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Abstract: Currently, society demands natural healthy foods with improved nutritional characteristics.
Accordingly, poppies (Papaver somniferum) are a traditional crop, cultivated for food and pharma-
ceutical purposes, whose seeds meet consumers’ preferences, making them a promising candidate
for incorporation into the formulation of novel functional foods. This work performed an overall
chemical characterization of poppy seeds, cold-pressed oil, and press cake, a by-product of the oil
industry. The proximate composition, fatty acids, and vitamin E profiles of the oil fraction were
analysed with respect to the whole seeds and the cake. The cold-press oil extracted from the poppy
seeds was also characterized. Since poppy cake is a partially defatted product, it has a lower fat
content than the seeds, but higher content of the rest of its elements, namely, ash (10%), protein (26%),
and fibre (38%). Regarding protein composition, the major amino acid in the cake and seeds was
determined to be glutamic acid (59 and 36 mg/g, respectively). All the samples presented α- and
γ-tocopherols (>21 and >25 mg/kg, respectively) and the fatty acids profile of the oil fraction was
mainly composed of unsaturated fatty acids, where linoleic acid predominates (>50%). The oil’s
oxidative stability was low (2.8 h), according to the predominance of unsaturated fatty acids. Thus,
poppy cake may be considered as an ingredient with great potential for incorporation into products
in the food industry according to its high content in protein and fibre, and the remaining fat content,
where polyunsaturated fatty acids predominate.

Keywords: Papaver somniferum; by-product; cold-pressing; food security; sustainability

1. Introduction

Nowadays, consumers demand functional foods elaborated with new ingredients that
provide them with improved nutritional characteristics. They prefer natural ingredients
with bioactive compounds, which can promote therapeutic effects. That is why, recently,
seeds have attained great popularity. Consumers also prefer minimally processed foods
that are obtained sustainably. Since one third of the total food produced is discarded,
thereby threatening food security, it is advisable to valorise oilseed-processing by-products
to improve food chain sustainability [1–3]. In this sense, consumers’ interest in novel
foods also includes the wastes generated by the food industry, which may be a source of
many healthy compounds whose return to the food chain is within the current guidelines
promoted by the European Union with respect to the circular economy and use of waste [4].
In accordance, poppies’ cake is a by-product of the oil extraction industry that still contains
many nutritional compounds, which may be useful for incorporation as healthy ingredients
in the formulation of functional foods [5].
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On the other hand, climate changes’ impact on agriculture, together with the loss of
arable land, also reinforce the need for sustainable food production. The rediscovery of
ancient seeds provides new alternatives to the food industry and consumers. The search
for higher yield species has substituted past crops for more productive ones, threatening
biodiversity [6]. Therefore, reintroducing ancient species could solve these problems. Old
genotypes, even if less productive than modern ones, are suitable for marginal areas with
high-stress conditions. From a nutritional perspective, reintroducing these species in diets
can act as a fortifying agent with functional properties and bioactives [6]. Hence, poppy
seeds could be further included in the current food market.

Poppies (Papaver somniferum) are a major industrial crop cultivated worldwide (Turkey,
China, India, Czech Republic) since ancient times for food (oil-rich seeds) and pharma-
ceutical purposes, i.e., because of opium [7–9]. In 2019, the world production of poppy
seeds totaled about 30,000 tons of seeds in 56,094 ha, wherein Turkey was the largest
producer (27,288 tons; 54,877 ha) [10]. Poppy seeds have different colours (white, yellow,
grey, and blue). Their properties and oil yield can vary due to different seeds’ colours
and edaphoclimatic conditions [11], although all of them can be used for food purposes
such as in oil production or toppings for bakery products. They contain alkaloids with
an exceptional medicinal significance (e.g., morphine), and their consumption has been
proven to relieve constipation, cough, and asthma [7–9]. The seeds contain hardly any
opioids but can suffer contamination during harvesting. Opium exposure through poppy
seeds represents a serious food contamination problem that can cause, e.g., respiratory
depression; thus, control measures are needed to protect consumers [12].

Poppy oil exhibits a great potential for consumption due to its fatty acid profile,
where unsaturated fatty acids predominate. Cold-pressed poppy oil is characterized by
a nutty smell and flavour [9], which is ideal for use as salad dressing, cooking oil, or
therapeutic purposes [13]. To obtain poppy oil, pressure methods are preferred to obtain
high-quality oils with a higher presence of minor bioactive compounds such as phytosterols,
phospholipids, tocopherols, phenolics, or pigments (such as carotenoids and chlorophylls),
as well as other flavor and aroma compounds [14]. On the other hand, poppy cake,
which is the by-product of poppies resulting from oil extraction, can be used as cattle feed.
However, its protein content makes it a valuable ingredient for introduction in human diets
as an alternative to animal protein, providing functional and organoleptic properties to
foodstuffs [6,7,9]. In addition, the high nutritional value of this by-product may facilitate its
introduction in the food supply chain as a promising novel ingredient. A circular economy,
where wastes or other by-products are reintroduced in the human food chain, will benefit
society, the economy, and environmental sustainability through a zero-waste approach [1].

Therefore, this work aimed to perform an overall chemical characterization of poppy
seeds in their whole form, of their cold-pressed oil, and of the remaining cake as a by-
product of the oil extraction industry in order to valorise them, assess their nutritional value,
and meet consumers’ food demands (with respect to high-fibre and low-fat foodstuffs).

2. Materials and Methods
2.1. Raw Materials

Poppy seeds from Czech Republic were purchased in a supermarket (one sample).
Oil and cake were obtained by seed pressing (1 kg of the same seeds) in a Komet Oil
Press CA59G (IBG Monforts Oekotec GmbH & Co. KG, Monchengladbach, Germany). Oil
was submitted to nitrogen stream and stored in an amber container. Seeds and cake were
vacuum-sealed. All samples were stored in a refrigerated chamber at 4 ◦C until analysis.
Both the cake and the seeds were milled (GM200 GrindoMix, Retsch, Haan, Germany) to
perform the chemical analysis.

