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Objective: To compare the performance of a newly developed deep learning

(DL) framework for automatic detection of regional wall motion abnormalities

(RWMAs) for patients presenting with the suspicion of myocardial infarction

from echocardiograms obtained with portable bedside equipment versus

standard equipment.

Background: Bedside echocardiography is increasingly used by emergency

department setting for rapid triage of patients presenting with chest pain.

However, compared to images obtained with standard equipment, lower

image quality from bedside equipment can lead to improper diagnosis.

To overcome these limitations, we developed an automatic workflow to

process echocardiograms, including view selection, segmentation, detection

of RWMAs and quantification of cardiac function that was trained and

validated on image obtained from bedside and standard equipment.

Methods: We collected 4,142 examinations from one hospital as training

and internal testing dataset and 2,811 examinations from other hospital as

the external test dataset. For data pre-processing, we adopted DL model to

automatically recognize three apical views and segment the left ventricle.

Detection of RWMAs was achieved with 3D convolutional neural networks

(CNN). Finally, DL model automatically measured the size of cardiac chambers

and left ventricular ejection fraction.

Results: The view selection model identified the three apical views with

an average accuracy of 96%. The segmentation model provided good
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agreement with manual segmentation, achieving an average Dice of 0.89.

In the internal test dataset, the model detected RWMAs with AUC of 0.91

and 0.88 respectively for standard and bedside ultrasound. In the external

test dataset, the AUC were 0.90 and 0.85. The automatic cardiac function

measurements agreed with echocardiographic report values (e. g., mean bias

is 4% for left ventricular ejection fraction).

Conclusion: We present a fully automated echocardiography pipeline

applicable to both standard and bedside ultrasound with various functions,

including view selection, quality control, segmentation, detection of the

region of wall motion abnormalities and quantification of cardiac function.

KEYWORDS

artificial intelligence - AI, myocardial infarction, echocardiography, deep learning,
bedside ultrasound

Introduction

Myocardial infarction (MI) is the most severe manifestation
of coronary heart disease, resulting in disability or sudden
cardiac death. According to Report on Cardiovascular Health
and Diseases in China 2021, AMI mortality increased by a factor
3.5 in rural areas and by a factor of 2.66 in urban areas from
2002 to 2019. In 2019, AMI mortality was 0.08% in rural areas
and 0.06% in urban areas (1). Recent studies show that there is
significant variability in the care and outcomes of MI patients
in hospitals with different levels of care (2). Rapid diagnosis
and prompt reperfusion treatment are of primary importance
to reduce mortality from MI.

With the advantages of easy availability, low cost, fast
performance and safety, transthoracic echocardiography
(especially bedside ultrasound) is the most commonly used
non-invasive imaging tool for detecting regional wall motion
abnormalities (RWMAs) and providing information on short-
and long-term outcomes after acute myocardial infarction
(AMI) (3–5). The American College of Cardiology/American
Heart Association and the European Heart Association
guidelines give a Class I recommendation for using
transthoracic echocardiography to detect RWMAs in chest
pain patients presenting to the emergency ward without
delaying angiography (6, 7).

Abbreviations: A4C, apical four chambers; A2C, apical two chambers;
ALX, apical long axis; CNN, convolutional neural networks; DL, deep
learning; LVEF, left ventricular ejection fraction; LVEDV, left ventricular
end-diastolic volume; LVESV, left ventricular end-systolic volume; LV
EDTD, left ventricular end-diastolic transversal dimension; LA ESTD,
left atrial end-systolic transversal dimension; LOA, limits of agreement;
MI, myocardial infarction; RV EDTD, right ventricular end-diastolic
transversal dimension; RA ESTD, right atrial end-systolic transversal
dimension; RWMAs, regional wall motion abnormalities; ROC, receiver
operating characteristic.

However, accurate recognition of RWMAs by
echocardiography requires highly trained and experienced
physicians which are in short supply and typically not available
around the clock in many hospitals. Furthermore, visual
diagnosis of RWMAs often varies amongst doctors with various
level of expertise (8). Therefore, an effective solution for
efficient, accurate and objective diagnosis of RWMAs is needed.

Deep learning (DL) models have strong data processing
capabilities and have been used for automated interpretation
of images obtained from various modalities. Related to
echocardiography, DL models can perform a variety of analyses,
such as image quality assessment, view classification, boundary
segmentation, and disease diagnosis (9–14). With the help of
DL, tedious and time-consuming tasks like segmentation and
quantification of different parameters can be performed quickly
and precisely, saving increasingly scarce human resources (11,
13, 14).

