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Abstract: Background: The effect of post-vaccination adverse events on immunogenicity is unknown.
We aimed to explore relationship between post-vaccination adverse reactions and antibody levels
during 6-month follow-up. Methods: Blood was serially drawn from healthcare workers after the
second dose of BNT162b2 mRNA vaccine (Day 12, 30, 60, 90, 120, 150, and 180) and anti-SARS-CoV-2
spike IgG (S-IgG) levels were measured. Following each vaccine dose, volunteers completed a
questionnaire regarding adverse reactions (symptomatic vs. asymptomatic groups). Results: A total
of 395 subjects received the second dose of the vaccine. The main results were as follows: (i) fever after
the 2nd dose was independently associated with the median S-IgG level at all follow-up time points;
(ii) significantly higher S-IgG levels were observed in the symptomatic group of patients without prior
COVID-19 infection throughout the entire follow-up period; (iii) prior COVID-19 positivity resulted
in higher S-IgG levels only in the asymptomatic group from Day 90 of the follow-up period; (iv) both
prior COVID-19 disease with asymptomatic status and symptomatic status without prior COVID-19
infection resulted in similar S-IgG antibody levels; (v) significantly lower serum S-IgG levels were
observed in smokers. Conclusion: Fever may play an important role in the post-vaccination immune
response in the long term.

Keywords: COVID-19; anti-SARS-CoV-2; spike IgG; mRNA vaccine; adverse reaction; fever

1. Introduction

According to the WHO database [1], more than 390 million confirmed SARS-CoV-2
infections worldwide since 2019 with more than 5.5 million deaths. Beside the devastating
health effects, the novel coronavirus disease 2019 (COVID-19) also had harmful economic
and social consequences. Controlling the pandemic required joint and rapid action by
science and pharmaceutical companies leading to the development of perhaps the most
important vaccines in human history: the mRNA-based vaccines against SARS-CoV-2. A
two-dose regimen of BNT162b2 and mRNA-1273 were found to be safe and more than
90% effective against COVID-19 [2,3]. However, several systemic adverse reactions (AR)
were observed during vaccination, mainly after the second dose. The most common ARs
were fatigue (59–65%), headache (52–58%), fever (16%), and chills (44%) [2,3]. The rapid
pace of vaccine development and the uncertainty of potential long-term adverse effects
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raised some level of hesitation against mRNA vaccines in the global community [4]. By
21 January 2022, 60.3% of the world’s population had received at least one COVID-19
vaccine, making it the world’s largest vaccination campaign ever [5]. However, potential
relationship between vaccine-related ARs and immunogenicity has been strongly disputed,
poorly investigated and the currently available evidence is contradictory [6,7]. The main
objective of the present study was to elucidate the long-term effect of such ARs on antibody
production in healthcare workers with and without prior COVID-19 infection.

2. Materials and Methods
2.1. Study Design and Population

From 27 January 2021 to 9 May 2021, health care workers in Szigetvar Hospital were
recruited for the present study. Participants were scheduled to initiate BNT162b2 mRNA
(Pfizer/BioNTech, Comirnaty, Reinbek, Germany) vaccination according to the original pro-
tocol of 2 doses with a 3-week interval. Venous blood samples were collected at seven time
points, namely 12 and 30, 60, 90, 120, 150, and 180 days following the second vaccine dose
(designated Day 12, Day 30, Day 60, Day 90, Day 120, Day 150 and Day 180, respectively).
Participants with evidence of COVID-19 infection were also included; COVID-19 had to
be diagnosed 3–5 months prior to the study by RT-PCR (reverse transcription-polymerase
chain reaction). Before administration of the 1st dose, history of hypertension, diabetes,
hypothyreosis, autoimmune disease, malignancies, smoking, recent flu vaccination and al-
lergies were recorded and an inquiry into age, sex, height, body weight, use of medications,
including non-steroid anti-inflammatory drugs (NSAIDS), statins, antihypertensives, ACE
inhibitors, beta blockers, calcium channel blockers, immunosupressants, statins, platelet
inhibitors, steroids was performed using a questionnaire. Based on the presence of vacci-
nation induced adverse reactions; (i) symptomatic (adverse reactions within 7 days after
each dose) vs. asymptomatic (no adverse reaction occurred after any dose), and (ii) prior
COVID-19 infection status, the following subgroups were created: prior COVID-19 nega-
tive and asymptomatic individuals (Group 1); prior COVID-19 negative and symptomatic
individuals (Group 2); prior COVID-19 positive, but asymptomatic patients (Group 3) and
prior COVID-19 positive and symptomatic patients (Group 4).