2.2. Seeds and Cake’s Proximate Composition

Nutritional analysis followed AOAC methods [15]. Moisture content was determined
via an infrared balance (DBS—KERN & SOHN GmbH, Balingen, Germany). Total ash
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and total protein content were determined according to AOAC 920.153 and AOAC 928.08,
respectively. The nitrogen conversion factor was 6.25 [16]. Total fat, total dietary fibre
(TDF), and insoluble fibre content were analysed according to AOAC 991.36, AOAC 985.29,
and AOAC 991.42, respectively. Energy values were estimated according to the following
values: fibre (2 kcal/g and 8 kJ/g), carbohydrate/protein (4 kcal/g and 17 kJ/g), and fat
(9 kcal/g and 37 kJ/g) [17].

2.3. Seeds and Cake’s Total Amino Acids

Total amino acids (AA) were analysed in an integrated HPLC system (Jasco, Tokyo,
Japan) consisting of an LC-NetII/ADC hardware interface, two Jasco PU-980 pumps, an
AS-4150 RHPLC autosampler, an MD-2015 Plus multiwavelength detector, and an FP-2020
Plus fluorescence detector. Alkaline (potassium hydroxide—KOH 4 M, 4 h for tryptophan)
and acid hydrolysis (hydrochloric acid—HCl 6 M, 24 h for the other AA) were performed.
Aliquots of neutralized hydrolysates were mixed with L-norvaline (2 mg/mL, internal
standard) and the injection conditions followed Machado et al., 2020 [18].

Seeds and Cake Protein Quality

The evaluation of protein quality was performed by calculating the amino acid chemi-
cal score (AAS) and the essential amino acids index (EAAI), following WHO/FAO/UNU,
2007 [19] and Oser, 1959 [20]:

AAS (%) =
mg o f AA in 1 g test protein

mg o f AA in 1 g requirement protein
× 100 (1)

EAAI (%) = nlog EAA, where log EAA =
1
n

(
log

100 a1
a1R

+ . . . + log
100 an

anR

)
(2)

2.4. All Samples’ Vitamin E Profile

Seeds and cake lipid fractions were extracted as reported by Melo et al., 2021 [2] using
n-hexane (HPLC grade) as extracting solvent and 50 µL of tocol (100 µg/mL) as internal
standard. Oil was stirred with n-hexane (950 µL) and 50 µL of tocol (100 µg/mL) and used
for analysis according to the exact conditions described by Melo et al., 2021.

2.5. All Samples’ Fatty Acids Profile

Fatty acids (FA) of seeds and cake’s lipid fractions as well as oil (15 mg of oil stirred
with 3 mL of n-hexane) were derivatized to methyl esters, following ISO 12966-2:2017 [21],
and used for analysis. FA profile was assessed in a GC-2010 Plus gas chromatograph
(Shimadzu, Tokyo, Japan) according to the exact conditions described by Melo et al., 2021.

2.6. Phytochemical Analysis of the Seeds and Cake

The extraction of the phytochemicals of the seeds and cake followed Melo et al.,
2021 [2], employing 80/20% methanol/water (V/V) in agitation (1 h, 40 ◦C). Oil phyto-
chemicals’ extraction followed Capannesi et al., 2000 [22], employing n-hexane and 80/20%
methanol/water (V/V). The total hydroalcoholic solution was used for analysis.

Phytochemical analysis was determined following Costa et al., 2018 [23], in a mi-
croplate reader (BioTek Instruments, Synergy HT GENS5, EUA). For total phenolic com-
pounds (TPC), 30 µL of extract, 150 µL of Folin–Ciocalteu reagent (1:10), and 120 µL of 7.5%
sodium carbonate—Na2CO3 (m/V)—were mixed and incubated (15 min, 45 ◦C). After
30 min, absorbance was read at 765 nm. A gallic acid calibration curve was prepared.
For total flavonoids content (TFC), 1 mL of extract, 4 mL of deionized water, and 300 µL
of 25% sodium nitrite—NaNO2—were mixed. After 5 min, 300 µL of 10% aluminium
chloride—AlCl3—was added. After 1 min, 2 mL of sodium hydroxide—NaOH (1 M)—and
2.5 mL of deionized water were added. Absorbance was read at 510 nm. An epicatechin
calibration curve was prepared.
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For ferric-reducing antioxidant power (FRAP) assay, 30 µL of extract was mixed with
270 µL of FRAP solution (0.3 M of acetate buffer, 10 mM of TPTZ (,4,6-tri(2-pyridyl)-s-
triazine) solution, and 20 mM of ferric chloride—FeCl3). The mixture was kept in the dark
(30 min at 37 ◦C). The absorbance was read at 595 nm. A ferrous sulphate calibration curve
was prepared. For 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) inhibition assay, 30 µL
of extract was mixed with 270 µL of DPPH• solution (6 × 10−5 mol/L in ethanol). The
decrease in absorption at 525 nm was measured every 2 min to observe the kinetic reactions
until reactions’ endpoint at 20 min. A Trolox calibration curve was prepared.

2.7. Oil Stability, Colour, and Regulated Quality Parameters

Oil oxidative stability, expressed as oxidation induction time (h), was determined by
Rancimat method (model 892, Metrohm Nordic ApS, Glostrup, Denmark): 3.0 ± 0.1 g of
oil, 20 L/h, and 120 ◦C, as reported by Melo et al., 2021 [2].

Oil colour was determined—following NP-937:1987b [24]—at 445, 495, 560, 595, and
625 nm via a UV Spectrophotometer UV-1800 (Shimadzu, Tokyo, Japan).

