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Abstract
Animal movement patterns contribute to our understanding of variation in breeding 
success and survival of individuals, and the implications for population dynamics. Over 
time, sensor technology for measuring movement patterns has improved. Although 
older technologies may be rendered obsolete, the existing data are still valuable, espe-
cially if new and old data can be compared to test whether a behavior has changed 
over time. We used simulated data to assess the ability to quantify and correctly iden-
tify patterns of seabird flight lengths under observational regimes used in successive 
generations of wet/dry logging technology. Care must be taken when comparing data 
collected at differing timescales, even when using inference procedures that incorpo-
rate the observational process, as model selection and parameter estimation may be 
biased. In practice, comparisons may only be valid when degrading all data to match 
the lowest resolution in a set. Changes in tracking technology, such as the wet/dry 
loggers explored here, that lead to aggregation of measurements at different temporal 
scales make comparisons challenging. We therefore urge ecologists to use synthetic 
data to assess whether accurate parameter estimation is possible for models compar-
ing disparate data sets before planning experiments and conducting analyses such as 
responses to environmental changes or the assessment of management actions.

K E Y W O R D S
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1  | INTRODUCTION

Movement is an integral part of the foraging behavior of many animals 
(Nathan et al., 2008) and can account for much of their daily energy 
expenditure (Chai, Dudley, & Kingsolver, 1999). Observed patterns 
of movement are determined not only by evolved behaviors and in-
trinsic state (age, sex, body condition, etc.), but also by environmental 

conditions (climate, oceanography, etc.), and by prey abundance and 
distribution (Hays et al., 2016). Understanding how different move-
ment strategies affect foraging success may provide insight into the 
processes underlying survival and reproductive success and, ulti-
mately, population dynamics. Robust quantification of these pat-
terns and how they change through time is required to meet this goal 
(Crossin, Cooke, Goldbogen, & Phillips, 2014).
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Over recent decades, advances in animal tracking and biologging 
technology have provided an enormous amount of increasingly pre-
cise measurements of animal movement paths (Block et al., 2011; 
Hays et al., 2016; Hussey et al., 2015; Kays, Crofoot, Jetz, & Wikelski, 
2015; Phillips, Croxall, Silk, & Briggs, 2007). Researchers use satellite 
transmitters or data loggers to collect location information; these pro-
vide data at intervals which are often constrained by battery power or 
memory capacity (Edwards et al., 2007; Fedak, Lovell, McConnell, & 
Hunter, 2002; Shillinger et al., 2012). In large birds and mammals, par-
ticularly in recent years, the deployment of GPS loggers, and, in marine 
animals, of saltwater immersion or temperature-depth loggers, have 
generated a wealth of tracking data at high temporal resolution and 
at relatively low cost (Block et al., 2011; Mackley et al., 2010; Scales 
et al., 2016). However, data collected previously using VHF and satel-
lite transmitters (platform terminal transmitters or PTTs), older GPS and 
immersion loggers, or by human observers are also available, albeit at 
coarser spatial and/or temporal resolution (Edwards et al., 2007; Froy 
et al., 2015). The increasing use of tracking and biologging technology 
has also been accompanied by initiatives to archive, share, and ex-
change animal tracking data (Birdlife International, 2004; Kranstauber 
et al., 2011). This wealth of existing data creates opportunities for 
informative comparisons between archived and new behavioral data. 
However, the different recording resolutions add complications both 
in terms of methodology and interpretation.

With the burgeoning of biologging and other ecological research, 
detailed observations are now available that span a time period that 
is relevant to the temporal scales of demographic processes, even for 
long-lived animals, as well as changes in the Earth’s climate (Crossin 
et al., 2014; Hazen et al., 2013). New research avenues have therefore 
opened for using biologging data to study how movement patterns 
may be changing across time, including in response to environmental 
variation (Hays et al., 2016). Most studies that deploy tracking devices 
on animals, such as seabirds, are usually aimed at answering broad 
ecological questions about habitat use and foraging behavior in one 
or a few successive years, as opposed to describing patterns of move-
ment across time frames longer than a decade (but see Bogdanova 
et al., 2014; Carneiro et al., 2016). Consequently, device sampling in-
tervals may be suboptimal for learning about movement over the lon-
ger term in post hoc studies. Assessing whether movement strategies 
have changed requires robust methods and movement models that 
allow the synthesis of data sets collected at different temporal scales, 
with differing accuracy, and often with different research aims at the 
outset.