2.2. Adverse Reaction Assessment

ARs after the 1st vaccination were recorded immediately before the administration of
the 2nd dose and adverse reactions after 2nd dose were recorded on Day 12 follow-up visit
along with first sampling. ARs were investigated in a questionnaire where the volunteer
was required to clearly indicate if they experienced an adverse reaction within 1 week after
vaccination. Volunteers had to select the symptoms they experienced within 1 week after
vaccination from the following list: local pain, fatigue, fever, myalgia, arthralgia, headache,
chills, nausea, lymph node swelling, or other (free description).

2.3. Measurement of Antibody Titers

Blood samples for measurements were drawn from volunteers via veinipuncture with
a 21-gauge needle into a closed system blood sampling serum separator tube without
anticoagulant (Vacuette®, Greiner Hungary LTD, Mosonmagyaróvár, Hungary). Samples
were tested for IgG antibodies against SARS-CoV-2 spike proteins in peripheral blood on a
fully automated benchtop Access2 analyzer (Beckman Coulter Hungary LTD, Budapest,
Hungary) according to the manufacturer’s instructions. For the determination of antibodies
against the SARS-CoV-2 spike protein we used the Beckman-Coulter Access SARS-CoV-2
IgG II assay (Beckman Coulter Hungary LTD). The test measures IgG antibodies directed
to the receptor-binding domain (RBD) of the spike protein of the coronavirus. The two-step
enzyme assay is a paramagnetic particle, chemiluminescent immunoassay intended for the
semi-quantitative determination of IgG antibodies against SARS-CoV-2 in human serum.
Briefly, a sample is added to a reaction vessel with buffer and paramagnetic particles coated
with recombinant SARS-CoV-2 protein. After incubation in a reaction vessel, materials
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bound to the solid phase are held in a magnetic field while unbound materials are washed
away. A monoclonal anti-human IgG alkaline phosphatase conjugate is added to the mix
and the conjugate binds to the IgG antibodies captured on the particles. A second separation
and wash step removes any unbound conjugates. A chemiluminescent substrate is added
to the vessel and the light generated by the reaction is measured with a luminometer. The
light-production is directly proportional to the concentration of SARS-CoV-2 IgG antibody
in the sample. The amount of the antibodies in the sample is determined from a multi-point
calibration curve. The results were interpreted as follows: cut-off index < 10 AU/mL as
non-reactive and reactive ≥ 10 AU/mL.

2.4. Ethics Statement

This study is covered by approval from the Hungarian National Public Health Centre
(40576-8/2021/EÜIG). All procedures were performed in accordance with the ethical
guidelines of the 1975 Declaration of Helsinki. Written informed consent was provided by
all participants before enrollment in the present study.

2.5. Statistical Analysis

Summary statistics of the participants were constructed using frequencies and propor-
tions for categorical data, and mean and standard deviation (SD) for continuous variables.
Statistical analysis was performed using SPSS version 23.0 (IBM Corporation, Armonk,
NY, USA). Conformity of data to normal distribution was determined by histogram and
Kolmogorov–Smirnov test. The between-group difference was calculated with χ2, Fisher’s
exact, Mann–Whitney U, and Kruskal–Wallis tests in line with suitability. The significance
level was considered as p < 0.05. Data with nonparametric distribution were presented as
median and interquartile range (IQR). Correlations of Ig levels with adverse reactions were
tested by linear regression using Spearman correlation coefficient (R).