Oil peroxide value followed NP-904:1987a [25], namely, 0.5 g of sample, 10 mL of
chloroform, 15 mL of glacial acetic acid, and 1 mL of saturated potassium iodide, and
these ingredients and KI solution were mixed and stored in the dark (5 min). Then, 75 mL
of deionized water was added and a titration with sodium thiosulphate (0.01 N) and 1%
starch solution was performed.

Oil UV absorbance followed ISO 3656:2002 [26] with reads at 232 and 270 nm for
primary and secondary oxidation products, respectively, via a UV Spectrophotometer
UV-1800 (Shimadzu, Tokyo, Japan).

2.8. Statistical Analysis

All analyses were performed in triplicate (n = 3). Independent Samples t-test was used
to assess significant differences between poppy seeds and cake’s results (p < 0.05) in IBM
SPSS Statistics (v. 26, IBM Corp., Armonk, 241 NY, USA).

3. Results and Discussion
3.1. Seeds and Cake’s Nutritional Analysis

The nutritional analysis of the poppy seeds and cake is presented in Table 1. The cake
presented significantly (p < 0.05) higher content of total ash (10% fw), total protein (26% fw),
and TDF (38% fw) than the seeds. Regarding the ash content in the cake (10% fw), it repre-
sents a higher source of total minerals than the seeds (7% fw). Previous works have analysed
the minerals of different varieties of poppy seeds, as follows: Ca (8756.9–10,702.4 ppm),
P (9081.4–10,535.7 ppm), K (6012.1–10,535.7 ppm), and Mg (3406.7–3872.1 ppm) [13]. The
cake also showed a high protein content (26% fw), so it could be used as a promising
alternative to animal protein in plant-based food diets since the poppy cake contains all the
essential amino acids (results discussed below). Furthermore, it is gluten-free, making it a
dietary option for coeliacs and consumers who avoid gluten for other motivations. The high
fibre content, mainly in the cake (38% fw), includes complex carbohydrate polymers fer-
mentable by the gastrointestinal microbiota into short-chain FAs (acetate, propionate, and
butyrate), producing energy and other benefits. Thus, the fibre contained in the poppy cake
may contribute to a balanced microbiota composition, which is essential for maintaining
health [27].
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Table 1. Chemical profile of poppy seeds, cake, and seeds’ literature data.

Parameter Seeds Cake Seeds’ Literature Data

Moisture (%) 6.15 ± 0.36 b 8.01 ± 0.13 a 3.50–4.76 [13]; 5.3 [28]; 9.97–11.11 [29]
Ash (% fw) 7.21 ± 0.01 b 10.13 ± 0.13 a 4.92–6.25 [13]; 5.9 [28]

Protein (% fw) 14.62 ± 0.01 b 25.80 ± 0.23 a 11.94–13.58 [13]; 21.6 [28]
Total dietary fibre (% fw) 31.82 ± 0.02 b 37.90 ± 0.19 a 18.3 [28]; 22.63–30.08 [13]

Insoluble Fibre (% fw) 31.70 ± 0.08 a 31.20 ± 0.16 a

Soluble Fibre (% fw) 0.12 ± 0.02 b 6.70 ± 0.17 a

Fat (% fw) 38.87 ± 0.04 a 10.45 ± 0.16 b
27.71–33.94 [29]; 30.49 [30]; 32.43–45.52
[13]; 39.5 [31]; 40.6–50.2 [32]; 48.31–52.7

[7]; 49.9 [28]; 49.9–52.4 [11]
Remaining carbohydrates (% fw) 1.33 ± 0.34 b 7.71 ± 0.37 a

Energy value (kJ/100 g dw) 2090 a 1374 b

Energy value (kcal/100 g dw) 508 a 332 b

Ash (% dw) 7.84 ± 0.01 b 11.01 ± 0.14 a

Protein (% dw) 15.96 ± 0.01 b 28.05 ± 0.25 a

Total dietary fibre (% dw) 33.91 ± 0.02 b 41.02 ± 0.19 a

Insoluble fibre (% dw) 33.78 ± 0.08 a 33.91 ± 0.16 a

Soluble fibre (% dw) 0.13 ± 0.02 b 7.11 ± 0.17 a

Fat (% dw) 41.42 ± 0.04 a 11.52 ± 0.18 b

Remaining carbohydrates (% dw) 0.87 ± 0.04 b 8.40 ± 0.41 a

Amino acids (mg/g fw)

Aspartic acid 16.74 ± 0.89 b 27.31 ± 0.91 a

Glutamic acid 36.40 ± 1.42 b 58.58 ± 2.38 a

Serine 8.34 ± 0.35 b 13.52 ± 0.50 a

Glutamine 0.57 ± 0.02 b 0.86 ± 0.04 a

* Histidine 5.80 ± 0.22 b 8.84 ± 0.38 a

Glycine 8.70 ± 0.45 b 14.32 ± 0.59 a

* Threonine 6.93 ± 0.26 b 11.15 ± 0.45 a

Arginine 20.25 ± 0.94 b 31.90 ± 1.10 a

Alanine 7.86 ± 0.34 b 12.44 ± 0.41 a

Tyrosine 5.18 ± 0.21 b 8.06 ± 0.40 a

* Valine 8.53 ± 0.31 b 12.57 ± 0.46 a

* Methionine 4.39 ± 0.18 b 6.74 ± 0.28 a

* Tryptophan 1.00 ± 0.01 b 1.48 ± 0.16 a

* Phenylalanine 6.97 ± 0.32 b 10.52 ± 0.63 a

* Isoleucine 6.93 ± 0.28 b 10.12 ± 0.44 a

* Leucine 11.45 ± 0.48 b 17.81 ± 0.80 a

* Lysine 9.10 ± 0.55 b 15.49 ± 1.12 a

Hydroxyproline 1.22 ± 0.06 b 2.00 ± 0.05 a

Proline 6.02 ± 0.46 b 9.92 ± 0.27 a

∑BCAA 26.90 ± 1.07 b 40.50 ± 1.64 a

∑Total AA 172.36 ± 7.32 b 273.63 ± 10.71 a

Vitamin E profile (mg/kg)

α-Tocopherol 79.31 ± 3.21 a 21.70 ± 0.65 b 14.0 [28]; 23.53–28.84 [29]; 26.8–37.2 [13]
γ-Tocopherol 95.60 ± 3.96 a 25.18 ± 0.11 b 87.0 [28]; 263.7–281.5 [29]

Total vitamin E 174.91 ± 7.12 a 46.88 ± 0.67 b 110 [28]; 348.8–623.1 [13];
550.39–578.43 [29]
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Table 1. Cont.