Recently, tremendous advances have been made in DL
models for the detection of RWMAs (15, 16). However, these
studies applied relatively strict, up front image quality criteria
such that ∼40% of studies were excluded from analysis,
indicating that those models may not be practical for widespread
use. Furthermore, in those studies, standard echocardiographic
equipment was used which, in general, produce higher quality
images than newer, portable bedside ultrasound equipment.
With the advantages of portability and availability, bedside
ultrasound is becoming increasingly applied in emergency
rooms and intensive care units for specific applications, such as
real-time assessment of cardiac function and RWMA in patients
presenting with chest pain syndromes. Use of DL models to
analyze images from these machines has not been specifically
explored in prior studies (9, 10).

We developed a novel DL model to analyze
echocardiographic videos to detect RWMAs and standard
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indexes of cardiac size and function from three standardized
apical views. In contrast to prior studies, the structure of our
model and the training dataset were geared toward analysis
of images from bedside echocardiograms while fully retaining
the ability to analyze images from standard equipment.
Accordingly, the main purpose of this study was to compare
the accuracy of this model for analyzing videos obtained from
bedside ultrasound to those of standard equipment.

Materials and methods

Study population

The methods used in the design, implementation, and
reporting of this study were consistent with the recently
published PRIME (Proposed Requirements for Cardiovascular
Imaging Related Machine Learning Evaluation) checklist
(17), which was provided in the Supplementary Appendix.
We retrospectively accessed a total of 2,274 transthoracic
echocardiographic examinations obtained between May 2015
and September 2019 from the Fourth Medical Center of
Chinese PLA General Hospital as our training and validation
dataset (ratio 8:2). MI and control cases were matched
for age and sex. We then prospectively collected 1,868
examinations between May 2020 and May 2021 from the
same hospital as an internal test dataset. For the external
test dataset, we collected 3,026 examinations between Jan
2021 and Dec 2021 from the Second Affiliated Hospital of
Shandong University of Traditional Chinese Medicine. Training
and testing datasets each included echocardiographic studies
from standard and bedside echocardiographic equipment as
detailed in the Figure 1. The diagnosis of acute or prior
MI were based on information from the electronic medical
records (including echocardiographic report, blood tests, ECGs
and angiograms). The presence and extent of RWMAs
were extracted from echocardiographic reports generated
by experienced sonographers and the echocardiograms were

reviewed a second time by an experienced cardiologists who
authorized the final diagnoses.

Echocardiography

Each echocardiographic examination was acquired through
standard methods. Videos from three standard apical views were
include in this study: apical 4-chamber (A4C), apical 2-chamber
(A2C), and apical long axis (ALX). Images were acquired
from a diverse array of standard echocardiography machine
manufacturers including Phillips EPIQ 7C and iE-elite with S5-
1 and X5-1 transducers (Phillips, Andover, MA, United States),
and Vivid E95 (General Electric, Fairfield, CT, United States)
and portable bedside machines including Philips CX50 and
Mindray M9cv with transducer SP5-1s (Mindray, Shenzhen,
Guangdong, China). All images were stored with a standard
Digital Imaging and Communication in Medicine (DICOM)
format according to the instructions from each manufacturer.

View selection and quality control

We labeled 33,404 images to develop a method to classify 29
standard views and then selected the three apical views required
for the subsequent analysis. View selection was performed using
a Xception Net neural network model according to methods that
were previously described (18).

An automated algorithm was developed to assess image
quality and exclude images whose quality were insufficient
for analysis. Expert echocardiographers manually labeled 2,837
A4C, 1,880 A2C, and 1,910 ALX images as qualified or
unqualified. These labeled images were then used to build the AI
model. Examples of qualified and unqualified images as assigned
by the model are shown in Supplementary Figure 1. As seen in
these examples, the contour of left ventricle was ambiguous so
that the endocardial or epicardial border was rarely identified in

FIGURE 1

Summary of number of echocardiograms used in this study.
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FIGURE 2

The segmentation of different wall regions. The 2015 ASE guideline recommend typical distributions of the coronary artery in apical
four-chamber (A4C), apical two-chamber (A2C), and apical long-axis (ALX) views. In the echocardiographic images, we labeled A for apical,
anterior and anteroseptal walls (green area), F for inferior and inferoseptal walls (orange area), and L for anterolateral and inferolateral walls
(purple area).

unqualified views. Subsequently, images automatically classified
as unqualified were excluded from analysis.

