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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The emergence of Marburg virus (MARV) in Guinea and Ghana triggered the assembly of

the MARV vaccine “MARVAC” consortium representing leaders in the field of vaccine
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research and development aiming to facilitate a rapid response to this infectious disease

threat. Here, we discuss current progress, challenges, and future directions for MARV

vaccines.

Introduction

On August 3, 2021, the World Health Organization (WHO) was notified of a confirmed case

of Marburg virus (MARV) disease (MVD) in the Guéckédou prefecture in Guinea, with 173

contacts, including 14 high-risk contacts based on exposure [1]. This was the first time MARV

was detected in the country and raised alarms about a possible outbreak expansion that may

lead to an epidemic such as the Ebola virus (EBOV) disease (EVD) epidemic in West Africa in

2013 to 2016. Fortunately, no additional MVD cases were detected in Guinea and the end of

the outbreak was declared on September 16 [2].

On July 7, 2022, WHO reported 2 suspected cases of MVD in the southern Ashanti region

of Ghana and received diagnostic confirmation for MARV on July 15, 2022. On July 25, 2022,

2 additional cases were reported of which only one was confirmed to be MVD bringing the

current case count to 3. Approximately 180 contacts are currently being followed in the

Ashanti, Western, and Savannah regions of Ghana [3]. This continued reemergence of MARV

highlights the need for vaccines to prevent future MVD outbreaks.

To foster the rapid development of MARV vaccines, the WHO R&D Blueprint has con-

vened a group of experts with the aim to promote preclinical and clinical development of

MARV vaccine candidates. This WHO-coordinated consortium for the development of

MARV vaccines (MARVAC; Box 1) is based on the same sharing principles that governed the

scientific interactions of the WHO COVID-19 working groups. In this article, we summarize

the current state of MARV medical countermeasures and provide an outlook of the role of

MARVAC on accelerating vaccine evaluation and approval.

Marburg virus disease

MARV was identified in 1967 as the causative agent of a hemorrhagic disease outbreak in Mar-

burg and Frankfurt, Germany, with the outbreak originating from nonhuman primates

(NHPs) imported from Africa [4]. Since then, outbreaks of MVD have sporadically occurred

Box 1. The MARVAC

MARVAC is a WHO-coordinated consortium to promote international collaboration

for the development of MVD vaccines. The consortium builds on the previous success of

WHO working groups on COVID-19 preclinical models and assays that accelerated the

development of COVID-19 vaccines by rapidly sharing scientific findings and protocols.

This consortium includes shareholders from industry, nonprofit organizations, govern-

ment, and academia in order to maximize its effectiveness. This joint venture is sup-

ported by the following principles: (1) sharing of assays and reagents; (2) promoting

access to laboratory networks in MVD-endemic countries; and (3) promoting structural

support for preclinical development of upcoming MVD vaccine and therapeutic

candidates.
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throughout Africa with the largest outbreak recorded in 2004 to 2005 in Angola with 252 cases

and an 88% case fatality rate [5]. The recent identification of the MVD cases in Guinea and

Ghana are the consequence of reinforced laboratory networks and diagnostics capacity that

were implemented after the EVD epidemic. Most of the identified MVD patients in Guinea

and Ghana died of the disease, with MARV confirmed as the causative agent retrospectively

[3,6,7].

NHP studies have been performed with several different MARV isolates with most using

either the MARV-Musoke (Kenya, 1980; [8]), MARV-Angola (Angola, 2005; [9]), or Ravn

virus (RAVV; Kenya, 1987; [10]) isolates. RAVV is genetically distinct form MARV and

regarded as its own entity within the Marburg marburgvirus species. Infections with 1,000 pla-

que-forming units by the intramuscular route of MARV-Musoke, MARV-Angola, and RAVV

are uniformly lethal in cynomolgus macaques; however, disease progresses fastest with MAR-

V-Angola resulting in death within 9 days [11].

To date, there are no regulatory agency-approved MARV vaccines or therapeutics. While

filovirus diseases are of great public health consequence, limited financial support from the

public sector to fund the development of medical countermeasures existed prior to the 2013 to

2016 EBOV epidemic. However, after 2016, basic and translational filovirus research has been

increased through biodefense and research grants, which has helped to advance licensing of

EBOV vaccines and treatments for outbreak control [12–14]. For MARV, this funding allowed

for the expansion of animal models and countermeasure strategies for preclinical evaluation.

Several approaches have shown promise in NHP studies, with vaccines as well as antivirals

advancing into clinical development, including Phase I clinical trials.