There are many ways to describe and quantify movement pat-
terns of animals that depend on the type and quality of available data. 
Many models of foraging assume that organisms move diffusively, 
that is, that animals perform uncorrelated Brownian walks as they 
search for food (Johnson, Wiens, Milne, & Crist, 1992). However, for 
most animals, the Brownian assumption is clearly inadequate (Turchin, 
1998). Superdiffusive descriptions of movement, such as Lévy walks 
or flights (Shlesinger, Zaslavsky, & Frisch, 1995; Viswanathan, 2010; 
Watkins et al., 2005) or intermittent search strategies (Bénichou, 
Loverdo, Moreau, & Voiturz, 2006, 2007), which describe movement 

as small jumps interspersed with occasional longer jumps, are popu-
lar alternatives to standard diffusion models as they allow for more 
complex patterns. Lévy walks, which model movements with step 
lengths determined by a power-law distribution, were first applied in 
ecology to describe the foraging strategies of wandering albatrosses, 
Diomedea exulans (Viswanathan et al., 1996), and have since been used 
to describe search or foraging strategies across many different biolog-
ical systems (e.g., see references in Edwards et al., 2007). They were 
also shown theoretically to represent optimal search strategies for re-
visitable targets when the targets are fractally distributed (Viswanathan 
et al., 1999). However, the validity of Lévy flights as descriptions of 
animal movement foraging is hotly debated in the ecological literature 
(Auger-Methe, St Clair, Lewis, & Derocher, 2011; Buchanan, 2008; 
Edwards et al., 2007; Humphries et al., 2010; Reynolds, 2012; Travis, 
2007; Viswanathan, Da Luz, Raposo, & Stanley, 2011). For instance, 
although the initial study on albatrosses indicated a Lévy pattern of for-
aging (Viswanathan et al., 1996), after correcting and augmenting the 
original data, and utilizing improved statistical methods, a later study by 
Edwards et al. (2007) showed that the Lévy flight model was not sup-
ported; instead, flight times were more likely to be gamma-distributed. 
Subsequent studies claim new evidence for Lévy-like behavior in 
certain marine predators (Focardi & Cecere, 2014; Hays et al., 2012; 
Humphries et al., 2010; Reynolds, Paiva, Cecere, & Focardi, 2016; Sims, 
Humphries, Bradford, & Bruce, 2012; Sims et al., 2008), and that hu-
mans exhibit more complex behaviors (González, Hidalgo, & Barabási, 
2008). Further studies on albatrosses have concluded that foraging pat-
terns of some (although far from all) individuals are well described by 
modified Lévy flights or Brownian movement in various contexts, and 
further concluded that birds utilizing this method are able to consume 
considerably more prey than they need to satisfy their own energy 
requirements (Humphries, Weimerskirch, Queiroz, Southall, & Sims, 
2012). Thus the evidence on Lévy flights in nature is decidedly mixed.

The controversy surrounding the Levy foraging hypothesis has fo-
cused both on the theoretical justification of this process model, as 
well as the statistical procedures used to distinguish Lévy walks from 
other random walks (Auger-Methe et al., 2011; Benhamou, 2007; 
Plank, Auger-Méthé, & Codling, 2013). A substantial body of the lit-
erature has dealt with different fitting approaches and goodness-of-
fit measures (Auger-Methe et al., 2011; Edwards, Freeman, Breed, & 
Jonsen, 2012; Plank & James, 2008; White, Enquist, & Green, 2008), 
although the question of parameter identifiability or—for practical pur-
poses—estimability has received considerably less attention (but see 
Auger-Methe et al., 2011; Auger-Méthé et al., 2016).

In this study, we use foraging data from albatross species col-
lected a decade apart to explore how the changes in logger tech-
nology (and hence the scale and mode of sampling), modeled 
distributions (statistical fitting), and the treatment of both data and 
distributions may influence the findings and our ability to infer and 
compare behavior over time. Our analyses focus on a particular 
type of data from loggers which detect and record saltwater im-
mersion, providing information on wet and dry periods (so called 
immersion loggers; Edwards et al., 2007; Mackley et al., 2010). 
Although a geographic location was not available in some of the 
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earlier deployments, PTT or GPS data have been collected con-
currently with the immersion data in the past 20 years, providing 
improved insights into movements and habitat use (Carneiro et al., 
2016; Mackley et al., 2010; Scales et al., 2016). Previously, a major 
consideration was memory capacity, which led to alternative ways 
of sampling and storing data, which were aggregated at different 
timescales on the device during the deployment. The aims of our 
study were to evaluate model and parameter identifiability for dif-
ferent generations of immersion loggers, using synthetic data sets 
reflecting different sampling regimes. We further investigated 
parameter estimation for actual data collected in the wild.