3. Results
3.1. Study Participants

Between 10 February and 13 June 2021, a total of 395 people received the second
dose of Pfizer-BioNTech vaccine (BNT162b2) and provided informed consent for study
enrollment. From these, 383 individuals completed the questionnaire on post-vaccination
ARs and gave post-vaccination blood samples at Day 12, 323 at Day 30, 320 at Day 60, 303
at Day 90, 268 at Day 120, 220 at Day 150, and 279 at Day 180. The age of the vaccinated
volunteers ranged from 20 to 77 years (median 47 years; IQR 39–55). 76.7% were females
and 34.7% were current smokers. A total of 169 (44.1%) subjects had at least one AR within 7
days of any vaccination (symptomatic group), and 214 (55.9%) reported no vaccine-related
ARs (asymptomatic group). There were significantly more patients with history of allergy
in the symptomatic group. The characteristics of the participants are shown in Table 1.

Table 1. Baseline characteristics of study participants based on post-vaccination adverse event
status. Data are presented as means with standard deviation or median with interquartile range as
appropriate. Proportions are expressed both as numbers and percentages. A p-value less than 0.05 was
considered statistically significant. BMI, body mass index; ACE-inhibitors, Angiotensin-converting
enzyme-inhibitors; COVID-19, Coronavirus disease; NS, non-significant.

Total Population (N = 383) Asymptomatic Group
(N = 214) Symptomatic Group (N = 169) p-Value

Age, (mean ± SD) 46.5 ± 12 47.6 ± 12 45.3 ± 12 NS
Female, (N, %) 303 (76.7) 159 (74.3) 139 (82.2) NS

BMI, (mean ± SD) 27.6 ± 6 28.1 ± 7 26.9 ± 5 NS
Smoking, (N, %) 123 (34.7) 73 (37.2) 50 (31.8) NS

Flu vaccination, (N, %) 67 (17.6) 37 (17.5) 30 (17.9) NS
Hypertension, (N, %) 95 (26) 55 (28.2) 40 (23.7) NS

Diabetes, (N, %) 22 (6) 14 (7.2) 8 (4.7) NS
Hypothyreosis, (N, %) 25 (6.9) 15 (7.7) 10 (5.9) NS

Autoimmune disease, (N, %) 20 (5.5) 10 (5.2) 10 (5.9) NS
Allergy, (N, %) 96 (26.2) 36 (18.3) 60 (35.5) <0.001

ACE inhibitors, (N, %) 63 (17.4) 34 (17.6) 29 (17.2) NS
Beta blockers, (N, %) 60 (16.5) 30 (15.5) 30 (17.8) NS

Calcium channel blocker, (N, %) 25 (6.9) 9 (4.7) 16 (9.5) NS
Prior COVID-19 infection, (N, %) 85 (23.2) 47 (24) 38 (22.5) NS
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3.2. Adverse Reactions

ARs occurred in 125 patients after the first dose and in 131 after the second dose.
The total number of ARs within 7 days after the first vaccination was 314, while 365 ARs
occurred within 7 days after the second dose. In 87 participants (22.7%) at least one AR
occurred after both vaccinations and in 214 cases (55.9%) no ARs occurred after either dose.
The most common ARs during vaccinations were myalgia (27.8%) and local pain (19.7%).
A detailed description of adverse reactions is shown in Table S1.

3.3. Relationship between Antibody Levels, Demographics, and Clinical Variables

Age showed a negative correlation with serum antibody levels at all time points in this
follow-up study (Figure 1; data of Day 30, 60, 120, and 150 are not displayed). Significantly
lower serum S-IgG antibody levels were observed in smoking individuals over the entire
6-month study period when compared to non-smokers (Table S3). Neither female gender
nor BMI showed a significant association with antibody production during follow-up. A
mild negative correlation was observed between antibody production and ACE inhibitor
and statin use respectively, while oral contraceptive treatment was associated with higher
antibody levels in the first month.
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Figure 1. Correlation of serum level of S-IgG and age at Day 12, Day 90, and Day 180 follow-up
visit after the 2nd dose of BNT162b2 mRNA (Pfizer/BioNTech, Comirnaty) vaccine. Values are
Spearman correlation coefficients (rho). S-IgG; anti-spike immunoglobulin G, mRNA; messenger
ribonucleic acid.

