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cells and other non-neuronal cells and also acts as a neurotransmitter. The histamine
neuron cell bodies are in the tuberomammillary (TM) nucleus of the hypothalamus and
these neurons send projections throughout the central nervous system (CNS), in
particular to the cerebral cortex, amygdala, basal ganglia, hippocampus, thalamus,
retina, and spinal cord. HA neurons make few synapses, but release HA from the cell
bodies and from varicosities when the neurons fire. Thus the HA neural system seems
to modulate and control the HA concentration in projection regions. It is known that
high HA levels in the extracellular space inhibit serotonin release, so HA may play a role
in the etiology of depression.

Results: We compare model predictions to classical physiological experiments on HA
half-life, the concentration of brain HA after histidine loading, and brain HA after
histidine is dramatically increased or decreased in the diet. The model predictions are
also consistent with in vivo experiments in which extracellular HA is measured, using
Fast Scan Cyclic Voltammetry, in the premammillary nucleus (PM) after a 2 s antidromic
stimulation of the TM, both without and in the presence of the Hs autoreceptor
antagonist thioperamide. We show that the model predicts well the temporal behavior
of HA in the extracellular space over 30 s in both experiments.

Conclusions: Our ability to measure in vivo histamine dynamics in the extracellular
space after stimulation presents a real opportunity to understand brain function and
control. The observed extracellular dynamics depends on synthesis, storage, neuronal
firing, release, reuptake, glial cells, and control by autoreceptors, as well as the
behavioral state of the animal (for example, depression) or the presence of
neuroinflammation. In this complicated situation, the mathematical model will be
useful for interpreting data and conducting in silico experiments to understand causal
mechanisms. And, better understanding can suggest new therapeutic drug targets.

Background

Histamine (HA), a small molecule that is synthesized from the amino acid histidine, has
long been known to be involved in the contraction of smooth muscle in the gut and
vasodilation [1]. Histamine also plays an important role in the immune system [2] where
it is associated with allergies, inflammation, and T-cell regulation. In the brain, histamine
is stored in mast cells and other non-neuronal cells (containing roughly half of brain
histamine [3, 4]), but it is also used as a neurotransmitter [5]. The neuronal cell bodies
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are in the tuberomammillary (TM) nucleus of the hypothalamus and these neurons send
projections throughout the CNS, in particular to the cerebral cortex, amygdala, basal gan-
glia, hippocampus, thalamus, retina, and spinal cord [2]. HA neurons make few synapses,
but release HA from the cell bodies and from varicosities when the neurons fire. Thus the
HA neural system modulates and controls the HA concentration in projection regions
[5]. The firing patterns of HA neurons show circadian rhythms [5] and HA is known to
promote arousal, consistent with the drowsiness effects of antihistamines.

There are several reasons why understanding the control of HA in the extracellu-
lar space may be important. Firstly, there are indications that HA may play a role in
the pathology of schizophrenia and obesity [6—8]. There was early experimental evi-
dence that suggested that serotonin release may be inhibited by the presence of HA
[9, 10]. This has now been confirmed by our direct simultaneous measurements, in vivo,
of serotonin and HA in the extracellular space [11]. This may well provide a mecha-
nism by which the neuroinflammation that occurs in a variety of disorders could cause
depression.

In this paper we construct a mathematical model of the synthesis, vesicular storage,
release and reuptake of HA, and control in the extracellular space by HA autoreceptors.
Overall, this model is similar to previous models that we have constructed for dopamine
[12] and serotonin [13], except for one very important difference. In the case of all three
neurotransmitters, autoreceptors on the surfaces of varicosities inhibit release when the
extracellular concentration is high and withdraw the inhibition with the extracellular con-
centration is low; this is clearly a mechanism to stabilize the extracellular concentration.
In our papers [12, 13], we modeled this inhibition to be instantaneous in that it depended
on the current concentration of the neurotransmitter in the extracellular space. Wood
et al. [14] showed, however, that autoreceptor effects are long-lasting and persist even
when the concentration in the extracellular space has returned to normal. This is almost
certainly because the cellular machinery that creates the inhibition and the decay of that
machinery take time. Therefore, in the present paper we introduce a minimal mathemat-
ical model of signal transduction at the G-protein coupled autoreceptor consisting of a
G-protein subunit and a regulator of G-protein signaling (RGS) protein.

The details of the model are given in the “Methods” section along with justifications. In
the first section of Results, “Steady state’, we give the normal steady state for the model
and discuss it. In the section “Half-life” we discuss HA half-life in the model and compare
it to values in the literature [3, 4, 15, 16]. In the section “Histidine loading” we compare
model results to the histidine loading experiments of Schwartz [17], and in “Dietary inter-
ventions” section we compare model results to the dietary histamine experiments of Lee
[18]. The model results correspond closely to these classical physiological experiments.

In experiments, the medial forebrain bundle in live mice is electrically stimulated for
2 s, which stimulates the HA neurons in the TM antidromically, and the time course
of HA in the extracellular space in the projection region (the premammillary nucleus)
is measured over 30 s. The measurement techniques are described in “Methods” In
the section “Extracellular histamine after in vivo stimulation” we compare the model
results to the experiments and show that there is a good correspondence. In the section
“Oscillations after in vivo stimulation” we show that the model often shows oscillations in
the concentration of HA in the extracellular space with a period of 10-20 s and that some
animals show similar oscillations. These oscillations are likely the result of oscillations
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in the cellular mechanisms by which the autoreceptors exercise control of synthesis and
release.