Parameter Seeds Cake Seeds’ Literature Data

Fatty acids profile (%)

C16:0 (Palmitic acid) 11.00 ± 0.11 b 17.14 ± 0.15 a 8.1–10.1 [11]; 8.93–10.21 [29]; 12.20 [31];
12.85–18.70 [13]

C16:1 (Palmitoleic acid) 0.22 ± 0.00 a 0.15 ± 0.02 b 0.1–0.2 [11]; 0.27 [31]; 0.58–0.61 [29]
C17:0 (Margaric acid) 0.06 ± 0.00 b 0.13 ± 0.02 a 0.76 [31]

C18:0 (Stearic acid) 2.49 ± 0.14 b 11.45 ± 0.11 a 2.30 [31]; 2.40–4.30 [13]; 2.85–3.17 [29]

C18:1n9c (Oleic acid) 22.50 ± 0.22 a 18.62 ± 0.06 b 13.11–24.13 [13]; 13.3–23.4 [11];
16.58–21.41 [29]; 22.19 [31]

C18:2n6c (Linoleic acid) 62.80 ± 0.29 a 50.75 ± 0.34 b 52.60–71.50 [13]; 57.91–64.83 [29]; 59.87
[31]; 63.1–74.3 [11]

C18:3n3 (Linolenic acid) 0.77 ± 0.01 b 1.18 ± 0.16 a 0.16–0.50 [13]; 0.47–0.71 [29]; 0.7–0.8 [11];
1.30 [31]

C20:0 (Arachidic acid) 0.16 ± 0.00 b 0.58 ± 0.03 a 0.1–0.2 [11]; 0.67 [31]
∑SFA (saturated fatty acids) 13.71 ± 0.12 b 29.30 ± 0.23 a 10.6–12.6 [11]; 13.7 [31]

∑MUFA (monounsaturated fatty
acids) 22.72 ± 0.21 a 18.76 ± 0.06 b 13.6–23.7 [11]; 22.9 [31]

∑PUFA (polyunsaturated fatty acids) 63.57 ± 0.30 a 51.93 ± 0.18 b 61.2 [31]; 64.0–75.2 [11]
C18:2n6/C18:3n3 81.46 ± 0.95 a 43.60 ± 6.88 b 46.05 [31]
C18:1n9/C18:2n6 0.36 ± 0.01 a 0.37 ± 0.00 a 0.37 [31]

Phytochemical analysis

TPC (mg GAE/100 g fw) 57.5 ± 2.5 b 107.4 ± 7.8 a

31.27–33.68 mg GAE/g dw [29];
33.11–144.98 mg GAE/L [8]; 930 mg/100

g dw [28]; 1133.1 mg GAE/100 g [33];
1937.7 mg GAE/100 g [34]

TFC (mg ECE/100 g fw) 37.3 ± 5.8 b 138.9 ± 4.2 a

1.17–11.28 mg quercetin equivalents/L
[8]; 38.7 mg quercetin equivalents/100 g

[33]; 63.27–66.48 mg catechol
equivalents/g [29]; 676.3 mg quercetin

equivalents/100 g [34]

FRAP (mmol FSE/100 g fw) 3.7 ± 0.3 b 6.1 ± 0.1 a 2.72–31.61 mg TE/L [8]; 835.3 mM
FeSO4/g [33]

DPPH • inhibition (mg TE/100 g fw) 46.3 ± 4.8 a 58.1 ± 7.4 a
7.58–11.23% [29]; 18.11–126.29 mg

GAE/L [8]; 42.6 µg/mL [33];
44.0–66.5% [34]

* Essential amino acids. Fw—fresh weight, dw—dry weight, BCAA—branched-chain amino acids, TPC—total
phenolic compounds, GAE—gallic acid equivalents, TFC—total flavonoid content, ECE—epicatechin equiva-
lents, FRAP—ferric-reducing antioxidant power, FSE—ferrous sulphate equivalents, DPPH •—2,2-diphenyl-1-
picrylhydrazyl radical, and TE—Trolox equivalents. Values represent mean ± standard deviation of triplicates
(n = 3). Different superscript letters in the same row denote significant differences (p < 0.05) by Independent
Samples t-test (IBM SPSS Statistics). Soluble fibre and remaining carbohydrates were calculated by difference [16].

The seeds presented a higher energy value (2090 kJ/100 g dw) due to their higher
total fat content (39% fw) in relation to the cake (10% fw), since fat has the highest energetic
contribution (1 g = 9 kcal) [17]. The cake is the by-product obtained after cold pressing,
where a significant portion of the oil is removed. Thus, the cake represents a partially
defatted product, which meets consumers’ preferences for low-fat foods. Several extraction
methods can be applied to acquire different oil yields [30]. To obtain virgin oils, only
physical methods are allowed. Therefore, oils are generally extracted by pressure methods,
in which two types of presses can be used: the hydraulic press, where the oil is obtained at
room temperature, and the screw press, also known as an oil expeller, which is the preferred
method since it leads to a generally higher oil yield. Thus, the cake obtained with the screw
press shows a lower fat content.