2  | METHODS

In order to determine to what extent the inference of underlying 
foraging patterns is influenced by the data collection method, we 
combine a simulation study with an analysis of two suites of data on 
flights and water landings at sea collected a decade apart, 1992–1993 
and 2002–2004, from wandering (D. exulans) and black-browed alba-
trosses (Thalassarche melanophris). As these data comprise segments 
of behaviors that have variously been referred to as steps, trips, 
tracks, flights, etc., a glossary is provided in Table 1.

2.1 | Inference procedure

All flights are assumed to come from one of four possible distribu-
tions: (shifted) exponential; (shifted) gamma; (shifted) q-exponential; 
pareto. Details of the distributions are given in Appendix S2. These 
true flights are then resampled with (real or virtual) data loggers that 
discretize or aggregate the flights.

We use two approaches to infer the parameters of the underlying 
process from the data. One is to take a “naive” maximum likelihood 
approach, that is, ignore the observational process, and instead as-
sume that the observed data are drawn without noise from the under-
lying distribution. Another approach is to use a multinomial maximum 

likelihood approach that explicitly models the observational process 
(Edwards et al., 2007). In this case, the log-likelihood of the parame-
ters θ, given a record r (a set of observations, see Table 1), takes the 
general form 

where dj is the number of recorded flights of length j∈ [1, J], and p( j|�) 
is the probability of observing a flight of length j given the underlying 
flight-time distribution and observation process.

One assumption of this multinomial model is that there is some bi-
ological lower limit to the possible flight in terms of the length of time 
spent dry. For instance, if a bird extended its foot out of the water to 
scratch its head, the logger would record that event as a dry interval; 
however, ideally, these events would be excluded from any analysis 
of flights. Following Edwards et al. (2007); Reynolds et al. (2016) and 
others, we use a lower limit of flight duration (part of an overall trip) of 
30 s, on the biological assumption that this is not likely to be a flight 
to a different food patch. This lower limit to flight time is built into 
the exponential, gamma, and q-exponential distributions as a shift, and 
into the pareto as the lower set point (see Appendix S2 for details).

2.2 | Simulation studies

We used a suite of simulations to explore the effect of the different 
logger sampling schemes (specifically the timescales over which data 
are aggregated) on our ability to correctly infer parameters values of a 
known model and to choose the true model if we treat it as unknown.

First, we generated a series of “true” flights drawn directly from the 
known distributions without the observation process. For each of the four 
distributions, we specified four parameter sets for a total of 16 underlying 
flight-time distributions. When possible, we chose parameters so that the 
theoretical means between the four sets of parameters corresponded be-
tween distributions, to ensure that the scales of the processes were com-
parable. For each of the 16 flight distributions, we created 10 simulated 
data sets of length 3,000 (i.e., 10 sets of 3,000 flights).

(1)�(�|r)=
J∑

j=1

dj log [p( j|�)],

Term Definition

Trip A trip is assumed to be one foraging excursion, beginning when the animal leaves 
the nest site and ending when it returns. A trip is comprised of flights interspersed 
with (water) landings

Flight Flights are the subcomponents of a trip, the units of space or time between prey 
capture attempts, in which the bird is actively flying

Step In tracking studies of terrestrial animals, this is more commonly used to describe 
distance, rather than time, and again, represents the sub-unit of a trip. Here, we 
use interchangeably with flight

Segment A discrete time unit over which the wet/dry status of the bird is measured. These 
segments may be aggregated into longer intervals

Interval The period over which aggregation of one or more wet/dry segments occurs. In the 
interval, the number of wet and dry segments are recorded. Flights are comprised 
of integer numbers of consecutive completely dry intervals. For data at high (time) 
resolution, the segment and interval timescales may be the same

Record The counts of flight lengths (in intervals) within or across trips

TABLE  1 A glossary of terms describing 
movement paths used in this study
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For each of the 160 simulated data sets, we then “observed” the data 
using our two most extreme sampling regimes, that is intervals of either 
1 hr or 30 s corresponding to the sampling intervals used in field de-
ployments in 1992 and 2004, respectively (Edwards et al., 2007). More 
details of the algorithm are in section 3 in Appendix S3. This resulted in 
320 simulated data sets of length ≤3,000 (as the aggregation can result 
in a subset of flights being labeled as nonflights and thus discarded). 
These simulated data were used in the following two simulation studies.

2.2.1 | Parameter identifiability

Using the 320 simulated data sets, we attempted to infer the param-
eters from the underlying flight-time model corresponding to the one 
that generated the data. We used both a naive maximum likelihood 
estimate (MLE; i.e., one that excluded the observational process) and 
the multinomial with the appropriate observational process. For in-
stance, if the underlying model was an exponential, we fit the expo-
nential model, only. The inferred parameters were then compared to 
the true parameters that generated the flights.