Methods
Figure 1 shows a schematic of the model. The pink boxes indicate substrates that are vari-
ables in the model and the grey ovals contain the acronyms of enzymes and transporters.
Histidine in the blood (bHT) is transported into the varicosity by the histidine trans-
porter (HTL) where it becomes cytosolic histidine (cHT) or goes into the histidine pool
(HTIpool). Most of the histidine that enters the cell is used for other processes than mak-
ing HA and that is what the HTpool represents. cHT is converted to cytosolic histamine,
cHA, by the enzyme histidine decarboxylase, HTDC. Some cHA is catabolized by the
enzyme histamine methyltransferase, HNMT, some is transported into the vesicles by the
monoamine transporter, MAT, and becomes vesicular HA, vHA, and some leaks out of
the cytosol into the extracellular space (indicated by the dashed line). vHA is released into
the extracellular space, at a rate proportional to neuronal firing, where it becomes extra-
cellular HA, eHA. In the extracellular space, eHA has several fates. It can be transported
back into the cytosol by a putative HA transporter, HAT. It can diffuse away (removal).
It can be transported into glial cells where it becomes glial HA, gHA, which then leaks
out or is catabolized by HNMT. Finally, eHA can bind to the H3 histamine autoreceptor.
The concentration of HA bound to the autoreceptor, bHA, stimulates the conversion of
the G-protein subunit, G, to its activated state, G*. And, G* stimulates the conversion of
the RGS protein, 7, to its activated state, 7%, in which it facilitates the conversion of G*
back to G. It is the activated G-protein subunit, G* that inhibits release and synthesis of
HA. We remark that we only track 7* and G* since total G-protein, G + G*, is assumed
constant, as is 7 + T™. The details of these processes are discussed below.

The differential equations are as follows. Each equation represents mass balance; that
is, the rate of change of a variable is the sum of the rates by which it is being made minus

Histamine terminal

Fig. 1 Schematic of the model. Abbreviations: bHT, blood histidine; cHT, cytosolic histidine; HTpool, the
histidine pool; cHA, cytosolic histamine; vHA, vesicular histamine; eHA, extracellular histamine, gHA, glial cell
histamine; bHA, the concentration of bound autoreceptors; G and G*, the inactive and active G-protein
subunit; T and T*, the inactive and active RGS protein; HTL, the histidine transporter; HTDC, histidine
decarboxylase; HNMT, histamine methyltransferase; HAT, the putative HA transporter; Hs, histamine
autoreceptor
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the sum of the rates at which it is being used. Concentrations are in micromolar and the

time units are hours. Exact formulas for the velocities are given below where some of the

more difficult modeling issues are discussed. In the differential equations, the variables

are indicated by lower case letters because that makes the equations easier to read.

d(cha)
dt

d(vha)
dt

d(eha)
dt

d(gha)
dt
d(bht)
dt
d(cht)
dt
d(htpool)
dt
d(G*)
dt
d(T*)
dt
d(bHA)
dt

Vurpc(cht) — ViaT (cha, vha) — VigamT (cha)
—ay(cha) + Viyat (eha) 1)

VMAT (cha, vha) — azinhib(G*)fireha(t) (vha) (2)

ayinhib(G*)fireha(t) Vha) — VT (eha) — VHATg(eha)
~+ai(cha) + a3(gha) — as(eha) (3)

VHATg (€ha) — az(gha) — ViNMmTg (8ha) (4)

HTin(t) — VigrL (bht) — as((bht) — 100) (5)

VHTLg(bht) — VHTDc(Cht) — ag(cht) + a7 (htpool) (6)

ae(cht) — ay(htpool) — ag(htpool) (7)

as(bHA)*(go — G*) — a10T*G* 8)

a11(G*)2(ty — T*) — a1 T* 9)

(llg(eha)(bo — bHA) — a14(bHA) (10)

In Egs. (2) and (3), fireha(t) is the firing rate of the TM neurons in spikes/sec (sp/sec). At

the normal steady state, fireha(t) = 5/sp/sec [19], but in “Extracellular histamine after in

vivo stimulation” and “Oscillations after in vivo stimulation” sections, fireha(t) is varied

corresponding to the stimulation. The coefficients, a;,j = 1, ..., 14 are given in Table 1.

Table 1 Coefficients

Coefficient Value Explanation

a 12 HA leakage from the cytosol to the extracellular space
a 5 HA release per action potential

a3 12 HA leakage from glia to the extracellular space

as 001 HA removal from the extracellular space

as 25 Strength of stabilization of blood HT near 100 uM
ae 25 From cHT to HTpool

az 1 From HTpool to cHT

ag 1 other uses of HT remove HT

dg 432 Bound autoreceptors produce G*

an 1.296 T* facilitates the reversion of G* to G

ar 144 G* produces T*

an 2592 decay coefficient of T*

ars 432 eHA binds to autoreceptors

aa 1440 eHA dissociates from autoreceptors

Page 4 of 19
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For enzymes and transporters we assume Michaelis-Menten kinetics and take the K,
values from the literature. The Vj,4x values depend on enzyme expression and will vary
from cell to to cell, from person to person and will vary in time. We choose values so
that the model predicts a variety of experimental results on both short (seconds) and long
(hours) timescales well.