Regarding nutritional characteristics, poppy cake meets consumers requests for natu-
ral, chemical-free, gluten-free, high-protein/fibre, low-fat foods obtained sustainably with
minimal processing.
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3.2. Seeds and Cake’s Total AA

The cake contained a higher total AA content than the seeds (274 and 172 mg/g,
respectively, Table 1). The major AA identified in both samples were glutamic acid (Glu, 59
and 36 mg/g), followed by arginine (Arg, 32 and 20 mg/g), and aspartic acid (Asp, 27 and
17 mg/g, respectively). Glu is the most common neurotransmitter in the nervous system,
stimulating brain function and mental activity. It works as a building block of AA for
muscular proteins [2,35]. Arg is responsible for nitric oxide (vasodilator) production and is
a precursor of urea, ornithine, and agmatine. In large quantities, it stimulates hormones’
production, e.g., growth hormone and prolactin [2,35]. Asp functions as a brain-excitatory
neurotransmitter and participates in gluconeogenesis and the urea cycle. It is a precursor
in purines and pyrimidines’ synthesis [2,35].

Leucine, isoleucine, and valine, all branched-chain amino acids (BCAA), are essential
AA, since they must be consumed through food, and play several important metabolic
functions related to health [2,35]. Poppy cake and seeds are sources of these AA in the
following levels: 18 and 11 mg/g for leucine, 10 and 7 mg/g for isoleucine, and 13 and
9 mg/g for valine, respectively. Overall, poppy seeds and cake proteins are dietary sources
of all essential AA, including BCAA, amounting to 27 and 41 mg/g, respectively.

When comparing the current results to a previous study [2] on sesame cake and seeds,
the total amounts of AA (305 and 199 mg/g, respectively) were higher than in poppy
samples. However, the major AA were the same (Glu, Arg, and Asp). In addition, when
comparing these results with a study with trending grains in diets, namely, amaranth
and quinoa [36], both present lower total protein content (21% and 16%, respectively)
than poppy cake (26% fw), but higher content than poppy seeds (15% fw), reinforcing the
notion that poppy cake is a better protein and AA source than the seeds. Amaranth and
quinoa presented amounts of total AA of 140 and 114 mg/g, respectively [36]. Poppy cake
and seeds presented higher amounts of total AA than these grains (274 and 172 mg/g
fw, respectively). Unlike the present results, the following AA, glutamine, tryptophan,
and lysine, were not identified in either amaranth or quinoa. Furthermore, similarly
to sesame, amaranth, and quinoa, poppy protein is a plant-based alternative as well as
gluten-free option.

In terms of protein quality (Table 2), the amino acid score (AAS) revealed that the
limiting amino acid (LAA—the AA with the lowest AAS) of poppy seeds and cake was tryp-
tophan (114% and 96%, respectively). The EAAI was 133% for the seeds and 117% for the
cake, revealing that both products present high-quality protein (since the EAAI > 90%) [35].

3.3. Seeds and Cake’s Vitamin E Profile

Vitamin E is composed of eight liposoluble isomers with potent antioxidant capac-
ity (α-, β-, γ-, and δ-tocopherols and tocotrienols). Its main function is the protection of
polyunsaturated fatty acids (PUFA) against peroxidation. Its activity may depend on the
total tocopherols/PUFA ratio. The presence of vitamin E isomers can extend the shelf-life of
foods since they scavenge reactive oxygen species and delay oxidation processes. Moreover,
the antioxidant activity of vitamin E isomers protect against oxidative damage, which may
help in the prevention of chronic diseases [37]. Regarding the different isomers, it has been
described that α-tocopherol is the only isomer incorporated in very low-density lipopro-
teins, leading to greater biological activity. However, recent studies have demonstrated
that γ-tocopherol catches more electrophiles and reactive nitrogen species in inflammation
processes than α-tocopherol [38].
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Table 2. Composition of amino acids in poppy seeds and cake and comparison in percentage with
the requirements of human adults estimated by the World Health Organization (WHO) [19].

EAA

Amino Acid
Requirements in

Adults
(mg/g Protein) [19]

Seeds
(mg/g Protein)

Cake
(mg/g Protein)

Seeds AAS
(%)

Cake AAS
(%)

Histidine 15 39.67 ± 1.50 b 34.27 ± 1.47 a 264.48 ± 9.98 B 228.49 ± 9.81 A

Isoleucine 30 47.41 ± 1.91 b 39.24 ± 1.72 a 158.03 ± 6.37 B 130.79 ± 5.75 A

Leucine 59 78.29 ± 3.26 b 69.02 ± 3.12 a 132.70 ± 5.53 B 116.99 ± 5.28 A

Lysine 45 62.25 ± 3.74 a 60.03 ± 4.34 a 138.33 ± 8.30 A 133.41 ± 9.63 A

Methionine 16 30.05 ± 1.25 b 26.13 ± 1.07 a 187.84 ± 7.79 B 163.32 ± 6.72 A

Phenylalanine +
Tyrosine 38 83.12 ± 3.61 b 71.98 ± 3.87 a 218.74 ± 9.50 B 189.42 ± 10.20 A

Threonine 23 47.41 ± 1.79 b 43.22 ± 1.75 a 206.12 ± 7.78 B 187.90 ± 7.59 A

Tryptophan 6 6.83 ± 0.07 b 5.74 ± 0.63 a 113.89 ± 1.13 B 95.61 ± 10.43 A

Valine 39 58.31 ± 2.15 b 48.72 ± 1.77 a 149.52 ± 5.52 B 124.92 ± 4.54 A

LAA (%) - - - Trp 113.89 ± 1.13 B Trp 95.61 ± 10.43 A

EAAI (%) - 133.40 ± 4.72 b 117.07 ± 5.43 a - -

EAA—essential amino acid, AAS—amino acid score, LAA—limiting amino acid, and EAAI—essential amino acid
index. Values represent mean ± standard deviation of triplicates (n = 3). Different superscript letters in the same
row denote significant differences (p < 0.05) by Independent Samples t-test (IBM SPSS Statistics), particularly
small letters refer to results in mg/g of protein and capital letters refer to AAS results in %.