Segmentation

The segmentation model was developed to outline the
endocardial and epicardial borders of the left ventricle and
the endocardial borders of the left atrium, right atrium and
right ventricle. Left ventricle was grouped into 3 different
regions, designated A (apical, anterior, and anteroseptal walls),
F (inferior and inferoseptal walls) and L (anterolateral and
inferolateral walls) according to 2015 American Society of
Echocardiography guidelines (19) (Figure 2). We annotated
493 apical 4-chamber videos (8,555 frames), 332 apical 2-
chamber videos (5,768 frames) and 366 apical long-axis videos
(6,389 frames) which served as ground truth for developing
and testing this algorithm to segmented the heart into
regions A, F and L as detailed above (19, 20). Myocardial
segmentation masks were generated for every frame of each
video with the pretrained segmentation LSTM-Unet (21–23).
Three separate segmentation models with the same structure
were developed to analyze the A4C, A2C, and ALX views.
For the A4C video, the model segmented the left ventricle,
the left atrium, the right ventricle and the right atrium
which were used to quantify the size of each chamber. For

detection of RWMAs, each video frame was cropped into a
128 × 128 pixels square with the left ventricle at the center
and pixel values are normalized to the range from 0 to
1 (Figure 2).

Detection of regional wall motion
abnormalities

The overall process for detecting RWMAs was summarized
in Figure 3. Each original DICOM video was concatenated with
the mask of the myocardium obtained by the segmentation
model. The mask and video were then input into A, F, and
L classification models. Detection of the presence of RWMAs
and the territory of RWMAs was achieved with Deep 3D
Convolution Neural Network.

Details of the RWMA detection model are shown in
Supplementary Figure 2. The backbone of the model is
R2plus1D, which is a time-saved and calculation-saved feature
extractor. In order to effectively use the information extracted
by the R2plus1D feature extractor, three fully connected layers
are added to the model (24). There is a Batch Normalization
layer, an activation layer (LeakyReLU) and a 50% dropout layer
following each full-connected layer. Batch Normalization can
improve the efficiency of model training, which can save time
required to train the video model (25). The output of the
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FIGURE 3

The whole work flow of deep learning model. Steps of data processing. The first model achieves view selection on echocardiography. The
Xception model generates a confidence level for view selection and selects A4C, A2C, and ALX views whose confidence is higher than 0.9.
Secondly, LSTM-Unet segments each frames of outputs of Xception. The segment and the original video are concatenated as inputs of
classification models to detect regional wall motion abnormality. The outputs of LSTM-Unet with A4C and A2C are calculated important
parameters, such as LVEDV, LVESV, and LVEF.

RWMA detection model contains two values (two red neurons
as shown in Supplementary Figure 2). These values (the
score of no abnormality and the score of an abnormality) are
derived from the full-connected layers transform information
extracted by R2plus1D.

The RWMAs detection models were trained using two
Graphics Processing Units (GPU), NVIDIA Tesla P100. Each
model contains about 1 million parameters. All the parameters
are trained in the direction of minimizing cross entropy, which
is an error function to calculate how far the models’ outputs is
from real label. The models are trained with Stochastic Gradient
Descent Momentum (SGDM) with 0.9 momentum and 1e−4
weight decay. The learning rate starts from 1e−5 and increases
linearly with epoch until 1e−4 at epoch 10, which is called
warm-up (26). Then learning rate decline linearly from 1e−4 at
epoch 10 to 5e−5 at epoch 50.

In order to improve the generalization of RWMAs detection
models, spatiotemporal video augmentation methods are
adopted. The left subplot in Supplementary Figure 3 shows the
clipping in the time dimension and the right subplot shows the
spatial cropping. At the training state, each video is randomly
cropped and clipped in the spatial and temporal dimensions, so
as to enhance the diversity of data and the generalization of the
model. In the test and validation phase, the videos are divided
into non-overlapping 8-frame video segments and each video
segment is inferred three times with three spatial crops. For
example, a 32-frame video is divided into 4 video segments, each
of which contain 8 frames, and each video segment generates
three crops, which means the 32-frame sample generate 12
results in total. Majority voting combines 12 results. The models
are performed with Python 3.6.8 and PyTorch 1.4.0. The code
will be released in GitHub.

