the binding of EGCG to cells surface of B16 cells. To

investigate the participation of 67LR in ATRA-induced the cell

growth inhibitory activity of EGCG, B16 cells were treated with

an anti-67LR antibody. The growth of the cells treated with a

control antibody was inhibited by the combined EGCG and

ATRA treatment (Fig. 2B). This growth-suppressive effect was

eliminated upon treatment with an anti-67LR antibody. Together,

these observations show that ATRA action for the cell growth

inhibitory activity of EGCG is attributable to the enhancement of

cell surface binding of EGCG via 67LR.

Combined EGCG and ATRA treatment suppresses tumor
growth in vivo

To determine the in vivo efficacy and safety of the combined

treatment, mice were implanted with B16 cells and treated with

EGCG and/or ATRA. Compared to treatment with a vehicle

control, combined treatment significantly reduced the tumor

volume over the duration of the study (Fig. 3A, B, and C). The

tumor volume and weight in mice treated with EGCG or ATRA

alone did not differ from those in mice treated with the vehicle

control. On the other hand, the mean tumor weight in the

combination-treatment group was ,40% less than that in the

control group, indicating that ATRA intensifies the anti-tumor

activity of EGCG. Mice subjected to the combination treatment

lost 0.6 g of weight (data not shown). All other physiological

parameters (i.e., liver, kidney, spleen, and uterine weight) did not

show any other obvious side effects.

To examine whether 67LR are involved in the inhibition of

tumor growth, we measured the expression of 67LR in the tumor

cells by using Western blot analysis. As shown in Fig. 3D, the

67LR levels in the tumor were increased upon oral administration

ATRA, or combination of EGCG and ATRA. These results

suggest that ATRA enhances the EGCG-induced inhibition of

tumor growth through 67LR upregulation in vivo.

Enhancement of 67LR expression by ATRA is mediated
through RARa

RAR that binds to ligand ATRA form a heterodimer with

RXRs and regulate the expression of specific genes [26,27]. To

investigate whether the ATRA-induced enhancement of 67LR

expression is mediated through RARa, B16 cells were stably

transfected with RARa shRNA expression vector that allows

knockdown of RARa (Fig. 4A). Knockdown of RARa attenuated

the ATRA-induced enhancement of 67LR expression (Fig. 4B).

These results suggest that ATRA enhances 67LR expression

through RARa.

RAR agonist enhances EGCG-induced cell growth
inhibition through 67LR upregulation

To investigate the participation of RAR in ATRA-mediated

enhancement of EGCG-induced cell growth inhibition through

67LR, B16 cells were treated with the pan-RAR agonist TTNPB.

TTNPB enhanced the protein levels and cell-surface levels of

67LR after 48 h of treatment (Fig. 5A, B). Moreover, treatment

with TTNPB enhanced EGCG-induced cell growth inhibition

(Fig. 5C). The growth-suppressive effect by combination treatment

with EGCG and TTNPB was obviously reduced upon treatment

Figure 2. ATRA induces the EGCG activity through the enhancing of EGCG binding to 67LR. A) EGCG binding to the surface of B16 cells
treated with (red line) or without (black line) ATRA monitored by surface plasmon resonance. EGCG was injected at a concentration of 5 mM for the
indicated time interval (+ EGCG). B) B16 cells treated with 0.1 mM ATRA in DMEM supplemented with 1% FCS for 48 h. Then, the cells were treated
with either anti-67LR (MLuC5) or control antibody (mouse IgM) for 2 h and then the cells were added to 0.5 mM EGCG for 48 h. Cell proliferation was
assessed by the WST-1 reagent. Cell number was measured as 430 nm absorbance and shown as relative of control. Data shown are means 6 S.D. for
three samples. Data containing asterisk marks are significantly different from the values in control at ***p,0.001.
doi:10.1371/journal.pone.0011051.g002
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with anti-67LR antibody (Fig. 5D). These results suggest that

RAR-mediated action is involved in the ATRA-induced enhance-

ment of EGCG-elicited cell growth inhibition.

Discussion

Recent studies have suggested a causal association between high

doses of green tea-containing dietary supplements and liver

damage [9]. Laboratory study of green tea-derived preparations

in rodents has also shown revealed toxic effects at high doses [28].