Animal models

Countermeasure development requires efficacy testing in animal models that recapitulate hall-

mark features of human clinical disease, which can serve as a predictive measure for the poten-

tial benefit of a drug or vaccine. Rodent models require virus adaptation, but are the preferred

screening models due to availability, cost, and space limitations as all infectious work has to be

performed in maximum containment laboratories. The “gold standard” animal model for

MARV are NHPs, particularly cynomolgus and rhesus macaques, due to their close recapitula-

tion of clinical disease in humans and uniform lethality [15]. Most vaccine efficacy studies

have been performed in cynomolgus macaques, whereas rhesus macaques are more commonly

used for treatment studies [8,16].

Vaccines

MARV vaccine development started soon after the discovery of the virus with limited success

[17,18]. Numerous different vaccine platforms have been evaluated for MARV in rodent mod-

els [18]; however, only a portion of these candidate vaccines demonstrated protective efficacy

in NHPs and only these are shown in Table 1. The MARV glycoprotein (GP) is the main anti-

gen used in all successful candidate vaccines and confers protection against multiple strains of

MARV and RAVV (Table 1). Vaccine approaches for MARV include multidose, single-dose,

fast-acting, live-attenuated nonreplicating, and replicating viral vector vaccine regimens.

While fast-acting, single-dose vaccines would be deployed in reactive vaccination campaigns

during outbreaks, routine vaccination of at-risk populations could be achieved with several

candidate vaccines. Regardless, the need for boosters will be determined by the durability of

the acquired immunity induced by the respective vaccine.

One adenovirus (Ad)-based vaccine is being developed by Janssen and is based on an Ad26

vector encoding the MARV Angola GP [19]. This vaccination strategy follows the European
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Table 1. MARV vaccines with protective efficacy in the preclinical NHP model.

Vaccine Challenge Virus Vaccine

doses

Time between doses

[d]

Time to Challenge

[d]�
Survival

[%]

Developer Ref.

Whole Virus

inact. MARV MARV Popp 2 14 21 50 [18]

Subunit

VLPs + adjuvant MARV Musoke 3 42 28 100 [18]

VLPs + adjuvant MARV Musoke, Angola 3 42 28 100 USAMRIID [18]

MARV GP + adjuvant MARV Angola 3 21 28 100 [39]

MARV GP, EBOV GP + adjuvant MARV Angola 3 21 28 100 [39]

DNA

MARV GP MARV Musoke 3 28 28 67 USAMRIID [18]

MARV GP MARV Angola 4 3× 28, then 105 21 100 NIAID [18]

MARV GP, RAVV GP, EBOV GP,

SUDV GP

MARV Musoke 3 28 56 100 USAMRIID [18]

DNA + rec. Adenovirus

3x DNA-MARV GP, 1x rAd5-MARV

GP

MARV Angola 4 28 DNA, then 84

rAd5

42 100 NIAID [18]

Replicon

VEEV-MARV GP, VEEV-MARV NP,

both

MARV Musoke 3 28 35 67–100 USAMRIID [18]

rec. Adenovirus

CAdVax-panFilo MARV Musoke, Ci67 2 63 42 or 112 100 [18]

rAd5-MARV GP MARV Angola 1 n/a 28 100 [18]

rAd26-MARV GP + rAd35-MARVGP MARV Angola 2 28 28 100 Janssen [19]

ChAd3-MARV MARV Angola 1 n/a 7, 14, 21, 28, 35, or

185

100 Sabin [21]

ChAd3-MARV MARV Angola 1 n/a 365 75 Sabin [21]

rec. Vesicular stomatitis virus

VSV-MARV MARV Musoke, Popp 1 n/a 28 or 113 100 PHAC, IAVI [18]

VSV-MARV MARV Musoke, Angola,

RAVV

1 n/a 28 100 PHAC, IAVI [18]

VSV-MARV MARV Angola 1 n/a 28 100 PHAC, IAVI [18]

VSV-EBOV, VSV-SUDV, VSV-MARV MARV Musoke 1 n/a 28 or 59 100 PHAC, IAVI [18]

VSV-MARV MARV Musoke 1 n/a 407 100 PHAC, IAVI [18]

VSV-MARV MARV Angola 1 n/a 35 100 PHAC, PHV [27]

VSV-MARV MARV Angola 1 n/a 14 or 7 100 PHAC, PHV [28]

VSV-MARV MARV Angola 1 n/a 3 75 PHAC, PHV [28]

VSV-N4CT1-MARV MARV Angola 1 n/a 7 100 Auro

Vaccines

[25]