2.2.2 | Model identifiability

Using the 320 simulated data sets, we fit all four of the possible flight 
distribution models using the exact (multinomial) likelihood. For each 
of the 320 data sets, we calculated the Akaike information criterion 
(AIC, Akaike, 1973; Bozdogan, 1987), the Bayesian information crite-
rion (BIC, Raftery, 1986; Schwarz et al., 1978), and the approximate 
model probabilities based on BIC [Burnham & Anderson, 2004 and 
given by Equation (2), below], and used these to select the best model 
for each data set.

2.3 | Immersion data analysis

Observational data on flights and water landings were obtained from 
immersion loggers deployed on the legs of individual wandering alba-
trosses and black-browed albatrosses from Bird Island, South Georgia 
(54°00′S, 38°03′W). Multiple types of loggers were deployed be-
tween 1992 and 2004. The data are summarized in Table 2.

2.3.1 | Flight length calculation from immersion data

Wet/dry records were parsed at the highest temporal resolution for 
each type of logging device, before flight lengths were calculated by 
merging consecutive time periods recorded as dry (Appendix S1).

2.3.2 | Model fitting and model selection

All four flight distributions under the multinomial likelihood with ap-
propriate discretization and aggregation parameters were fit to all sets 
of data noted in Table 2. Models for each data set were ranked via 
BIC. Further, approximate model probabilities p(Mi) (based on BIC, 
Burnham & Anderson, 2004) were calculated as: 

where R is the total number of models being considered, and BICmin 
is the minimum BIC value across those models. The second expres-
sion is more numerically stable, and so is the one we use in our 
calculations.

2.3.3 | Comparing the flight-length distributions 
between years and species

After selecting the best fitting model via BIC, we examine model fit by 
plotting the theoretical quantiles versus the observed data quantiles. 
We then compared the estimates of parameters for our three data 
sets. In the current likelihood framework, we obtain point estimates 
for all parameters. We can then use these parameters to estimate the 
means/medians and variances among the fitted models.

3  | RESULTS

3.1 | Simulation studies

3.1.1 | Parameter identifiability

Using the 320 simulated data sets, we attempted to infer the param-
eters from the flight-time model corresponding to that which gener-
ated the data using both the naive likelihood (excluding observational 
process) and the exact multinomial likelihood with the appropriate 
observational process. Results for the exact likelihood are shown in 
Figure 1 and the naive likelihood in Figure 2.

Overall, parameter estimates were much more precise for the data 
recorded at high frequency (i.e., 10 s sampling), regardless of the un-
derlying true distribution or the scale of the true process. This is be-
cause the true lengths of dry periods are recorded with high resolution 
when data are recorded at this high frequency. However, even for the 

(2)

p(Mi)≈
e
−1
2
BIC(Mi )

∑R

r=1
e
−1
2 BIC(Mr)

=
e
−1
2 [BIC(Mi)−BICmin]

∑R

r=1
e
−1
2 [BIC(Mr)−BICmin]

Study Species Year Agg. interval (s) Ndeployments Nflights

BBA2002 Thalassarche melanophris 2002 600 1 1,503

walb2004 Diomedea exulans 2004 10 39 3,604

walb1998 Diomedea exulans 1998 15 17 878

walb1993 Diomedea exulans 1993 720 11 298

walb1992 Diomedea exulans 1992 3,600 21 340

TABLE  2 Overview of immersion logger 
data sets used in this study
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higher resolution data, using the naive likelihood can bias parameter 
estimates for some cases of the Pareto and q-exponential distribu-
tions. This is probably because even the small amount of truncation of 
dry periods of 30 s or less changes the expected ratio of small flights 
to longer flights, biasing the estimates. Using the exact likelihood helps 
to account for these shifts.

In contrast, estimating parameters for a 1 hr integration step is 
difficult even when using the exact likelihood if the mean/median 
flight times are on the order (or less) of the integration period (i.e., 
if true flight times are less than ~5 hr in our simulations). Again, use 
of the exact likelihood can provide better results, although for the 
Pareto and q-exponential, both approaches perform poorly if the 

F IGURE  1 Back-estimation of simulated step-length data sets parameters under emulated sampling regimes of two wet/dry activity logger 
models using exact likelihood. Bars indicate ranges of parameter estimates

F IGURE  2 Back-estimation of simulated step-length data sets parameters under emulated sampling regimes of two wet/dry activity logger 
models using naive likelihood. Bars indicate ranges of parameter estimates
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true median flight duration is short and the integration interval is 
long.