In human, hepatotoxicity was reported in a 45-year-old man

following consumption of 6 cups of green tea per day for 4 months

[29]. To determine the anticancer effects of EGCG at the

concentration (0.5 mM) found in human plasma after consuming

two or three cups of green tea [6], we studied the ideal

combination of EGCG and food ingredient that may enhance

the antitumor activity of EGCG in vivo. Here, we showed that

ATRA enhanced EGCG-induced tumor growth inhibition by

upregulatiing of the 67LR in vivo.

ATRA has been used as chemopreventive and therapeutic

agents for the treatment of a wide variety of tumors [30,31,32],

especially in combination with another therapeutic agent [33].

Huang et al. have reported that ATRA intensifies rosiglitazone-

induced growth inhibition and differentiation in multiple myeloma

cells [34]. In addtion, Karmakar et al. have shown that the

combination of ATRA and paclitaxel induces cell differentiation

and apoptosis in human glioblastoma U87MG xenografts in nude

mice [35]. Therefore, ATRA may be a potent candidate for an

effective EGCG-based therapeutic combination for cancer pre-

vention. This hypothesis is supported by our previous report

Figure 3. Tumor growth and expression levels of 67LR after the treatment ATRA and EGCG in vivo. C57BL/6N mice were subcutaneosly
inoculated with B16 cells. The administration of 0.1% EGCG, ATRA (10.5 mg/kg), and combination of EGCG and ATRA was started 1 day before the
cell inoculation. A) We excised tumors from mice 22 days after cell inoculation and photographed them. B) Tumor weights are represented as
the mean 6 S.E. of five mice. Logarithmic transformation for them were analyzed using an one-way ANOVA coupled with a Dunnet test in which
*p,0.05 was the minimum requirement for a statistically significant difference from control group. C) Tumor volumes was measured in two
dimensions and calculated as follows: lengh/26width2. Each data point represents the mean 6 S.E. of tumor volumes from five animals and they are
significantly different from control group at *p,0.05 (Mann-Whitney U test). D) Representative Western blot analyses of 67LR from each individual
mouse. Levels of these proteins expression were normalized to b-Actin. Band intensities were quantified using NIH Image J software.
doi:10.1371/journal.pone.0011051.g003
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showing that ATRA enhances the binding of EGCG to the surface

of cancer cells [16]. In this study, we showed that a combination

treatment of EGCG and ATRA suppresses tumor growth in mice

without causing any obvious side effects.

When subjects were given a normal dose of ATRA (45 mg/m2)

that is commonly used as therapy for leukemia, the maximum

plasma concentration of ATRA was approximately 1 mM [36].

The concentration of ATRA (0.1 mM) used in our study was much

lower than the maximum concentration in human plasma. In

consideration of these facts, the activities observed at 0.1 mM

ATRA are relevant to an in vivo situation.

Although overexpression of 67LR has been correlated with

increased aggressiveness and malignancy of some tumors

[17,37,38], our results show that the enhancement of 67LR

expression at the cell surface of melanoma cells is not associated

with the incidence and volume of tumor. These results suggest that

upregulation of 67LR alone does not correlate with the

malignancy of melanoma.

Recently, we have shown new insights into the 67LR signaling

pathway [18]. Our previous study showed that EGCG induces

dephosphorylation of MYPT1 at Thr696 and activates myosin

phosphatase through 67LR. In addition, EGCG-induced tumor

growth inhibition was abrogated by silencing of 67LR, eEF1A, or

MYPT1 in tumor cells, suggesting that the signaling pathway

mediated by 67LR, eEF1A, and MYPT1 is indispensable for the

anticancer effect of EGCG. These findings are implicated in that

the 67LR signaling pathway may be involved in the combination

of EGCG and ATRA-induced tumor growth inhibition.

This is the first report showing that 67LR expression is

regulated by RAR. The finding is supported by a previous report

showing that 37LRP, the precursor of 67LR, is upregulated in

response to RA [39]. In contrast, RA has been shown to have an

anticancer effect on leukaemic cells [40], despite the finding that

RA reduces expression of 67LR in leukaemic cells [41].

Therefore, the effect of RA on the expression of 67LR expression

is markedly depending on the cell type. It has been shown that

such opposing effects of RA are affected by the expression of

transcription factors. For example, RA activates the nuclear

receptor PPARb/c in addition to RAR. The differentia

partitioning of RA between the two receptors is regulated by

the intracellular lipid binding proteins CRABP-II and FABP5. In

cells that express a high CRABP-II/FABP5 ratio, RA is

channeled to the RAR, which often results in growth inhibition.