Quantification of key metrics

The key metrics derived from the model include left
ventricle ejection fraction (LV EF), end-diastolic volume (LV
EDV), end-systolic volume (LV ESV), end-diastolic transversal
dimension (LV EDTD), left atrial end-systolic transversal
dimension (LA ESTD), right ventricular end-diastolic
transversal dimension (RV EDTD), and right atrial end-
systolic transversal dimension (RA ESTD). We calculated these
metrics based on the output of segmentation model and the
2015 guidelines of the American Society of Echocardiography
and the European Association of Echocardiography (19). In
order to enhance the interpretability of deep learning, we
adopted the segmentation model to segment the area of four
chambers, and then used Simpson biplane method to calculate
LVEDV, LVESV, and EF. The long short-term memory (LSTM)
can effectively extract the time information from the video.

Statistical analysis

Analyses were performed using algorithms written in
Python 3.6 from the libraries of Numpy, Pandas, and Scikit-
learn. Continuous variables were expressed as mean ± standard
deviation, median and interquartile range, or counts and
percentage, as appropriate. Comparisons of reports and
machine algorithm performances were performed using one-
way analysis of variance (ANOVA), followed by the least
significant difference (LSD) t-test. The detection models were
assessed according to the area under the receiver operating
characteristic (AUROC) curves which plotted sensitivity versus
1–specificity derived from the model’s prediction confidence
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score. Results were regarded as statistically significant when
P < 0.05. All calculations were performed by using IBM
SPSS version 23.0.

Result

Study population

For the internal training and validation dataset, a total
of 2,274 transthoracic echocardiographic examinations were
divided between standard and bedside ultrasound. As specified
in the echocardiography and clinical reports, MIs and RWMAs
were present in 1,137 of the 2,274 studies (50%), 62% of which
were from bedside ultrasound. In the internal test dataset,
MIs and RWMAs were present in 374 of 1,868 cases (20%),
52% of which were examined by bedside ultrasound. In the
external test dataset, MIs and RWMAs were present in 849 of
3,026 cases (28%), 37% of which were examined by bedside
ultrasound. The clinical and echocardiographic characteristics
of the included populations are summarized in Table 1 (training
dataset) and Supplementary Table 1 (internal and external
test datasets). As expected, significant differences in baseline
characteristics existed between normal subjects and those with
a myocardial infarction.

View selection and segmentation

As summarized in Supplementary Figure 4, the deep-
learning architecture identified the apical 4-chamber, 2-
chamber and long-axis views with a high degree of accuracy:
94, 99, and 95%, respectively. The quality control model
achieved an average 95% consistency compared with expert
in identifying qualified images (Supplementary Figure 1). As
for segmentation, the model provided good agreement with
manual segmentation with an average Dice of 0.89 (Table 2).
Although the performance of the model for segmenting bedside
ultrasound images was slightly lower than that in standard
ultrasound, our model was applicable with both machines.

Detection of regional wall motion
abnormalities

For the detection of a regional wall motion abnormalities
in the internal test dataset, the deep learning model had an
average AUROC of 0.91 for images obtained with standard
echocardiographic equipment compared to 0.88 for images
obtained with beside equipment. Youden’s Index was used
to evaluate model performance, which yielded sensitivities
of 85.4% vs. 85.2% and specificities of 83.2% vs. 78.2% for
standard versus beside equipment, respectively. In the external

test dataset, the model achieved an average AUROC of 0.90 vs.
0.85 for standard versus bedside ultrasound, with corresponding
sensitivities of 81.6% vs. 78.3% and specificities of 83.7% vs.
78.1%. The model had a similar performance for detecting
anterior, inferior and lateral wall motion abnormalities in both
bedside and standard ultrasound (Figure 4 and Table 3).
Overall, these results corresponded to comparable accuracies in
detecting RWMAs in the three territories: 0.83 for anterior, 0.81
for inferior and 0.85 for lateral walls.

To test the advantages of this tool for experts and beginners,
we randomly selected 100 cases from both MI and control
cases captured from standard and bedside equipment. In total,
3 experts and 5 beginners participated in the test, where the
first reads were based on their own judgments, while they
had access to the AI results for the second reads. The second

TABLE 1 Baseline characteristics of the training and
validation dataset.