VSV-N4CT1-MARV MARV Angola 1 n/a 5 80 Auro

Vaccines

[25]

VSV-N4CT1-MARV MARV Angola 1 n/a 3 20 Auro

Vaccines

[25]

Trivalent VesiculoVax MARV Angola 1 n/a 28 100 Auro

Vaccines

[24]

Quadrivalent VesiculoVax MARV Angola 2 56 28 100 Auro

Vaccines

[23]

�Time until challenge after vaccination was completed.

n/a, not applicable.

https://doi.org/10.1371/journal.ppat.1010805.t001
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Medicines Agency (EMA)-approved EBOV prime/boost vaccine Zabdeno/Mvabea

(Ad26-ZEBOV/MVA-BN-filo) developed by this company. In preclinical studies for MVD,

prime-boost vaccination with Ad26-MARV/Ad35-MARV showed protection against MAR-

V-Angola, and durable antibody responses [19]. However, only the Ad26-MARV vaccine will

be moved forward. Clinical trials could evaluate the immunogenicity of a single-dose vaccine

and explore if a boost vaccination with the EMA-approved vector Mvabea (MVA-BN-Filo)

[20] or another Ad-vectored filovirus vaccine is beneficial. Currently, there are 4,500 clinical

grade doses of the Ad26-MARV vaccine available for emergency use.

Another Ad-based vaccine is a single-dose vaccine being developed by the Sabin Vaccine

Institute that uses a chimpanzee Ad (ChAd) vector to circumvent antivector immunity. In

NHPs, this ChAd3-MARV vaccine provides both rapid (within 1 week) and longer-term (6 to

12 months) protection against lethal MARV challenge (Table 1) [21]. A Phase I clinical trial

with 40 participants was conducted comparing 2 doses of the vaccine, 1010 versus 1011 particle

units [22]. The vaccine showed a favorable safety profile with no reported severe adverse

events. MARV GP-specific immunoglobulin G (IgGAU : PleasenotethatIgGhasbeenfullyspelledoutasimmunoglobulinGatitsfirstmentioninthesentenceMARVGP � specificimmunoglobulinGðIgGÞwasdetectedin80%:::Pleasecorrectifnecessary:) was detected in 80% to 90% of the partic-

ipants after 28 days with the higher dose vaccination resulting in a higher IgG titer (660.7 ver-

sus 392.7 units, respectively). Overall, the induced immune responses are in the range found to

correlate with protection in NHP studies [21]. Phase II clinical trials in Africa are planned for

2023. Clinical grade ChAd3-MARV has been vialed and tested. Approximately 450 of these

doses are immediately available for outbreak response, and additional drug substance (approx-

imately 18,000 doses) is available for vialing.

The first of 3 vesicular stomatitis virus (VSV)-based vaccines described here is the attenu-

ated VSV-N4CT1-MARV vaccine developed by Auro Vaccines. It is a VSV full-length vector

encoding a VSV N gene translocation together with a truncation of the VSV G protein cyto-

plasmic tail and the MARV-Angola GP as viral antigen. Two doses have been shown to uni-

formly protect NHPs in preclinical studies in a trivalent (EBOV GP, Sudan virus (SUDV) GP,

MARV GP) or quadrivalent (trivalent + Lassa virus GP) vaccine formulation, with the trivalent

version also showing full protection as a single dose (Table 1) [23,24]. In addition, a single

dose of the monovalent vector is protective within 7 days (Table 1) [25]. Clinical data for the

single-dose MARV vaccine candidate are not yet available; however, manufacturing of clinical

grade material is planned for late 2022.

The remaining 2 VSV-based vaccines both originate from the attenuated VSVΔG vector in

which the VSV-G is replaced by the MARV GP. This strategy follows the example of the US

FDA- and EMA-approved EBOV vaccine Ervebo by Merck. The International AIDS Vaccine

Initiative (IAVI) is developing the VSV-MARV Musoke vector, and Public Health Vaccines

(PHV) the VSV-MARV Angola vector. Both vectors have shown uniform protection after a

single-dose vaccination in the NHP model of infection against both MARV and RAVV

(Table 1) [26–28]. Based on clinical data for Ervebo [29,30], vaccination with either of the

VSV-MARV vectors is expected to provide protection with limited adverse effects. IAVI will

manufacture clinical grade material in late 2022 (approximately 2,000 vials); clinical grade

material of VSV-MARV by PHV has been manufactured as is available for clinical testing.