The total vitamin E content in the seeds was significantly higher than in the cake
(175 > 47 mg/kg, respectively, p < 0.05, Table 1), probably due to the higher fat content.
α-Tocopherol, the most biological active isomer, was found in both the seed and cake
extracts (79 and 22 mg/kg, respectively), thereby supporting the nutritional importance
of consuming these products, if possible, as raw ingredients because temperature might
impact this vitamin’s availability. Although the extraction method was different, α- and
γ-tocopherols were also identified in cold-pressed poppy oil but in a higher total amount
(235 mg/kg, Table 3).

Table 3. Chemical profile of cold-pressed poppy oil and literature data.

Parameter Oil Literature Data

Oxidative stability (h) 2.82 ± 0.02 3.0–9.2 [32]; 5.56 [28]; 5.59 [30]
Colour (x, y) (0.3794, 0.3673)

Transparency (%) 52.0
Dominant wavelength (nm) 581.7

Purity 32.2
K232 nm 0.024 ± 0.002
K270 nm 0.007 ± 0.001

Peroxide value (meq O2/kg) 1.95 ± 0.04 0.1 [30]; 1.03–1.27 [29]

Vitamin E profile (mg/kg)

α-Tocopherol 12.79 ± 1.17 5.90 [30]; 19 [39]; 21 [40]; 21.99–45.83 [7]; 55.3 [28]

γ-Tocopherol 222.30 ± 7.37 115.7 [30]; 157 [39]; 195.37–280.85 [7]; 217.4 [28];
263 [40]

Total vitamin E 235.10 ± 8.53 121.6 [30]; 182 [39]; 284 [40]; 309.4 [28]
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Table 3. Cont.

Parameter Oil Literature Data

Fatty acids profile (%)

C16:0 (Palmitic acid) 10.15 ± 0.15 7.67–9.91 [7]; 8.5 [39]; 9.91 [30]; 9.79 [28]; 11.6 [40]
C16:1 (Palmitoleic acid) 0.17 ± 0.06 0.1 [39]; 0.13 [28]; 0.15 [30]; 0.15–0.25 [7]

C18:0 (Stearic acid) 2.05 ± 0.06 1.4 [40]; 1.93 [28]; 2.13 [30]; 2.179–2.55 [7]; 2.4 [39]

C18:1n9c (Oleic acid) 24.08 ± 0.14 11.8 [40]; 11.94 [28]; 14.13–19.28 [7]; 14.4 [39];
15.83 [30]

C18:2n6c (Linoleic acid) 62.44 ± 0.15 68.76–73.92 [7]; 71.35 [30]; 72.3 [39]; 72.6 [40];
74.47 [28]

C18:3n3 (Linolenic acid) 1.02 ± 0.17 0.55–0.66 [7]; 0.60 [28]; 0.65 [30]; 0.8 [40]; 0.9 [39]
C20:0 (Arachidic acid) 0.09 ± 0.01 0.1 [39]; 0.10–0.17 [7]

∑SFA (saturated fatty acids) 12.29 ± 0.17 13.0 [40]
∑MUFA (monounsaturated fatty

acids) 24.25 ± 0.18 13.6 [40]

∑PUFA (polyunsaturated fatty
acids) 63.46 ± 0.11 73.4 [40]

C18:2n6/C18:3n3 62.24 ± 10.52 80.3 [39]; 90.75 [40]; 124.12 [28]
C18:1n9/C18:2n6 0.39 ± 0.00 0.16 [28]; 0.19 [39]

Phytochemicals analysis

TPC (mg GAE/100 g) 3.6 ± 0.4 48.5 mg GAE/100 g [34]; 368.2 mg/L GAE [39]
TFC (mg ECE/100 g) 2.1 ± 0.2 63.27–66.48 mg catechol equivalents/g [29]

FRAP (µmol FSE/100 g) 76.2 ± 9.7

DPPH • inhibition (mg TE/100 g) 0.49 ± 0.04 37.2–60.5% [34]; 56.5 mg Trolox/L [39]; 792.6 mg
α-tocopherol/L [39]

K—extinction coefficient, TPC—total phenolic compounds, GAE—gallic acid equivalents, TFC—total flavonoid
content, ECE—epicatechin equivalents, FRAP—ferric-reducing antioxidant power, FSE—ferrous sulfate equiv-
alents, DPPH•—2,2-diphenyl-1-picrylhydrazyl radical, and TE—Trolox equivalents. Values represent mean ±
standard deviation of triplicates (n = 3).

Previous studies identified more vitamin E isomers in poppy seeds, namely, α-
tocopherol (14 mg/kg), β-tocopherol (5.3 mg/kg), γ-tocopherol (87 mg/kg), γ-tocotrienol
(2.1 mg/kg), and δ-tocotrienol (1.6 mg/kg), but a lower total content (110 mg/kg) [28].
However, different extraction methods were used, thereby impairing direct comparisons.
Nevertheless, in the present work, a diode-array detector was also used, lending confidence
to the isomer identification process.

3.4. Seeds and Cake’s FA Profile

The FA profile of the oil fraction of the poppy seeds and cake was analysed. In
both samples, the major FA identified were the same but in different relative percentages
(p < 0.05, Table 1): linoleic acid (LA, C18:2n6c, 63 > 51% in seeds and cake, respectively),
followed by oleic acid (C18:1n9c, 23 > 19% in seeds and cake, respectively), and then
palmitic acid (C16:0, 11 < 17% in seeds and cake, respectively). A similar profile was
previously described [31]. The oil contained in the cake presented higher concentrations of
palmitic and stearic acids, but a lower amount of LA in comparison to the seeds, possessing
more total saturated fatty acids (SFA, 29%) and fewer monounsaturated fatty acids (MUFA,
19%) and PUFA (52%) than the seeds (14%, 23%, 64%, respectively). In both samples,
the minor components (<1%) were palmitoleic (C16:1), α-linolenic (ALA, C18:3n3), and
arachidic (C20:0) acids. As the results are presented in relative percentages, the lower
values of the PUFA and MUFA content in the cake compared to the seeds leads to an
increase in the other FA considered, namely, SFA such as palmitic and stearic acids. The
same phenomenon also occurred in the FA ratios since different % of C18:2n6 and C18:3n3
will yield different n6/n3 ratios.