HTL

We made blood histidine a variable in the model so that we could do histidine loading
experiments. Plasma histidine is approximately 100 #M [20] and we chose the normal
input from the gut, HT;, = 424 uMhr, so that the steady state concentration of bHT
would be approximately 100 uM. Histidine is transported in two steps from the blood
into varicosities, first across the blood brain barrier (BBB) and then into the varicosity.
Kilberg [20] says that the K}, across the BBB is 100 uM but the apparent K, (physiological
conditions) is 2000 M. Kilberg [20] also reports that transport into muscle cells has a
K, = 1250 uM. Thus we chose a K;;, = 1000 uM for the two step process and Vj;;x =
4680.

(4680) (bHT)

VirL (bHT) = .
nLGHT) = 000 pHT

HTpool
All cells take up the amino acid histidine. In our model of an HA varicosity the HTpool
represents the HT that is used for other purposes than making HA.

HTDC
For histamine decarboxylase, we took the K, = 270 uM from [21]. The second term
represents the inhibition of synthesis by the G-protein transducer (see below).

Virpe(eHT) = VCEHD) ) 1015 — (2.45)G")
c = —— . (2. — (2. .
HIDC 270 + cHT
HNMT
For histamine methyltransferase, we took the K;,, = 4.2 uM from [22]. We note that as
a methyltransferase, HNMT depends also on the concentration of the the methyl donor

S-adenosyl-methionine, but we do not model this dependence.
(185.5)(cHA)
424 cHA °
In the glial cells, the V};,,x = 53 uM/hr and the K,,, = 4.2 uM for VHNMTg'

Vanmr (cHA) =

MAT

We took the K, = 24 uM of the monoamine transporter from [23] and we include a
linear backleak term from the vesicular compartment to the cytosol as indicated in [24]
for dopamine.

Ve (cHA, vHA) — (31,500)(cHA) 5(vHA)
MATRERS ) = 4y cHA e
HAT
A specific transporter that takes HA from the extracellular space back into the cytosol has

not been identified but such a transporter (or transporters) must exist because otherwise
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the vesicular pool could be quickly depleted by repeated firing. However, the pool cannot
be depleted. We take the K;,;, = 2 uM, which is in the range of extracellular HA (Hashemi
unpublished results).

6513)(eHA
Vuar(eHA) = w. In the glial cells, the Viyax = 24 uM/hr

2+ eHA
and the Kj;, = 1 uM for Vyarg.

Leakage
There is experimental evidence that HA can leak directly from the cytosol of varicosities
or glial cells into the extracellular space and so both effects are included in the model.

Autoreceptors and their effects

In our original models of dopamine and serotonin [12, 13] the inhibition of release by the
autoreceptors was instantaneous in that it depended on the current concentration of the
neurotransmitter in the extracellular space. However, our paper [14] on serotonin showed
that autoreceptor effects are long-lasting and persist even when the concentration in the
extracellular space has returned to normal. Similar results have been obtained by us for
histamine [11]. It is likely that the autoreceptor effects are long-lasting because the cellu-
lar machinery that creates the inhibition of release and the decay of that machinery takes
time. The H3 histamine receptor (the autoreceptor in this case) is in the rhodopsin family
of G-protein coupled receptors [25]. The binding of an extracellular histamine molecule
to the autoreceptor causes the release of a G-protein subunit that stimulates a signaling
cascade that results in inhibition of release and synthesis. Most G-protein signals are lim-
ited by RGS molecules (regulators of G-protein signaling) that stimulate the G-protein
subunit to rebind [26]. In our minimal model G represents G, — GDP (the inactive G-
protein subunit) and G* represents G, — GTP (the signaling G-protein unit). Similarly, T
represents the inactive RGS protein and T™* represents the active RGS protein.

In our model, by is the total concentration of autoreceptors and bHA is the concentra-
tion of receptors bound to eHA; Eq. (10). Normally, G and G* are in equilibrium and their
sum is constant (gp). The concentration of bound autoreceptors (bHA) drives the equi-
librium towards G*; see Eq. (8). Similarly, 7 and T* are at equilibrium and their sum is
constant (¢p). G* drives the equilibrium towards 7%; see Eq. (9). T*, in turn, drives the
equilibrium between G and G* back towards G; Eq. (8). The concentration of G* affects
the release of HA from the vesicular compartment through the function

inhib(G*) = 2.4015 — (2.45)G*

that appears in Egs. (2) and (3) and this same function appears in formula for the velocity
of the synthesis reaction (HTDC). Since G* = .6945 at equilibrium, tonically the inhibi-
tion is equal to 0.7. As G*(¢) rises the inhibition gets stronger and if G*(¢) decreases the

inhibition becomes weaker.