Training and validation dataset

Standard Bedside

MI Normal MI Normal

Echo number 430 947 707 190

Age 65 (55,73) 60 (53,76) 67 (54,77) 58 (50,66)

Male patients(%) 353 (83.3) 590 (62.3) 460 (65.2) 118 (62.1)

Comorbidities (%)

Hypertension 115 (35.1) 249 (26.3) 270 (42.4) 37 (19.5)

Hyperlipidemia 217 (66.2) 148 (14.6) 326 (51.3) 10 (5.3)

Diabetes 124 (38.0) 103 (10.9) 324 (50.8) 21 (11.1)

Renal insufficiency 65 (17.4) 79 (8.3) 228 (35.8) 6 (3.2)

Ischemic stroke history 53 (17.4) 96 (10.1) 121 (21.5) 17 (8.9)

Echo parameters

LV EF (%) 46 (41,54) * 62 (60,64) 43 (36,48) † 60 (59,62)

LV EDV (mm2) 119 (98,144) * 87 (80,100) 106 (88,129) † 84 (75,98)

LV ESV (mm2) 62 (48,82) * 33 (30,37) 59 (46, 76) † 33 (30,39)

LV EDTD (mm) 49 (45,53) * 43 (41,45) 47 (43,51) † 42 (40,45)

LA ESTD (mm) 40 (38,43) * 36 (34,38) 41 (38,43) † 36 (34,38)

RV EDTD (mm) 32 (30,34) * 30 (29,32) 31 (29,33) † 30 (28,32)

RA ESTD (mm) 32 (30,34) * 30 (28,32) 32 (29,34) † 30 (28,31)

Territories of RWMAs

Multiple walls 168 (39.1) 319 (45.1)

A 291 (67.7) 529 (74.8)

F 220 (51.2) 363 (51.3)

L 154 (35.8) 268 (37.9)

Values are median (IQR) or n (%). *p < 0.05 vs. normal subjects in standard group.
†p < 0.05 vs. normal subjects in bedside group. BMI, Body Mass Index; LVEF, left
ventricular ejection fraction; LVEDV, left ventricular end-diastolic volume; LVESV, left
ventricular end-systolic volume; LV EDTD, left ventricular end-diastolic transversal
dimension; LA ESTD, left atrial end-systolic transversal dimension; RV EDTD, right
ventricular end-diastolic transversal dimension; RA ESTD, right atrial end-systolic
transversal dimension; MI, myocardial infarction; RWMAs, regional wall motion
abnormalities; A, apical, anterior and anteroseptal walls; F, inferior and inferoseptal walls;
L, anterolateral and inferolateral walls.
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TABLE 2 Performance of the segmentation model.

Segmentation (Dice)

LV endocardium LV myocardium LA endo RV endo RA endo

Standard Bedside Standard Bedside Standard Bedside Standard Bedside Standard Bedside

A4C 0.94 0.95 0.84 0.81 0.94 0.93 0.89 0.90 0.94 0.93

A2C 0.93 0.93 0.79 0.77 0.93 0.91

ALX 0.93 0.92 0.82 0.78 0.93 0.93

A4C, apical 4-chamber; A2C, apical 2-chamber; ALX, apical long axis; LV, left ventricle; LA, left atrium; RA, right atrium; RV, right ventricle; A4C, apical 4-chamber; A2C, apical 2-chamber;
endo, endocardium.

FIGURE 4

The performance of the RWMAs detection model. The performance of the RWMAs detection model for bedside vs. standard cases in
retrospective invalidation dataset and prospective testing dataset. Abbreviations as in Figure 2.

reads were performed at a separate time without access to
the results of the first read. The comparison of results of
the first and second reads are summarized in Supplementary
Figure 5 and Supplementary Table 2. The AI models did not

significantly improve the accuracy of experts, but was very
helpful for beginners, with average accuracy improving by 9.8,
7.4, and 12.8% for the A, F and L territories, respectively
(Supplementary Table 2).
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Quantification of metrics of chamber
sizes and function

The output of our segmentation model was used to compute
chamber dimensions and ejection fraction based on the biplane
method of disks summation (modified Simpson’s rule) (19).
As above, this analysis was performed on studies which passed
the automated quality control algorithm. Results of the Bland–
Altman analysis comparing parameter values provided by the
AI algorithm and from the clinical reports are summarized
in Table 4. For each of the 7 parameters, the mean bias
and LOAs were similar for the analysis performed on studies
obtained with standard and bedside equipment. Accordingly,
data are further summarized in the Bland–Altman plots in
Figure 5 (LVEF) and Supplementary Figure 6 (structural
parameters) in which results obtained from standard and
bedside equipment are pooled.