Conversely, in the presence of a low CRABP-II/FABP5

expression ratio, RA is targeted to PPARb/c, thereby upregulat-

ing survival pathways [42].

Our results showed that ATRA enhances 67LR expression

through RARa, thus indicating that RARa is involved in ATRA-

induced EGCG-mediated inhibition of cell growth inhibition via

67LR. Moreover, we showed that RAR agonist TTNPB enhances

the protein levels and cell-surface levels of 67LR, and EGCG-

induced cell growth inhibition. These indicate that any com-

pounds which activate RAR may be a candidate to enhance the

antitumor activity of EGCG.

The results shown in this study provide a molecular basis for the

combination effect of dietary components. More definitive

information on the cancer-preventive activity of combined EGCG

and ATRA ingestion will emerge from cohort studies and human

intervention trials.

Materials and Methods

Ethics Statement
All animal works were carried out in accordance with the law

(number 105) and notification (number 6) of the Japanese

government for the welfare of experimental animal. All procedures

were approved by the Animal Care and Use Committee of

Kyushu University.

Materials and Antibodies
EGCG was purchased from Sigma and DSM Nutritional

Products, Inc. (Parsippany, NJ). Catalase and anti-b-Actin

antibody were purchased from Sigma. Anti-67LR antibody

(MLuC5) was purchased from Abcam (ab80582) and anti-67LR

serum was obtained from the rabbit which was immunized with

synthesized peptide corresponding to residues 161–170 of human

67LR. Anti-RARa antibody was purchased from Santa Cruz

Biotechnology, Inc. (Santa Cruz, CA). ATRA was purchased from

Sigma and was prepared as 10 mM stocks in 100% ethanol. ((E)-4-

[2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthylenyl)-1-propenyl]

Figure 4. ATRA enhances the 67LR expression via RARa. A) RARa knockdown in B16 cells stably transfected with RARa shRNA expression
vector was confirmed by Western blot analysis. B) B16 cells stably transfected with the control shRNA or the RARa shRNA expression vector were
treated with or without 0.1 mM ATRA in DMEM supplemented with 1% FCS for 48 h. Levels of 67LR expression were analyzed by Western blot analysis
and were normalized to b-Actin. Band intensities were quantified using NIH Image J software.
doi:10.1371/journal.pone.0011051.g004
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benzoic acid (TTNPB) were purchased from Sigma-Aldrich and

was dissolved in ethanol at 10 mM. These stocks were diluted with

the media to the desired concentrations immediately before each

experiment, keeping the final concentration of ethanol at 0.1%. All

experiments were performed under low-light conditions to

minimize retinoid photoisomerization.

Cell Culture and RNA interference by short hairpin RNA
(shRNA)

Mouse melanoma B16 cells were maintained in Dulbecco’s

modified Eagle’s medium containing 5% FCS. To assess cell

proliferation, cells were treated with EGCG or ATRA for 48 h in

Dulbecco’s modified Eagle’s medium supplemented with 1% FCS,

Figure 5. RAR agonist induced EGCG-elicited cell growth inhibition through 67LR upregulation. A) Cells were treated with or without
0.1 mM ATRA or 0.1 mM TTNPB in DMEM supplemented with 1% FCS for 48 h and were analyzed by Western blot analysis. Levels of 67LR expression
were normalized to b-Actin. Band intensities were quantified using NIH Image J software. B) Anti-67 LR antibody conjugated with Alexa Fluor 488 was
used at a dilution of 1:100. Photographs were taken under Keyence BZ-8100 fluorescence microscope. C) Cells were treated with 0.1 mM ATRA or
RARa agonist, 0.1 mM TTNPB in DMEM supplemented with 1% FCS for 48 h, then treated with 0.5 mM of EGCG for 48 h. Data shown are means 6 S.D.
for three samples. Data containing asterisk marks are significantly different from the values in control at **p,0.01, ***p,0.001. D) B16 cells were
treated with 0.1 mM TTNPB in DMEM supplemented with 1% FCS for 48 h, then the cells were treated with either anti-67LR (MLuC5) or control
antibody (mouse IgM) for 2 h, and the cells were added 0.5 mM of EGCG for 48 h. Cells proliferation was assessed by the WST-1 reagent. Cell number
was measured as 430 nm absorbance and shown as relative of control. Data shown are means 6 S.D. for three samples. Data containing asterisk
marks are significantly different from the values in control at ***p,0.001.
doi:10.1371/journal.pone.0011051.g005
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5 mg/ml BSA, and 200 units/ml catalase. FuGene6 transfection

reagent (Roche Applied Science) was used for stable transfection of

cells, according to the manufacturer’s protocol. For selecting stable

clones, transfected cells were grown in medium containing G418

for neomycin resistance.