FSCV

In Fast-Scan Cyclic Voltammetry (FSCV), a carbon fiber microelectrode (CFM) is directly
implanted into brain tissue. A cyclic electrochemical waveform is applied to this elec-
trode, which is held at a resting potential between cycles, allowing neurotransmitters to
adsorb onto the carbon surface. During the anodic wave, which ramps up from the resting
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potential to a positive potential limit, adsorbed analytes will be oxidized on the elec-
trode surface; likewise, during the cathodic wave analytes will be reduced. These Faradaic
oxidation and reduction events generate electron flow through the electrode, measur-
able as current. FSCV uses background subtraction to remove non-faradaic signals which
are generated by high scan rates. As a result of background subtraction, FSCV can only
detect changes in, not absolute analyte levels. Therefore, stimulation is used to evoke
neurotransmitter release in vivo. After background subtraction, FSCV generates analyte
specific cyclic voltammograms (CVs), that can be used for qualitative and quantitative
analysis. For data interpretation purposes, a 2D plot, also known as color-plot, is digi-
tally constructed by stacking a set of CVs collected at 10 Hz for the file collection period
(30—60s).

CFMs were fabricated with 7 um diameter carbon-fibers (Goodfellow Corporation, PA,
USA) aspirated into glass capillaries (0.6 mm external diameter, 0.4 mm internal diam-
eter, A-M systems, Inc., Sequim, WA). A carbon-glass seal was formed via a vertical
micropipette puller (Narishige Group, Tokyo, Japan). The exposed length of the carbon
fiber was trimmed to 150 um under an optical microscope. Microelectrodes were elec-
troplated with Nafion as described previously [27]. All potentials are quoted with respect
to Ag/AgCl reference electrode.

Handling and surgery on male C57BL/6] mice weighing 20-25 g (Jackson Laboratory;,
Bar Harbor, ME, USA) were in agreement with the University of South Carolina Guide for
the Care and Use of Laboratory Animals, approved by the Institutional Animal Care and
Use Committee. Urethane (25% dissolved in 0.9% NaCl solution, Hospira, Lake Forest,
IL, USA) was injected intraperitoneally (i.p.) and once deep anesthesia was confirmed,
animals were secured into a stereotaxic instrument (David Kopf Instruments, Tujunga,
CA, USA) and stereotaxic surgery was performed. A heating pad sustained mouse body
temperature around 37 °C (Braintree Scientific, Braintree, MA, USA).

Stereotaxic surgery was performed on these anesthetized mice according to stereotaxic
coordinates. A Nafion™ modified CFM was positioned in the posterior hypothalamus
(AP: -2.45, ML: +0.50, DV: -5.45 to -5.55 w.r.t bregma). A stainless steel stimulating elec-
trode (diameter: 0.2 mm, Plastics One, Roanoke, VA) was implanted into the medial
forebrain bundle (AP: -1.07, ML: +1.10, DV: -5.00 w.r.t bregma). A histamine specific
waveform was used to monitor histamine neurotransmission [28]. Quantitative data of a
neurotransmitter event is provided by extracting horizontal data points along the event
in the color plot.

In the experiments described in the section “Extracellular histamine after in vivo
stimulation’, the medial forebrain bundle (MFB) was stimulated for 2 s. The resulting
antidromic spikes stimulated the cell bodies of the histamine neurons in the tuberomam-
millary nucleus (TM). Many of these neurons project to the premammillary nucleus (PM)
where we measured the increase of HA above baseline.

Caveats

Every model is an oversimplified representation of complicated and variable physiology.
In this model we chose K, values for enzymes and transporters from the literature but
chose V4« values so the model would reproduce steady state values consistent with the
literature. Our unpublished experimental data shows that it is hard to deplete vesicular
stores and this suggests strongly the eHA must be transported back into the cytosol even
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though such a transporter has not be identified. We gave our putative transporter a K,
value of 2 uM in the range of normal extracellular concentrations. We have included a
glial cell in the model to represent all the non-neuronal cells that can take up and catab-
olize histamine. Good measurements of the size of the vesicular compartment and the
size of the extracellular space (per varicosity) are not available and so we treat those com-
partments as though they are the same size. We have referred to the “concentration” of
autoreceptors and bound autoreceptors but we have no good way of estimating effective
concentrations for the autoreceptors that are on the varicosity surface, so the units are
arbitrary. Finally, we assume that the amount of eHA that is bound to autoreceptors is
small compared to the total HA in the extracellular space, and so we don'’t keep track of
the amount in the differential equation for eHA.

Results

Steady state

The following table (Table 2) gives the steady state concentrations at the unique steady
state in the model.

It is known [20] that the blood concentration of histidine is about 100 uM. We can
get information about the changes in extracellular concentration of histamine after stim-
ulation from the experiments in [28] and Fig. 5 below. The experimental method gives
the change in extracellular concentration relative to the initial baseline, but not the base-
line itself. In Fig. 5, the experimental control curve goes down 0.9 uM below baseline, so
the baseline concentration must have been above 0.9 uM. Similarly many of the control
curves in [28] go well below baseline. Experiments on many animals (#=41) show an aver-
age dip below baseline at £ = 30 s to be 1.07 uM (unpublished data from the Hashemi
Lab). Thus 1.39 uM seems like a reasonable steady state value for extracellular histamine
in our model. Our histidine pool is 342 M and this corresponds well to a measurement
of 370 uM measured in human muscle [29].