Vaccines clinical trial design

Supported by the success of a ring vaccination trial for EBOV carried out in Guinea [29], effi-

cient and reliable randomized Phase III evaluations of efficacy trials for MARV candidate vac-

cines listed in Table 1 should be conducted. The MARVAC is developing clinical trial designs

that will accommodate the complex epidemiology of MARV transmission by assessing evi-

dence accumulated over multiple outbreaks in time and location [31]. Likely, a number of
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feasible trial designs will be developed according to the format specified by the WHO Blueprint

for emerging infectious disease threats [32]. The trials will be double blinded whenever possi-

ble. The best comparators will be either vaccine placebos or active comparator vaccines, not

related to the MARV protection, with benefit to the population, e.g., hepatitis A vaccine. If this

is not possible, then delayed vaccination will be performed. There will be 3 categories of possi-

ble trial designs [33,34]. The overall platform trial will allow use of any of these categories, as

well as the aggregation of evidence when more than one has been used [35]. In the absence of

an outbreak, disease endpoints are not possible and trials designs will be adapted to fit regula-

tory requirements.

Therapeutics

Compared to preclinical and clinical evaluation of EBOV therapeutics, the development of

MARV therapeutics has evolved at a much slower pace. As with EBOV, antiviral efficacy

against MARV infection in NHPs has historically served as the benchmark to rate predictive

efficacy in humans and justify subsequent clinical trial efforts. Several promising approaches

ranging from pan-filoviral small molecule antivirals to MARV-specific monoclonal antibody

approaches or even combinations of the two have shown impressive postexposure efficacy in

NHPs at late-stage disease (Table 2). These therapeutic approaches may be ideal for further

development for use in humans. Furthermore, postexposure vaccine approaches have shown

promise against MVD. A recent adaptive clinical trial in the Democratic Republic of Congo

[36] has fortified evaluation criteria and allowed for recent approval of immunotherapeutics

against EBOV. This approach [37,38] may serve as an ideal framework to navigate initiation of

human trials for MARV exposures in concert with guidance from the MARVAC.

Table 2. MARV therapeutics with protective efficacy in the NHP model.

Treatment Challenge virus Treatment postchallenge Treatment dose Number of doses Survival [%] Ref.

VSV-MARV MARV Musoke 20–30 minutes 1 × 107 PFU 1 100 [40]

MARV Musoke 1 day 2 × 107 PFU 1 83 [40]

MARV Musoke 2 days 2 × 107 PFU 1 33 [40]

MARV Angola 20–30 minutes 1 × 103 PFU 1 25 [41]

MARV Angola 20–30 minutes 50 PFU 1 89 [42]

VSVN2CT1-MARV MARV Angola 20–30 minutes 50 PFU 1 80 [42]

VSVN4CT1-MARV MARV Angola 20–30 minutes 50 PFU 1 60 [41]

MR191-N MARV Angola 4 days 50 mg/kg 2 100 [40]

MARV Angola 5 days 50 mg/kg 2 80 [40]

RAVV 5 days 50 mg/kg 2 100 [40]

MR186-YTE MARV Angola 5 days 100 mg/kg 1 100 [43]

6 days 100 mg/kg 1 0 [43]

MR186-YTE + Remdesivir MARV Angola 6 days 100 mg/kg 1 80 [43]

MARV Angola 6 days 10 mg/kg load. 5 mg/kg maint. 12 80 [43]

Remdesivir MARV Angola 5 days 10 mg/kg load. 5mg/kg maint. 12 80 [43]

MARV Angola 6 days 10 mg/kg load. 5 mg/kg maint. 12 0 [43]

MARV Angola 4 or 5 days 10 mg/kg load. 5 mg/kg maint. 12 85 [44]

MARV Angola 5 days 5 mg/kg load. 5 mg/kg maint. 12 50 [44]

BCX4430 MARV Musoke 1 hour 15 mg/kg 30 83 [40]

MARV Musoke 1 day 15 mg/kg 28 100 [40]

MARV Musoke 2 days 15 mg/kg 26 100 [40]

(Continued)
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Conclusions

With the MDV cases in Guinea and Ghana, outbreaks of this filovirus disease have now been

reported across the entire sub-Saharan Africa region. With case fatality rates of up to 88% and

the lack of licensed medical countermeasures, there is an urgent need for action to accelerate

the evaluation and approval of MVD vaccines and therapeutics. Following the inception of the

WHO-coordinated MARVAC, we have presented here the current status of the most advanced

MVD medical countermeasures. We highlight the need for global research coordination,

including sharing of assays and continuous efforts on capacity building among private and

public sectors. Increased surveillance and diagnostics are also required for early detection of

future outbreaks as well as rapid deployment of vaccines and therapeutics.
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