We further extended our analysis to segregate patients
into 3, clinically meaningful discrete LVEF groups: reduced
(<40%), midrange (40–50%) and preserved (>50%). The
results of this prediction were moderately consistent with
that of echocardiographic reports, with an accuracy of
77% (Supplementary Table 3). There was a tendency to
underestimate LVEF in our model, especially in higher manual
values. Overall, these results indicate that the degree of accuracy
of the automatic quantification of these key metrics was within
the bounds of normal clinical practice.

Discussion

Prompt recognition of RWMAs by echocardiography is an
important tool for timely diagnosis and treatment of myocardial
infarction in patients presenting with chest pain, especially
in the emergency department. However, accurate diagnosis
relies on technical expertise in image acquisition, intrinsic
quality of the imaging equipment, and significant experience
in image interpretation. Technological advances in portable
echocardiographic equipment are making high quality imaging
more readily available. However, availability of appropriately
trained physicians for on-demand interpretation is limited in
most hospitals and analyses performed by less experienced
physicians may lead to misdiagnoses which can adversely impact
clinical care. Our tool provides a fully automated pipeline
for all routine aspects of interpreting echocardiograms. For
example, echocardiographic images obtained from a patient
admitted to the emergency department with chest pain can
be submitted electronically to the model which automatically
assess for the presence of RWMAs and also quantifies cardiac
function, enabling high-efficient serial primary care. In non-
emergent settings, this tool can be used to assess temporal
changes of regional and global heart function during repeated
echocardiographic videos in patients during follow up for a

myocardial infarction, for monitoring cardiotoxicity during
chemotherapy and in patients receiving cardiac rehabilitation.
Our model makes analysis of these echocardiograms less
burdensome to the system while maintaining (or even
enhancing) reliability and reproducibility.

Our study is the first to rigorously demonstrate that deep
learning methods can automatically assess image quality and
interpret RWMAs with a high degree of accuracy and to
provide a comparison of results from standard and portable
echocardiographic equipment. The first steps in our pipeline
involve automated view selection, quality control and image
segmentation. Each of these steps was performed with a high
degree of accuracy. The importance of automated image quality
assessment cannot be overstated. In order to mimic clinical
practice, we did not apply any initial screening of image quality
for inclusion since physicians are also faced with images of
varied quality. Our algorithm excluded unqualified images from
which detection of RWMAs would be inappropriate, even
by experienced clinicians (see Supplementary Figure 1 for
examples). Interestingly, 2.7% of standard cases and 14.7%
of portable bedside cases were excluded. As summarized
Supplementary Figure 7, when the deep learning model was
applied to detect regional wall motion abnormalities in these
unqualified images, the AUCs, sensitivities and specificities were
all markedly decreased and the bias and LOAs for each of the
7 parameters of chamber sizes and function were significantly
larger. In our cohort, most portable bedside studies were
obtained in the emergency room in patients presenting with
chest pain. Thus, the higher rate of exclusion of bedside cases

TABLE 3 Performance of model for identifying the presence and
territories of RWMAs.

Internal test dataset External test dataset

Standard Bedside Standard Bedside

AUC

A 0.901 0.883 0.906 0.844

F 0.908 0.865 0.889 0.849

L 0.929 0.903 0.897 0.861

Average 0.913 0.884 0.897 0.851

Sensitivity

A 86.3% 87.4% 82.7% 76.80%

F 81.4% 79.3% 83.3% 76.10%

L 88.4% 89.0% 78.9% 82.10%

Average 85.4% 85.2% 81.6% 78.30%

Specificity

A 78.8% 76.8% 84.9% 78.7%

F 86.7% 76.4% 79.3% 78.8%

L 84.0% 81.3% 87.0% 76.9%

Average 83.2% 78.2% 83.7% 78.1%

A, apical, anterior and anteroseptal walls; F, inferior and inferoseptal walls; L,
anterolateral and inferolateral walls.
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may reflect factors such as the critical nature of the patients
under which images are obtained and perhaps less availability
of experienced sonographers in this setting. Under such urgent
conditions, less consideration may be given to image quality.
Therefore, availability of an AI model that can provide feedback
in real time can promote acquisition of high-quality images and
ensure that measurements and detection of RWMAs are based
on qualified images.