The high content of PUFA in the poppy oil fraction makes this oil susceptible to
oxidation, particularly with an increasing degree of damage during harvesting or storage.
In addition, the oil extraction process may contribute to high oxidation levels, with γ-
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tocopherol consumption and increased production of oxidation products reducing shelf-life
and quality [40]. This might explain why the poppy cake presented a lower PUFA content
(particularly LA) than the seeds since the cake was exposed to an oxygen attack during oil
extraction, while the seeds were only ground just before analysis.

LA has an important role in the formation of prostaglandins, leukotrienes, and throm-
boxanes. However, it can cause inflammatory, hypertensive, and thrombotic activities if
present in excessive quantity. Therefore, a balanced LA/ALA ratio is vital for health [3].
In the case of the poppy samples, their high LA concentrations (51–63%) give rise to high
values of the n6/n3 ratio (44–81, Table 1) that must be balanced in the daily food pattern
with other foods richer in ALA.

3.5. Seeds and Cake’s Phytochemical Analysis

Phenolics have been reported as compounds with high antioxidant capacity, thereby
protecting against oxidative damage. From a nutritional approach, obtaining phenolic-rich
food formulations may decrease the use of antioxidant additives and improve products’
nutritional profile, thereby facilitating the acquirement of functional foods. Their levels
depend on several factors (e.g., crop, soil, plant maturity stage, and light period) [41].

The analysis of the total phenolics in the seeds and cake (Table 1) revealed signifi-
cant differences (p < 0.05). The cake presents a higher TPC than the seeds (107 > 58 mg
GAE/100 g fw, respectively). The same was true for the TFC, which measures a sub-group
of phenolics (139 > 37 mg ECE/100 g fw, respectively), suggesting that the oil fraction
poorly contributes to the number of phenolics since with less oil the cake presented a
higher content.

FRAP and DPPH • inhibition are complementary assays for the determination of
antioxidant activity based on the principle of metal reduction and the capacity of some
organic molecules to scavenge radicals, respectively [41]. Regarding the antioxidant activity
(Table 1), there were significant differences (p < 0.05) in the FRAP assay: the cake (6 mmol
FSE/100 g fw) presented a higher value than the seeds (4 mmol FSE/100 g fw). However,
in the DPPH• inhibition assay, the results were not significantly different between the cake
and seeds (58 and 46 mg TE/100 g fw, respectively).

3.6. Poppy Cake’s Potential in Sustainable Food Production

Poppy cake is a high-value by-product from oilseed processing and provides new
food options. It is a natural, minimally processed ingredient, which has the potential to be
included in new products’ development by food manufacturers. This by-product can be
incorporated in novel foods as a functional ingredient, e.g., in bakery products, as it is a
high-fibre source and a gluten-free, high-quality protein source. In addition, since poppy
cake contains a lower energy value, this partially defatted ingredient also contributes to
the prevention of diet-related diseases [1,2,6,42]. Moreover, it meets the EU proposal of a
“Farm to Fork Strategy” (one of the goals of the “Food 2030” policy) that will connect the
sectors related to the European food system for future years. It confers a major role to Food
System R&I with respect to enabling the necessary changes for sustainable food systems.
Research, innovation, and investment are required to develop and implement impactful
and scalable solutions for the global food system [42].

Currently, poppy cake is considered a waste product from the oil extraction industry
and is used for animal feed. Therefore, the introduction of poppy cake into the food chain
is in accordance with the circular economy, which consists in the use of waste to achieve
environmentally sustainable production through a zero-waste approach. The use of novel
foods is also in accordance with food security needs. Furthermore, this by-product also
promotes nutritional security due to its complete composition with respect to nutrients and
bioactive compounds [1,2,6,42].
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3.7. Poppy Oil Characterization

The characterization of oils is a major concern with respect to guaranteeing their
quality, avoiding fraud, and establishing a quality grade, especially when novel oils are
being considered [43]. A correct characterization must include the analysis of the fatty
acid pattern, the presence of tocopherols and other minor bioactive compounds, and other
regulated quality parameters such as the peroxide value or the spectrophotometric indexes
K232 nm and K270 nm.

Table 3 presents the chemical profile of the cold-pressed poppy oil. The oxidative
stability measurement revealed an induction time of 2.8 h, probably a result of its high
content in PUFA (63%), mostly LAs (62%, essential FA), which are more susceptible to
oxidation than SFA (12%) due to the presence of more double bounds in their structure.
Another study also performed this test and reported a higher value (5.56 h) but with
slightly different conditions (3 g of oil, 20 L/h air flow rate, and at 110 ◦C) [28], which
makes comparison difficult since higher temperatures cause an acceleration of oxidation
and since the induction time is reduced.

The poppy oil FA profile showed high levels of linoleic acid (62%), but also revealed
oleic acid (24%), palmitic acid (10%), stearic acid (2%), and linolenic acid (1%), whereas
palmitoleic and arachidic acids were only present in trace quantities (<0.2%), which is
similar to a previous study [28]. Differing from the present work, another study identified
margaric, eicosenoic, and erucic acids in small quantities [31].