3.4. Relationship between Antibody Levels and Adverse Reactions

After the 1st dose fever, chills, and muscle pain showed a strong positive correlation
with antibody levels during the 6-month follow-up period. However, after the 2nd dose
the strongest positive correlation with antibody titer was observed for fever and chills
(Table S2). Significantly higher serum anti-SARS-CoV-2 spike IgG antibody levels were
observed at all time points of the six-month follow-up period in the symptomatic group
(Figure 2A,B). After grouping patients according to previous COVID-19 infection and
adverse reactions after vaccinations, the following results were observed in antibody levels
(Figure 3A,B): (i) At the earliest time point at follow-up (Day 12) symptomatic COVID-19
negative patients (Group 2) had the highest antibody levels among the groups; (ii) COVID-
19 negative and symptomatic patients (Group 2) had higher antibody levels during the
entire 6-month follow-up period than COVID-19 negative and asymptomatic patients
(Group 1) (Figure 3A,B); (iii) in the first 60 days (Day 12, Day 30 and Day 60) COVID-19
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positive status has not led to significantly higher antibody levels in the asymptomatic group
compared to COVID-19 negative individuals. This trend was reversed from Day 90, because
prior COVID-19 positivity resulted in significantly higher antibody levels at 90-, 120-, 150-,
and 180-day follow-up visits in the asymptomatic group. Interestingly, COVID-19 positive
but asymptomatic subjects (Group 3) and COVID-19 negative but symptomatic individuals
(Group 2) produced similar antibody levels over the 6-month follow-up period, except
initial levels at Day 12.
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180 days after the 2nd dose of vaccination (BNT162b2 mRNA) in patients without or with at least one
adverse reaction after each vaccine dose. The data are provided as median and interquartile range.
The between-group differences were calculated by the Kruskal–Wallis test.
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Figure 3. Comparison of serum levels of anti-SARS-CoV-2 IgG at (A) 12, 30, 60 and (B) 90, 120, 150,
180 days after the 2nd dose of vaccination (BNT162b2 mRNA). Healthcare workers were divided into
four study groups: Group 1 = individuals without prior SARS-CoV-2 infection and with no adverse
reaction after vaccination; Group 2 = individuals without prior SARS-CoV-2 infection and with at
least one adverse reaction after vaccination; Group 3 = individuals with prior SARS-CoV-2 infection
and with no adverse reaction after vaccination; Group 4 = those who had prior SARS-CoV-2 infection
and at least one adverse reaction after vaccination. Sample size at each follow-up time point is shown
in table below.

Day 12 Day 30 Day 60 Day 90 Day 120 Day 150 Day 180

Group 1 167 129 136 129 108 90 110
Group 2 131 119 115 115 109 84 107
Group 3 47 42 36 47 26 21 27
Group 4 38 33 33 28 24 24 25

Data are presented as medians and IQR.
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A statistical analysis was run at all follow-up time point with median value of S-IgG
as the outcome of interest. Based on binary logistic regression analysis, fever after 2nd dose
proved to be an independent predictor of median S-IgG level at all follow-up time points
(Table 2, Table S4).

Table 2. Serial associations among level of S-IgG, adverse events after vaccination and demographic-
clinical variables at seven time points (Day 12, Day 30, Day 60, Day 90, Day 120, Day 150, and Day
180 following second vaccine dose, respectively). § In this binary logistic regression model, serum
S-IgG levels were converted to a binary dependent variable based on the median value of the sample
(0: ≤median, 1: >median).