Unfortunately, there is very little other information in the literature on the concentra-
tions of histidine and histamine in various sub-cellular compartments. However, there is
information on how the system changes under various perturbations, and we compare
our model to those experiments in the next three sections.

Half-life
There have been many measurements of histamine half-life in the brain [3, 4, 15, 16].
These studies have revealed an enormous range in the values of the half-life depending

Table 2 Steady state concentrations in the model (micromolar)

Variable Name Value
CHA Cytosolic histamine 2.90
vHA Vesicular histamine 1509
eHA Extracellular histamine 1.39
gHA Glial histamine 061
bHT Blood histidine 99.72
cHT Cytosolic histidine 2735
htpool Histidine pool 341.9
G* Active form of the signaling G-protein 0.6945
T* Active form of the RGS protein 12.69

bHA Bound autoreceptors 294
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on age, region of the brain, time of day, and species. The data of Schwartz et al. (Figure 1
in [17]) in rats after a histamine load suggest a half-life of approximately 2 h, though in
Schwartz [3] it is suggested that the half-life of neuronal histamine is less than an hour.
Dismukes and Snyder [15] gave a decarboxylase inhibitor in the tail vein and announced
a half-life of 30 s. Nishibori et al. [16] inhibited histamine decarboxylase in many species
and brain regions and found half-lives ranging from 13 to 87 min. Maeyama et al. [4] also
used a decarboxylase inhibitor in transgenic mice that have no mast cells and found a
half-life depending on the brain region that varied from 48-103 min. However, in wild
type mice they reported a half-life of about six hours.

Interpretation of half-life experiments is particularly difficult because it is known that
about 50% of the histamine in the brain is in mast cells and the other 50% in HA neurons
[4]. There is no reason to believe that turnover would be the same in the neurons as in
the mast cells and, in addition, there may be transfer from one to the other. Finally, the
stress response causes histamine to be released from mast cells [30] and such histamine
could be swept quickly from the brain by the circulatory system. In the experiments
described above, it seems likely that the animals were stressed and this may have affected
the measured half-life. Our reading of this literature suggests that the half-life of neuronal
histamine in the brain is in the range of 1-2 h and this is what we find in the model.

Calculating the half-life of HA is complicated because HA occurs in several compart-
ments: the neuronal cytosol (cha), the neuronal vesicles (vha), the extracellular space
(eha), the glial cells (gha). HA is metabolized in only two of the these compartments, the
neuronal cytosol and the glial cells, but HA moves between all four compartments. And,
as Fig. 2 shows, the half-lives are somewhat different in the different compartments. All
the information necessary for the calculation of the overall half-life of neuronal HA is
shown in Table 3.

We assume that the fractional percentages of the volume are cha (30%), vha(10%), eha
(20%), and gha(40%). The brain half-life of neuronal HA is then the sum of mass fraction
times the corresponding half-lives over the four compartments:

brain half-life = (.0527)(1.62) + (.915)(1.02) + (.0169)(1.31) + (.0148)(1.87).

e 50*cha

)

i
1N}
o

@ \ha

-
o
o

100*eha

e 200*gha

Concentration (pM
L) (o]
o o

N
o
"

N
o
L

0 r r r r )
0 1 2 3 4 5

Hours
Fig. 2 Model experiments on HA half-life. At t = 0 the Vg of HTDC was set to zero, mimicking the
experiments in [3,4, 15, 16]. The colored curves show the decline of HA in the cytosolic, the vesicular, the
extracellular, and the glial cell compartments respectively. The overall half-life, weighted by compartment
sizes, was 1.07 h
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Table 3 Compartmental half-lives

Compartment cha vha eha gha
Concentration (M) 2.90 151 1.39 061
Volume fraction 30% 10% 20% 40%
Mass fraction 5.27% 91.5% 1.69% 1.48%
Half-life (hrs.) 1.62 1.02 131 1.87

This overall half-life is 1.07 h. Of course, we don’t know whether the volume fraction
assumptions are right but it doesn’t matter much since the overall half-life is dominated
by the half-life for the vesicular compartment because that is where most of the mass is.
It may seem strange that the half-life in the vesicular compartment is the fastest since to
be catabolized the mass in the vesicles needs to be released into the extracellular space
and then transported back into the terminal cytosols or the glial cells. But there is a sim-
ple explanation. As eHA drops, inhib(G*) rises increasing the rate of release per action
potential, so VHA goes down quickly. The half-life of 1.07 h corresponds reasonably well
with the values from the literature mentioned above. We note that the size of the vesic-
ular compartment in neurons varies widely [31], and our choice of 10% is a reasonable

estimate.