From a health perspective, both MUFA and PUFA have been reported to act as strong
cholesterol-lowering agents. Considering that poppy oil presented a significant amount of
MUFA (24%) and a high content of PUFA (63%), its consumption may improve cholesterol
metabolism, reducing the risk of cardiovascular disease. LA (62%), together with ALA (1%),
are the precursors of biologically active eicosanoids (e.g., prostaglandin, thromboxane, and
leukotrienes). Eicosanoids originating from ALA mostly exhibit anti-inflammatory effects,
while eicosanoids of LA have pro-inflammatory effects. Lower quantities of eicosanoids
derived from arachidonic acid are necessary and biologically active, but larger amounts aid
the production of thrombi and atheroma responsible for inflammation [9]. The analysed oil
presented a high n6/n3 ratio (62), so it is advisable to include other ALA-rich foods in the
diet to balance this ratio.

Lipid peroxidation, especially in PUFA-rich oils such as poppy oil, can be accelerated
by high temperatures and poor storage conditions [44]. In this oil, no primary and sec-
ondary oxidation products were formed (K232 nm and K270 nm, respectively); in addition,
the peroxide value was low (2.0 meq O2/kg), showing that the oil was well preserved.
However, the analyses were carried out immediately after oil extraction, which prevented
oxidation. In another study, poppy oil was monitored for 6 months, and during the time of
analysis, the conjugate dienes and trienes increased [44]. Thus, it seems important to study
the best storage conditions for this oil. The addition of natural antioxidants, e.g., essential
oils, can improve the stability and extend the oils’ shelf-life, as proven previously [45].

Phenolics avoid oxidation, reducing the formation of toxic compounds, which pre-
serves oil quality [34]. Although poppy oil presented low concentrations (TPC: 4 mg
GAE/100 g; TFC: 2 mg ECE/100 g) and low antioxidant activity (FRAP assay: 76 µmol
FSE/100 g; DPPH• inhibition assay: 0.5 mg TE/100 g of oil), it should be noticed that
vitamin E is its major protective component. Higher amounts of phenolics were mostly
present in the poppy cake, as previously discussed.

Vitamin E content is an important indicator of oil quality and may vary between
different types of vegetable oils, which are classified into different grades according to
quality indexes (e.g., acid value, peroxide value, and iodine value). The oil grade is related
to the refinement degree; for instance, a first-grade oil is less refined than a fourth-grade
oil, whose degree of refinement may decrease its vitamin E content [38]. As previously
mentioned, the peroxide value (2.0 meq O2/kg) for this oil was low. Moreover, this oil is
an unrefined product and was obtained in a chemical-free manner by pressing the seeds,
which preserves its quality. In the vitamin E profile, the most biologically active isomer
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(α-tocopherol) was identified (13 mg/kg), as well as γ-tocopherol, which was present in
the highest quantity (222 mg/kg), and which is the predominant isomer similar to the
results found in the seeds, with a total amount of vitamin E isomers of 235 mg/kg. Recent
studies indicate that γ-tocopherol is also a potent health-promoting agent similar to α-
tocopherol. It prevents oxidative stress and helps decrease inflammation [9]. A higher
quantity (222 mg/kg) of this isomer may contribute to the health-promoting properties of
the consumption of poppy oil, especially when consumed raw (e.g., in salad dressing).

Regarding vitamin E isomers, previous studies reported different results. Bozan and
Temelli, 2008 [28], found amounts of α-tocopherol 55.3, β-tocopherol 16.7, γ-tocopherol
217.4, γ-tocotrienol 14.7, σ-tocotrienol 5.8, and total vitamin E 309 mg/kg, identifying more
isomers and, thus, resulting in a higher total vitamin E content in comparison to the present
data. However, different extraction methods were used, which impacts the obtained profile.
On the other hand, in the study of Dąbrowski et al., 2020 [30], a similar profile was reported,
but with lower α-tocopherol, γ-tocopherol, and total vitamin E content (5.90, 115.7, and
121.6 mg/kg, respectively) in comparison to the present data.

During refinement, up to 99% of carotenoids are removed, but cold-pressed oils do not
suffer any purification treatments, functioning as a rich natural source of carotenoids [9,39].
Cold-pressed poppy oil presents a β-carotene content that varies between 1.04–2.32 mg/kg [9].
However, the chlorophyll content is lower—0.17 mg/kg [9].

The most well-known feature of biologically active substances is their antioxidant
activity, but cold-pressed poppy oil is a relatively low source of tocopherols (235 mg/kg)
when compared to other oils, e.g., cold-pressed sesame oil (484 mg/kg) [2], and a rather
poor source of phenolics (4 mg GAE/100 g) and flavonoids (2 mg ECE/100 g). Regarding
antioxidant capacity, low levels of DPPH•-scavenging activity (16.4%), as in the present
findings, have also been reported previously [9].

Overall, due to poppy oil’s probable higher price when commercialized, it seems
that it can be restricted to some niche markets as a specialty oil. Nevertheless, it pos-
sesses other potential applications (e.g., pharmaceutical, cosmetics, and paints/varnishes
industries) [13].

4. Conclusions

Poppy seeds, along with their press cake obtained after oil extraction, are products
that meet consumers’ nutritional awareness and preference for nutritionally desirable
foodstuffs, namely, fibre-rich foods obtained sustainably with minimal processing. The
poppy cake showed great potential as a high-fibre and high-protein ingredient for the
formulation of nutraceuticals and foodstuffs. The consumption of dietary fibre stimulates
the gastrointestinal microbiota, thereby improving health. In addition, plant-based protein
can be an alternative in vegetarian food patterns.

Regarding the results, the oil can be consumed, preferentially raw, thereby providing
essential linoleic acid and α- and γ-tocopherols. However, due to its expensive price, it can
be considered a specialty oil restricted to a niche market.

The seeds combine the characteristics mentioned above and are suitable for consump-
tion whole or can be milled in foodstuffs to expand their reach in the current food market,
thereby meeting consumers’ demands for natural, minimally processed products.

Further studies are needed that employ different extracting solvents and methods,
evaluate the shelf-life period and best storage conditions, and validate the biological effects
and health outcomes.
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