Variable B Odds Ratio 95% C.I. p-Value

Day 12, value of S-IgG (AU/mL, median as the cutoff) §

Fever, 2nd −1.264 0.283 0.107 0.747 0.011
Day 30, value of S-IgG (AU/mL, median as the cutoff) §

Fever, 2nd −1.349 0.260 0.091 0.741 0.012
Day 60, value of S-IgG (AU/mL, median as the cutoff) §

Smoking 0.651 1.917 1.157 3.176 0.012
Fever, 2nd −1.372 0.254 0.086 0.748 0.013

Day 90, value of S-IgG (AU/mL, median as the cutoff) §
Chills, 1st −1.672 0.188 0.038 0.937 0.041
Fever, 2nd −2.482 0.084 0.018 0.389 0.002

Day 120, value of S-IgG (AU/mL, median as the cutoff) §
Age −0.037 0.964 0.941 0.988 0.003

Smoking 0.780 2.181 1.227 3.878 0.008
Prior COVID+ −1.159 0.314 0.150 0.659 0.002

Fever, 2nd −2.518 0.081 0.017 0.382 0.002
Day 150, value of S-IgG (AU/mL, median as the cutoff) §

Prior COVID+ −0.781 0.458 0.216 0.972 0.042
Fever, 2nd −2.414 0.089 0.019 0.413 0.002

Day 180, value of S-IgG (AU/mL, median as the cutoff) §
Smoking 0.651 1.918 1.100 3.345 0.022

Fever, 2nd −1.632 0.196 0.062 0.612 0.005
B, B coefficient; odds ratio, the exponentiation of the B coefficient EXP(B); 95%CI, 95% confident interval; S-IgG,
anti-spike immunoglobulin; AU, arbitrary unit; COVID-19, confirmed corona virus disease-19.

4. Discussion

In this prospective, single-center follow-up study serum anti-SARS-CoV-2 spike Ig
antibody levels were serially recorded in healthcare workers at 12, 30, 60, 90, 120, 150, and
180 days after the 2nd dose of BNT162b2 vaccine. The key results of this study are the
following: (i) On day 12 after administration of the 2nd dose, volunteers with at least one
vaccine related adverse reaction (symptomatic group) had the highest S-IgG antibody levels,
regardless of prior COVID-19 status; (ii) significantly higher S-IgG levels were observed in
the symptomatic group of subjects without prior COVID-19 infection when compared to
the asymptomatic group throughout the entire follow-up period; (iii) in the asymptomatic
groups prior COVID-19 positivity (Group 3) resulted in higher S-IgG levels from only
Day 90 of the follow-up period compared to Group 1; (iv) prior COVID-19 disease with
asymptomatic status (Group 3) and symptomatic status without prior COVID-19 (Group
2) infection resulted in nearly identical, not significantly different S-IgG antibody levels;
(v) fever after the 2nd dose was independently associated with higher median S-IgG level
at all follow-up time points.

In our study, we observed significantly lower serum S-IgG antibody titers in older
individuals, which is consistent with the results previously reported in the literature [7,8].
A previous study demonstrating that aging decreased antibody response among COVID-19
patients and the fact that aged people demonstrated weaker immunologic responses [7].

Coordination of SARS-CoV-2 antigen-specific responses was disrupted in individuals
≥ 65 years old, resulting in an uncontrolled response between CD4 + and CD8 + cells and
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antibody production that can lead to failure of disease control [8]. Significantly lower serum
antibody levels were observed in smoking subjects over the entire 6-month study period
when compared to non-smokers. In addition, smoking status was an independent predictor
of the median S-IgG level at Day 60, 120, and 180 follow-up visits. However, we have
no information on the proportion of seroconversion among smoking and non-smoking
volunteers. There is more evidence that smoking lowers serum IgG levels. Smoking was
associated with a decrease in serum IgG levels in a small case-control study [9]. In a
larger study of 1787 patients, it was found that cigarette smoking was associated with
reduced IgG median concentrations [10]. There are several explanations for the effect of
smoking on the humoral immune response. These might include direct effects on B cells
and indirect effects on T cells and antigen-presenting cells, which could affect Ig class
switching and/or differential survival of naive B cells or memory B cells [11]. Activity of
nicotinic acetylcholine receptors can suppress B-cell activation in response to antigenic
challenge [12]. In smokers, we observed significant negative correlation with antibody
response to vaccination for a minimum of six months, suggesting that smoking affects the
immunogenicity of vaccines in our cohort.