Another important feature of our model that analyzed
RWMAs was that it focused analysis on the left ventricle by
excluding the other cardiac chambers. As such, the segmentation
model (which achieved an average Intersection Over Union
value of 80.9%) was able to divide the left ventricle into three
regions corresponding to coronary artery perfusion territories

(15, 16). This division was based on the current guidelines
and, in addition to its intrinsic clinical utility, could provide
the foundation for subsequent research. The model exhibited a
high performance with average Intersection Over Union value
of 80.9%, but relatively lower for epicardium due to the obscure
borders near the edge of imaging area.

Wall motion abnormality detection and
classification

Overall, the deep learning model exhibited good
performance with similar accuracies for detecting RWMAs
in all 3 regions of the left ventricle in both internal and

TABLE 4a The measurements of the corresponding clinical metrics for the RWMAs made by physicians and predicted by AI in internal test dataset.

Parameters Equipment Median value from clinical report (IQR) Bland–Altman analysis (Physicians vs. AI)

Bias Upper LOA Lower LOA

LV EF Standard 60 (59,62) 4.0 15 −11

Bedside 58 (51,60) 4.7 15 −9

LV EDV Standard 92 (81,108) 6.0 50 −40

Bedside 85 (77,101) 6.4 45 −39

LV ESV Standard 36 (31,43) −1.1 19 −23

Bedside 35 (31,47) −1.2 21 −30

LV EDTD Standard 44 (42,47) 0.8 8.0 −5.9

Bedside 42 (38,46) 1.5 11 −6.2

LA ESTD Standard 38 (35,40) 2.6 14 −7.5

Bedside 36 (31,41) 2.7 15 −8.0

RV EDTD Standard 31 (29,33) −0.9 8.1 −9.5

Bedside 31 (29,33) 0.9 10 −8.4

RA ESTD Standard 31 (29,33) 0.5 11 −9.0

Bedside 32 (29,33) 1.5 11 −10

TABLE 4b The measurements of the corresponding clinical metrics for the RWMAs made by physicians and predicted by AI in external test dataset.

Parameters Equipment Median value from clinical report (IQR) Bland–Altman analysis (Physicians vs. AI)

Bias Upper LOA Lower LOA

LV EF Standard 59 (51,63) 3.4 17 −7.7

Bedside 47 (37,58) 4.6 16 −4.1

LV EDV Standard 103 (95,114) 14 41 −20

Bedside 108 (90,136) 4.7 58 −43

LV ESV Standard 59 (55,62) 6.6 16 −12

Bedside 55 (39,83) −2.2 18 −24

LV EDTD Standard 48 (45,50) 1.9 12 −6.4

Bedside 48 (43,53) −1.1 7.0 −10

LA ESTD Standard 36 (32,39) −1.4 10 −12

Bedside 40 (36,44) 0.5 12 −14

RV EDTD Standard 35 (32,38) 1.8 11 −7.6

Bedside 35 (21,38) 1.2 8.9 −7.5

RA ESTD Standard 35 (32,38) 1.4 9.8 −5.9

Bedside 35 (31,39) −0.1 13 −9.7

LVEF, left ventricular ejection fraction; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-systolic volume; LV EDTD, left ventricular end-diastolic transversal
dimension; LA ESTD, left atrial end-systolic transversal dimension; RV EDTD, right ventricular end-diastolic transversal dimension; RA ESTD, right atrial end-systolic transversal
dimension; IQR, interquartile range; LOA, limits of agreement.
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FIGURE 5

The performance of the automated quantification model. Bland–Altman plots of left ventricular ejection fraction in repeated measurements
using the exact same video clips of internal (left plot) and external (right plot) testing dataset. The red dots represent cases acquired from
portable bedside ultrasound; the blue dots represent cases acquired from standard ultrasound. The black lines represent limits of agreement.

external test datasets (Table 3). Performance in the external test
dataset was only slightly lower (by ∼3%) than in the external
test dataset. Also importantly, results achieved from images
obtained with the bedside ultrasound were comparable to those
of the standard equipment with the difference of average AUC
between equipment of only 0.04 in internal and external test
datasets (Figure 4). Our primary motivation is that the model
will assist, not replace, physician decision making. Therefore,
the AI model will save experts’ time without influence his or
her judgment and proved to be very helpful for beginners, with
average accuracy improving by 9.8, 7.4, and 12.8% respectively
for the A, F, and L territories. With the advantage of objectivity
and consistency, the AI model may become an educational
tool for beginners to improve their skill in image acquisition
and interpretation.