Histidine loading

As a test of dynamics and kinetics of our pathways for histamine synthesis, storage in
vesicles, release, and reuptake, we compared our model results to the experiments of
Schwartz et al. [17]. They injected a bolus of histidine into rats and followed the concen-
trations of histidine and histamine in the hypothalamus and other regions of the brain.
Panel A of Fig. 3 shows the data points from Schwartz et al. [17], and the model sim-
ulations of how the histidine concentration changes over time. The model curve is the
weighted average of the amount of histidine in the blood and extracellular space (20%)
and in the cellular space (80%). The fit is excellent. In both panels, what is graphed is fold
change in concentration over baseline. Panel B shows the weighted average of the his-
tamine concentrations as a function of time computed from the model. Histamine is in

four compartments in the model, the cytosol, the vesicles, the extracellular space, and the

A

16

Histidine concentration (fold change)

Histamine concentration (fold change)

0 2 4 6 8 10 0 2 4 6 8 10
Time ( hours ) Time ( hours )

Fig. 3 Histidine loading. A model experiment on histidine loading is compared to the data of [17]. The red

and blue curves in Panels a and b show the model histidine and histamine curves (fold change), respectively,

after a histidine load. In the model, we increased HTj, from its normal value of 424 to 6700 uM/hr fromt=1h

to t =2 h. The black dots show experimental means from [17]. One standard deviation above and below the

experimental means is shown by the grey area in Panel b
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glial cells, which we assume to have volume fractions of 0.4, 0.1, 0.2, and 0.3, respectively.
Note that the histamine concentration goes up more slowly because it has to be synthe-
sized from histidine and it comes back to baseline more slowly. The data of Schwartz
show a large individual variation at each time point. The gray region in Panel B is shows
the range of Schwartz’s histamine data by giving his means (black dots) and the upper and
lower bounds of one standard deviation above and below mean.

Dietary interventions

In a series of experiments, rats were fed inadequate (1/3 of normal), normal, and excess
histidine (8/3 of normal) for two weeks, and histidine and histamine levels were measured
in various body tissues [18]. We conducted similar experiments with our model and the
results match quite well to the experimental data. In Fig. 4, the red dots correspond to
experimental data and the blue dots to model results. The experimental and model results

are very close.

Extracellular histamine after in vivo stimulation

The medial forebrain bundle (MFB) was stimulated for 2 s at t = 5 s and the resulting
antidromic spikes stimulated the cell bodies of the HA neurons in tuberomammillary
nucleus (TM). The extracellular histamine concentration was measured (relative to base-
line) in the PM (premammillary nucleus). The black curve in Fig. 5 shows the average (n = 6)
resulting HA curve in the extracellular space. The data has been moved up by 1.39 uM
so the experimental baseline corresponds to the model steady state for eHA. Notice that
the extracellular histamine curve stays above normal until about 20 s and then plunges
below baseline descending to 0.51 «M at 30 s. The dashed green curve overlapping the
black curve is the prediction, computed using the model described in Methods with only
one change. At steady state, the rate of neuronal firing is steady at 5 spikes per second. To
simulate the the firing of the TM neurons we changed fireha(t) from its normal value of
5 sp/sec to 25 sp/sec for t between 5 s and 8 s and 14 sp/sec for ¢ between 8 and 9 s, before
reverting to 5 sp/sec. As one can see the model curve fits the data very well. It is reason-
able that the time of increased firing of the TM is 4 seconds in the model since the TM
may very well fire for more than 2 s after it is stimulated by the antidromic spikes from

the MFB.
30+
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Fig. 4 Dietary Histidine. Model experiments on dietary histidine loading are compared to the data of [18],
where dietary histidine was reduced to 1/3 of normal and increased to 8/3 of normal, and then brain histidine
(panel a) and histamine (panel b) were measured after two weeks. Histidine diet = 1 is normal
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Fig. 5 Extracellular histamine after in vivo stimulation. The black and blue curves are experimental data. The
black curve (n=6) was obtained by stimulating HA neurons in the TM and measuring eHA in the PM relative
to baseline. The overlapping dashed green curve is the model prediction where fireha(t) has been increased
between 5 s and 9 s corresponding to the stimulation (see the text). The blue curve is the result of the same
experiment done 50 min after the mice were given the H3 autoreceptor blocker thioperamide. The
overlapping green curve is the model simulation where the effect of thioperamide is modeled by reducing
the available autoreceptors by 60%

The shape of the model prediction for eHA reflects the dynamics of bHA, G*, and T*.
Those curves are depicted in Fig. 6 along with the graph of eHA. As one can see, eHA
goes up first, followed by an increase in bHA, the concentration of bound autoreceptors.
This causes a rise in G* that, in turn causes a rise in 7% that makes G* start to decline.
The inhibition of release given by the function inhib(G*) depends on G* as indicated in
“Methods” section. This is the autoreceptor effect.

The blue curve in Fig. 5 is the experimental extracellular histamine curve after stimula-
tion 50 min after the mice had been given the H3 autoreceptor antagonist thioperamide
at 20mg/kg. To model this situation we reduced the concentration of autoreceptors by
60% (we lowered b0 from 10 to 4) and we changed fireha(t) slightly. Between 5 s and
8 s, fireha(t) = 22 sp/sec, and between 8 and 9 s fireha(t) = 11 sp/sec before reverting
to 5 sp/sec. With these two changes we obtained the green curve overlapping the blue
curve in Fig. 5. It closely follows the experimental curve. Everything else in the model
remained the same. We note that lowering the firing somewhat is physiologically reason-
able since HA is released from the cell body when the cell fires and inhibits the firing via
cell body H3 autoreceptors [2]. We are not modeling the cell body. We note that model
green curve looks like a straight line as it’s descending and that is because at 8—15 uM the
eHA concentration is way above the K, for HAT.