In this study we did not observe a significant difference between genders in terms of
antibody response, however, the majority of participants were female. Several mechanisms
can cause a different antibody response between males and females such as hormonal,
genetic, and microbiota differences [13]. Growing body of data provide evidence that sex-
specific effects may lead to different outcomes of vaccine safety and efficacy [14]. Therefore,
it would be important that sex-based differences were to be considered and investigated in
pre-clinical and clinical trials.

In our study, systemic events such as chills and fever showed a strong correlation
with subsequent antibody response against SARS-CoV-2 spike protein. Besides, fever
after the 2nd dose proved to be an independent predictor of median S-IgG level at all
follow-up time points. Naaber et al. found that fever was significantly associated with
the spike-receptor binding domain (S-RBD) IgG levels at 1, 6, and 12 weeks after second
dose of COVID-19 mRNA Comirnaty (Pfizer-BioNTech) vaccine [15]. The importance of
body temperature elevation in an adequate immune response was previously highlighted.
Physiological temperature change like fever acts to regulate the emergence of new immune
responses but does not restrict the activity of existing effector mechanisms once they have
been formed [16]. There is a growing body of evidence suggesting that febrile temperatures
boost the effectiveness of the immune response during infections by stimulating both the
innate and adaptive arms of the immune system [17]. These previous evidence and our
results both confirm that the attenuation and elimination of fever in any form (such as the
use of NSAIDs) at the beginning of the immune response may adversely affect the immune
process, even in the long run.

Coggins et al. found no correlation between symptom severity following the first
or second vaccine doses and IgG reactivity with spike protein, but at the same time a
significant correlation was observed with duration of symptoms after the second shot of
vaccination and anti-spike IgG titers (1). Müller et al. found that there was not any general
correlation between vaccination-induced SARS-CoV-2 spike-specific IgG or neutralizing
antibody production and the presence or absence of individual post-vaccination reaction
reports [18]. In contrast, a study with the H1N1 vaccine found that titers were 60% higher
in children with fever ≥ 38 ◦C after vaccination, suggesting an enhanced immune response
in those who had side effects after vaccination [19]. During the examination of hospital
workers who received a prime-boost vaccination with BNT162b2, only a weak but existing
correlation was found between the ARs and SARS-CoV-2 antibody levels [20]. In contrast,
Hwang et al. concluded after vaccination of 135 healthy individuals with either AZD1222
(AstraZeneca) or BNT162b2 (Pfizer/BioNTech) that the local and systemic reactogenicity
may not be associated with humoral immunogenicity [21]. However, in two recent studies a
clear correlation was found between systemic adverse events including fever and antibody
titer following COVID-19 vaccination, which is also consistent with our results [7,22]. The
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literature on the relationship between reactogenicity and immunogenicity of vaccines is
limited and contradictory. The inconsistent results shown in the studies are difficult to ex-
plain. One possible explanation is that there is no information about the medications taken
before and after vaccination, especially regarding the use of NSAIDs. Two (consecutive,
randomized controlled, open-label) vaccination studies provided evidence that after vacci-
nation of infants with a ten-valent pneumococcal non-typeable Haemophilus influenzae
protein D-conjugate vaccine (PHiD-CV) co-administered with the hexavalent diphtheria-
tetanus-3- component acellular pertussis-hepatitis B-inactivated poliovirus types 1, 2, and
3-H influenzae type b (DTPa-HBVIPV/Hib) and oral human rotavirus vaccines, antibody
concentration was significantly lower in the group receiving prophylactic paracetamol
than in the group not receiving it [23]. Thus, it is hypothesized that the use of regular or
occasional analgesic NSAIDs (e.g., paracetamol) in the peri-vaccination period may affect
the production of antibodies. This assumption is supported by several previous evidence.
Bancos et al. reported that a panel of widely used NSAIDs blunts antibody synthesis in
human peripheral blood mononuclear cells and in purified B cells [24], and it reduces
antibody synthesis which may negatively affect the post-vaccination immune response.
NSAIDs suppress T-cell activation by inhibiting p38 MAPK induction, thus the immuno-
suppressant activity of NSAID on T-cells underlines the role of COX activity in the normal
process of lymphocyte activation [25]. Ryan at al. found evidence that NSAIDs and the new
Cox-2-selective drugs negatively affect B-cell function and attenuate antibody production in
humans [26]. NSAIDs are one of the most commonly used drugs, are recommended for all
age categories, and are prescribed for relieving transient pain, therefore, their uncontrolled
use might affect post-vaccination side effects and may alter the humoral immune response
to antigen stimuli. However, the mechanism by which antipyretic analgesics reduce anti-
body response remains unclear and not fully explained by COX enzyme inhibition, and the
involvement of nuclear and subcellular signaling pathways also arises [27]. More detailed
immunological studies are needed to accurately determine the effect of NSAIDs or other
antipyretic or analgesic drugs on the vaccine-induced immune response.