Anti-67LR antibody treatment for Proliferation assay
Cell proliferation was assessed by the water-soluble tetrazolium

salt (WST-1) reagent according to the manufacturer’s instructions

(Roche Molecular Biochemicals, Germany). B16 cells were treated

with ATRA or TTNPB in DMEM supplemented with 1% FCS

for 48 h. Then, the cells were treated with either anti-67LR

(MLuC5) or control antibody (mouse IgM) for 2 h and the cells

were cultured in the medium containing 0.5 mM EGCG for 48 h.

The absorbance of each well was measured at 430 nm with a

microplate reader (LS-PLATE manager 2001, Wako).

Western Blot Analysis
Cells were lysed in cell lysis buffer containing 50 mM Tris-HCl

(pH 7.5), 150 mM NaCl, 1% Triton X-100, 1 mM EDTA,

50 mM NaF, 30 mM Na4P2O7, 1 mM phenylmethanesulfonyl

fluoride, 2 mg/ml aprotinin, and 1 mM pervanadate. Proteins

were resolved on SDS-polyacrylamide gels and then transferred

onto a nitrocellulose membrane. The membranes were blocked in

2.5% BSA and incubated with the antibody, followed by

incubation with a secondary antibody. Proteins were visualized

by using the ECL Advance kit (Amersham Biosciences). Band

intensities were quantified using NIH Image-J software.

Binding analysis using surface plasmon resonance
biosensor

B16 cells were cultured with or without 1 mM ATRA for 24 h,

and were subjected to EGCG binding assay using the surface

plasmon resonance (SPR) biosensor SPR670 (Moritex Corp.,

Tokyo, Japan). The cells were immobilized on a dithiodibutyric

acid-coated sensor chip, after activation with carbodiimide

(16 mM) and N-hydroxysuccinimide (13 mM). Phosphate-buffered

saline (PBS, pH 7.4) was used as a mobile phase medium at a flow

rate of 30 ml/min at 25uC. Binding of EGCG (1 mM) to the

immobilized cells was monitored in real time by measuring

changes in resonance unit. The sensorgrams for the reference

channel (sample-free PBS) were subtracted simultaneously from

the sensorgrams for sensing channel (sample-containing PBS) on

the same sensor chip.

Fluorescent Microscope
Cells were fixed 4% paraformaldehyde in PBS pH 7.4 for

30 min on ice. And then cells were incubated with 3% BSA in PBS

for 2 h. After this blocking, Cells were incubated with 10 mg/mL

of the anti-67LR antibody conjugated with Alexa Fluor 488 for

2 hours on ice. After washing, cells were observed under the

fluorescent microscopy (KEYENCE BZ-8100).

Tumor Growth in vivo
B16 cells were detached and resuspended in phosphate-buffered

saline. 56105 cells in a single cell suspension were injected

subcutaneously into the back of C57BL/6N mice (Charles River

Laboratories Japan, Yokohama, Japan). They were kept at the

Biotron Institute of Kyushu University in a 12-h light/12-h dark

cycle (light on at 8 a.m.) in an air-conditioned room (20uC and

60% humidity under specific pathogen-free conditions). The mice

randomly assigned to 4 groups for treatment. Mice were treated

with EGCG, ATRA, EGCG+ATRA, or a vehicle control for 23

days. EGCG was dissolved in vehicle (0.01% ascorbic acid

solutions (pH 5.5) adjusted by NaOH). One day before inocula-

tion, drinking water bottles were replaced by 0.1% EGCG every 2

days. ATRA was dissolved in vehicle (olive oil) and administered

through oral gavage every 3 days. Dosing solutions were prepared

fresh each day. Tumor sizes were determined every other day via

caliper measurements. The tumor volume was measured in two

dimensions and calculated as follows: length/26 width2. Each

data point represents the mean 6 S.E. of tumor volumes from 6–7

animals.

Statistical Analysis
Data for tumor growth in vivo were analyzed by a Mann-

Whitney U test. The other data were analyzed by Student’s t test.

A level of p,0.05 was considered significant.
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