We adjusted the parameters in Egs. (8), (9) and (10) to get the autoreceptor effects and to
get predictions that are close to the experimental curves. Nevertheless, it is quite striking
that the same model, with two physiologically reasonable adjustments in the drug case,
gives good agreement to both experiments.

Oscillations after in vivo stimulation

Our autoreceptor model has negative feedback from 7™ to G* and inhibition of release by
G*, so it is not surprising that if we increase the strength of the inhibitions or the speed,
we can get oscillations in the autoreceptor system. Figure 7, Panel A shows the eHA curve
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Fig. 6 Autoreceptor variable dynamics after stimulation. The green curve in Panel a is the dashed green eHA

curve from Fig. 5. After eHA goes up dramatically, the number of bound autoreceptors (the red curve) goes

up. Following that, the activated G-protein, G* rises (the blue curve in Panel b), followed by a slow rise in the

RGS protein (the magenta curve), T*, that causes G* to decrease. Note that the autoreceptor variables stay
above baseline even after eHA has returned to baseline at approximately 20 s

for the same stimulation as in the control case in Fig. 5, but in which the inhibition in
inhib(G*) is stronger and the speeds of Eqgs. (8) and (9) are increased and the speed of
Eq. (10) is decreased. One can see the oscillations in eHA. These oscillations are caused
by oscillations in the dynamics of the autoreceptor control system as shown in Panel B.
All three variables, eHA, G*, and T™* oscillate.

Interestingly, 100 s experimental time courses also show oscillations for some animals.
Figure 8 shows two (previously unpublished) eHA curves for two different animals under
control conditions after stimulation. Note that the individual curves show a lot more vari-
ation than the average data curves shown in Fig. 5. In fact, average curves usually don’t
show oscillations because the oscillations in the individual curves have somewhat differ-
ent periods and the oscillations cancel out when one averages. The fact that individual
curves often show oscillations shows that complicated behavior of eHA can arise from
complicated behavior in autoreceptor dynamics. This means that the time courses in the
extracellular space measured for individual animals could shed light on the details of the
intracellular autoreceptor dynamics.

Discussion
In this study we have created a mathematical model of a histamine varicosity. Data on
histidine and histamine in neurons is limited but where data exists the model steady
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Fig. 7 Oscillations in the model. For many sets of parameters different from those in “Methods” section, the
model shows oscillations. The curves in Fig. 7, which show oscillations with a period of about 25 s, were
obtained by changing parameters as follows. We increased strength of the inhibitory effect of the autorecetors
on release to inhib(G*) = (7.645 — 10 % G*), and similarly increased the effect on synthesis in the formula
for Viyrp . We also increased the speeds of Egs. (8) and (9) by multiplying the right hand sides by 5 and
decreased the speed of Eq. (10) by multiplying the right hand side by 0.3. The steady state of the system
remains the same, but all four variables, show oscillations, as seen in panels a (eHA and bHA) and b (G* and T*)
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Fig. 8 Oscillations in experimental data. The two curves are data for individual animals, where eHA was
measured relative to baseline for 100 s in the PM after antodromic stimulation of the TM under control
conditions. The eHA curves show dramatic oscillations
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states are consistent with it. In Results “Half-life”, “Histidine loading’, and “Dietary inter-
ventions” sections we showed that the model results are consistent with classical phys-
iological experiments on brain half-life of histamine, the transient effects of histidine
loading, and long term effects of raising and lowering histidine in the diet, respectively.
In Results “Extracellular histamine after in vivo stimulation” section we showed that the
model gives excellent fits to average in vivo data of the time course of histamine in the
extracellular space after stimulation, both with and without an autoreceptor antagonist.
In the control case, the extracellular concentration descends well below baseline over 30
s and we showed that this is an H3 autoreceptor effect. Reducing the number of avail-
able autoreceptors and a small change in firing produced an almost perfect fit to the
experimental data for the case where the mice had been administered the H3 antagonist,
thioperamide. We do not show the 6 individual animal curves for each of the experiments
depicted in Fig. 5. They show a large amount of individual variation, which is not surpris-
ing since enzyme and transporter expression levels vary by approximately 25% [32, 33].
Each individual curve can be fit by changing the parameters of the model, so each animal’s
curve gives information about its parameters.

In Results “Oscillations after in vivo stimulation” section we pointed out that the autoreceptor
model can show oscillations if parameters are changed and experimental results show that
eHA shows oscillations for some animals. This suggests that these measurements in the
extracellular space could shed light on intracellular dynamics of the autoreceptor effects.

The purpose of creating the mathematical model was to have a tool that can be used
to interpret experimental data in a very complicated biological situation. Our ability to
measure in vivo histamine dynamics in the extracellular space after stimulation presents
an exceptional opportunity to understand brain function and control. But the situation
is complicated because the observed extracellular concentration curves depend on syn-
thesis, storage, neuronal firing, release, reuptake, glial cells, and control by autoreceptors,
and also on polymorphisms in the genes for enzymes and transporters. Furthermore, our
data (unpublished) show that the curves are different for depressed mice and mice that
display neuroinflammation. The model could possibly be used to figure out what parts of
the system are different in these animals. The mechanistic bases of the differences could
then be used to suggest ameliorating pharmacological interventions. Laboratory exper-
imentation combined with model experiments could shed new light on the underlying
biological mechanisms. Every model is an oversimplified representation of complicated
and variable physiology, of course, and we point the reader to the caveats at the end of
the “Methods” section. We do not view our model as a finished product, but rather as
a mathematical instantiation of our current biological understanding that will be revised
and improved as we know more.