Overall, these evidence may explain the contradictory results in the literature between
post-vaccination adverse effects and antibody production.

Morales et al. provided evidence that a single dose of the BNT162b2 vaccine could
be sufficient to confer a similar immunization in those patients with previous history of
COVID-19 (individuals vaccinated at least 3–5 months after SARS-CoV-2 infection) [28].
This hypothesis was supported by others’ work [29]. In a cohort of 1025 individuals,
a steeper slope of decline for IgG and neutralizing antibodies was found in vaccinated
individuals without previous COVID-19 infection compared to those with previous COVID-
19 infection [30]. IgG antibodies in most patients with COVID-19 can last for at least 12
months after discharge and the IgG titers decreased significantly in the first 6 months and
remained stable in the following 6 months [31]. These results support the findings of our
study that previous COVID-19 infection compensates for the decrease in antibody levels
following vaccination, an effect that occurs primarily in the late phase beyond 90 days.
In a recent systematic review and meta-analysis, significantly more ARs were reported
in vaccine groups compared with placebo groups after COVID-19 vaccination trials, but
the rates of reported ARs in the placebo arms were still substantial [32]. The result of this
work is remarkable, however, the study did not examine the rate of seroconversion or
subsequent antibody response in the placebo group and the vaccine group. In addition,
the correlations observed in our study (correlation between post-vaccination fever and
antibody titer) showed a robust association for 6 months.

The strength of our results is the relatively large number of volunteers and the long
follow-up period. A significant limitation of our study is that the frequency of NSAID and
paracetamol use after vaccination was not recorded in our study questionnaire. Thus, their
potential effect on the association between antibody production and adverse events after
vaccination cannot be established. Furthermore, the male population was underrepresented
and conclusions on gender differences in vaccine response is limited. Some volunteers
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missed follow-up dates, which reduced the number of participants at consecutive follow-up
times, but the statistical power of our results remained strong. To accurately report adverse
reactions, volunteers kept a diary. Using this will help reduce the possibility of recall bias,
but it cannot be completely ruled out.

5. Conclusions

Several factors have an impact on antibody levels after SARS-CoV-2 vaccination
including age, smoking status, prior COVID-19 positivity, and adverse reactions after each
dose of vaccines. Fever was associated with higher median S-IgG level during a 6-month
follow-up period. These results may convince those who refuse vaccination due to fear of
vaccination reactions. In addition, an individual approach that takes all factors influencing
antibody levels into account might be useful when developing a vaccination strategy. Large,
prospective studies are needed to fully explore the effect of post-vaccination fever on the
developing immune response.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vaccines10030447/s1. Table S1: Frequency of adverse events
after 1st and 2nd vaccination. Table S2: Correlation of S-IgG antibody levels with adverse reactions
after 1st and 2nd dose of BNT162b2 vaccine manufactured by Pfizer/BioNTech, during the 6-month
follow-up period. Table S3: Correlation of S-IgG antibody levels with demographic and clinical factors
after 2nd dose of BNT162b2 vaccine manufactured by Pfizer/BioNTech, during the 6-month follow-
up period. Table S4: Results of the binary logistic regression analysis examining associations between
level of S-IgG, adverse events after vaccination and demographic-clinical variables at seven time
points, namely, 12 and 30, 60, 90, 120, 150, and 180 days following second vaccine doses (designated
Day 12, Day 30, Day 60, Day 90, Day 120, Day 150, and Day 180, respectively).
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