We also analyzed the incorrect cases of each models using
Logistic regression. After multivariable adjustment, correlation
between the accuracy and age was statistically significant in all
models (Supplementary Table 4). The violin plot showed that
the average age of incorrect cases was older than that of correct
cases (Supplementary Figure 8). This finding is consistent
with our experience in clinical practice. Because the degree of
wall motion in older patients was generally lower than young
patients, which makes it more difficult for models to distinguish
MI and normal cases.

Automatic quantification of cardiac
function

In addition to detection of territories with RWMAs,
patient care is influenced by parameters of cardiac size
and function. Accordingly, our model also automatically and
reliably quantified the relevant parameters derived from end-
diastolic and end-systolic images. Since it is intended that

our deep learning model be used in conjunction with bedside
echocardiographic devices without ECG capabilities, end-
diastolic and end-systolic images need to be selected based on
endocardial areas determined from the segmentation model;
this approach is similar to those employed by Zhang et al. (10)
and Ouyang et al. (9). Finally, the deep learning model was
reasonably consistent with physicians’ classification of reduced
(<40%), midrange (40∼50%) and preserved (>50%) LVEFs,
which has important implications for treatment and prognosis
of patients with heart failure (3, 5).

Related work

Automated detection of RWMAs have been described in two
recent studies. Kusunose et al constructed a deep learning model
that utilized 3 mid-level short-axis static images acquired at
the end-diastolic, mid-systolic, and end-systolic phases to detect
the presence and territories of RWMAs (15). The highest AUC
produced by the model is 0.97, which is similar to the AUC by
cardiologist and significantly higher than the AUC by resident
readers. However, the pipeline was semiautomatic in that the
initial input requires manual selection for echocardiogram views
and cycle phases. As such, that model was based on analysis of
static images, which does not parallel how RWMAs are detected
in clinical practice which rely on dynamic videos. Finally, the
study lacked external test dataset.

Huang et al also developed a deep learning model for
detection of RWMA that directly analyzed dynamic videos,
first by performing automated view selection and segmentation
(16). The AUC for the external dataset was 0.89. However, the
dataset of RWMAs was relatively small (n = 576) and 84%
(n = 486) of studies included RWMAs of multiple walls; thus
the ability to detect cases with single wall RWMAs was not
fully evaluated. In contracts, nearly 50% of cases in our study
have single wall RWAMs. In addition, to meet the stringent
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quality control, the author excluded up to a third of the
examinations despite only using standard echocardiographic
equipment. This model is therefore not suitable for widespread
use in clinical practice, especially for analysis of bedside
ultrasound in the emergency department. In contrast, our
quality control algorithm was based on assessments by expert
echocardiographers and therefore more closely mimicked
clinical practice. Accordingly, our algorithm excluded only 2.7%
of studies from standard equipment and 14.7% of studies from
portable bedside studies. Despite having excluded a smaller
percent of cases, our overall model performed was comparable
to that of this prior study. Thus, our fully automatic pipeline can
be applied to both standard and bedside ultrasound for detection
of RWMAs and measurement of cardiac function, even in the
emergency department.

Study limitations

The results of our study need to be considered within
the context of several limitations. First, the distribution of
echocardiography machines differed between MI and control
cases, because the MI cases are more likely to have been
performed with portable bedside equipment in an intensive
care or emergency department, while control cases were mainly
obtained by standard equipment in dedicated ultrasound rooms.
Second, like other deep learning studies, we face the “black box
problem” related to unexplained model features and how they
contribute to the final result. To limit this problem to some
degree, we removed irrelevant areas (e.g., RV free wall region)
during the segmentation process so that the model focused
on LV myocardium. Third, our model detected the presence
and RWMAs rather than the severity of motion abnormalities,
because wall motion score indexes recommended by society
guidelines have interobserver and intra-observer variabilities.
Instead, we developed an automated model to quantify cardiac
function in real time. Although our model achieved good
performance in the external test set, testing of the pipeline in
a prospective RCT cohort is warranted.

Conclusion

We developed and validated a fully automated
echocardiography pipeline applicable to both standard and
portable bedside ultrasound with various functions, including
view selection, quality control, segmentation, detection of the
region of wall motion abnormalities and quantification of
cardiac function. With high levels of sensitivity and specificity,
the model has the potential to be used as a screening tool to
aid physician in identifying patients with RWMAs, particularly
in through the use of portable bedside ultrasound in the
emergency room and intensive care units.
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