We introduced the minimal G-protein autoreceptor model in this paper because exper-
imental data [11, 14] showed that autoreceptor effects are long-lasting and continue on
the time scale of minutes after the concentration in the extracellular space has gone back
to normal. The minimal model was sufficient to help us understand the data (Results
“Extracellular histamine after in vivo stimulation’, “Oscillations after in vivo stimula-
tion”). The actual dynamics by which autoreceptors exert their influence on synthesis
and release are very complicated and only partly understood. It is likely that inhibition
of release involves inhibition of voltage gated calcium channels and other G-protein sub-
units [25]. Since calcium is involved in moving neurotransmitter vesicles to the boundary
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[34], this inhibition of calcium entry would explain the inhibition of release. It is well
known that the complicated calcium system involving entry and sequestration in the
endoplasmic reticulum can show oscillations [35, 36]. These oscillations could also con-
tribute to the oscillations seen in some of the data from the experimental data (Results,
“Oscillations after in vivo stimulation”). In our minimal model, the inhibition comes from
G* without the full cell biological explanation and the oscillations come from the inhibi-
tion of G* by the RGS protein T*. In future work, we plan to elaborate our autoreceptor
model.

In our previous work we have found that autoreceptors exert a very strong homeo-
static effect on the concentrations of dopamine and serotonin in the extracellular space
[12, 13, 37, 38] and protect those concentration against gene polymorphisms. That does
not appear to be the case for our model of a histamine varicosity. For example, the S354G
mutation on HTDC reduces enzyme activity of the synthesis enzyme by 67% [39], and (in
the model) eHA declines by 58%. The C314T heterozygote mutation of HNMT reduces
the activity of HNMT by 26% [40], and in the model eHA increases by 35%. The model
can be made much more homeostatic by increasing the strength of the autoreceptor
effect of release and on HTDC by, for example, changing inhib(G*) to inhib(G*) =
(7.645 — 10 * G*) which has a slope of -10 instead of -2.45. If we do that, then in the case
of the S354G mutation of HTDC, eHA declines only 33% even though the enzyme activ-
ity of HTDC declines by 67%. However, then the HA curve after histidine loading is well
below the experimental data (see “Histidine loading” section). Thus, in the absence of data
on how homeostatic eHA is with respect to various polymorphisms, we chose the milder
strength for the inhibition. Finally, data from the Hashemi Lab show that eHA can rise
within minutes in response to a peripheral inflammation. The increase probably comes
from the mast cells, but it doesn’t make sense that neuronal eHA be tightly controlled if
eHA is varying a lot because of the mast cells. We expect that measurements of eHA for
normal mice and mice with these polymorphisms will become available in the next few
years in which case we may adjust the strength of the autoreceptor effect as appropriate.

A crucial part of the model is the transporter, HAT, which takes up histamine from
the extracellular space back into the cytosol. A specific histamine transporter has not
been identified, though a number of studies support the possible involvement of other
transporters, such as organic cation transporters, in the recycling of histamine [41, 42].
Others attribute the clearance of extracellular histamine surges to the possible involve-
ment of a system transporting histamine into the vasculature [2]. In fact, it is possible that
multiple transporters with varying affinities for histamine may participate in histamine
recycling. For simplicity, in our model we assume the transport of extracellular histamine
into the cytosol by a single transporter, which should be thought of as a composite of
these possibilities.

Serotonin and histamine are co-localized in many brain regions [43, 44]. The most com-
pelling evidence of co-modulation between the two neurotransmitters is the existence of
inhibitory H3 heteroreceptors on serotonin varicosities [9, 45]. We have recently shown
rapid, potent inhibition of serotonin release during transient increases in extracellular
histamine [11]. This is of particular significance because the majority of animal mod-
els of depression are co-morbid with neuroinflammation, and it is reasonable to assume
that neuroinflammation causes increased brain histamine. In addition, we have recently
found (unpublished) that most of the usual drugs for depression inhibit the reuptake
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of histamine into varicosities. Taken together, this strongly suggests that understanding
depression will require understanding the co-modulation of serotonin and histamine in
the brain.

Conclusions

We have constructed a mathematical model of histamine in neurons including synthesis,
storage, neuronal firing, release, reuptake, uptake by glial cells, and control by autorecep-
tors. The model predicts well the results of classical physiological experiments on long
time scales (hours to days) as well as recent experiments on histamine dynamics in the
extracellular space on short time scales (seconds to minutes). The model will be useful for
interpreting data and conducting in silico experiments to understand the causal mech-
anisms underlying observed behavior. The model includes an new dynamical model for
the cellular dynamics stimulated by binding to autoreceptors. This dynamical system may
also be useful for modeling the actions of serotonin and dopamine autoreceptors. The his-
tamine model will be used with the authors’ serotonin model to study the co-regulation

of serotonin and histamine in the brain.
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