3.1.2 | Model identifiability

Using the 320 simulated data sets, we fit all four of the possible flight 
distribution models. Focusing on the results from the multinomial ap-
proach applied to the appropriate observational process. In Figure 3, 
we show the proportion of times that the model is identified correctly 
under the two observation schemes across all four flight distribution 
models. The selected model is indicated when the true model is incor-
rectly identified.

For the short sampling interval (10 s), the true model almost al-
ways has the highest probability. The exception is the q-exponential 
model, for which there is not a consistent best model if the true me-
dian flight length is 1 hr. Different patterns are apparent for the long 
(1 hr) integration interval. In this case, only for data generated from 
the gamma distribution does the true model have high model prob-
ability across all parameter settings. For the q-exponential, the true 
model is chosen if the true median flight time is >1 hr (like in the short 
integration case). If the true underlying models are either Pareto or 
exponential, the true model is never selected. Instead, data from the 
exponential distribution are always classified as gamma, and the data 
from the Pareto are either classified as q-exponential or as gamma. 
These results are congruent with the results from the parameter 
identifiability simulation experiment: When parameters can be well 
estimated, that model is likely to be correctly identified as the true 
model, whereas if the parameter estimates are poor, the patterns in 
the data that result from the observation process are no longer con-
sistent with the true model, and are better described by one of the 
alternative models.

3.2 | Immersion data analysis

3.2.1 | Flight-length calculation from immersion data

Across both species and irrespective of the observation regime, the 
model that is most consistent with the observed data is the gamma 
distribution (Table 3). This is in line with previous results on a subset of 

F IGURE  3 Model identification analysis: Average model probability across the different generating flight-time distributions, true mean/
median flight lengths, and the low- and high-resolution observation schemes

TABLE  3 Model selection for observational data

ΔBIC MP

BBA2002

exp 81.0 0

pareto 3626.9 0

gamma 0 1

qexp 108.0 0

walb2004

exp 2689.4 0

pareto 1946.3 0

gamma 0 1

qexp 896.0 0

walb1998

exp 1604.6 0

pareto 269.9 0

gamma 0 1

qexp 513.5 0

Here, we show the difference in BIC from the best performing model (Δ
BIC), such that the best model has a value of 0. We also show the calcu-
lated model probabilities, based on Equation (2). Data set identifiers 
correspond to Table 2.
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the data (Edwards et al., 2007). Based on gamma Q–Q plots (Figure 4) 
for all three of the data sets, the fitted gamma distributions appear to 
be reasonable for data both from black-browed albatrosses in 2002 
and wandering albatrosses in 2004, although both exhibit heavier 
tails than would be expected from the gamma distribution. The fit for 
the data from wandering albatrosses in 1998 is much poorer and is 
underestimating the number of short flights. Because the fit is rela-
tively poor, directly assessing whether or not the patterns are con-
sistent across time periods, or comparing between species, should be 
approached with care (Table 4).

4  | DISCUSSION

Quantification of the movements of animals, such as seabirds, provides 
insights into foraging and migration behavior, the underlying drivers 
of movement, how movement and behavior may change over time in 
response to these drivers, and the consequences for individual per-
formance and population dynamics (Crossin et al., 2014; Hays et al., 
2016). The continuing development of new biologging technology for 
monitoring animal movement has greatly increased the resolution and 
quality of the data available, increased sample sizes, and reduced the 
effort required in the field, particularly for obtaining long time series. 
These data represent invaluable archives for reconstructing histori-
cal movement patterns of animals for comparison with more recent 

observations. They provide a window into the past for understand-
ing animal movements and the influence of changing environmental 
conditions, including the abundance and distribution of prey (Pereira, 
Paiva, & Xavier, 2017; Seco et al., 2016). As animal movement data-
bases grow (Birdlife International, 2004; Kranstauber et al., 2011), so 
do the opportunities for historical comparisons. However, as the reso-
lution and accuracy of tracking devices have changed over time, these 
comparisons must be made with care to ensure robust interpretation.

In this study, we used simulated data to assess the ability to quan-
tify and correctly identify patterns of flight lengths under observational 
regimes that correspond to the range of older and more recent immer-
sion logger technology for recording landings of foraging seabirds at 
sea. These simulation experiments are the optimal approach for eval-
uating new statistical methods—if it is impossible to reconstruct the 
true parameters from a known distribution, then the inference method 
will almost certainly be unreliable when applied to experimental or ob-
servational data. Furthermore, this approach allows us to examine the 
impact of the observational method on the resulting conclusions, and 
to identify ways of comparing and combining disparate data sets to 
maximize their value.

Using simulated data from a set of four underlying flight-length 
distributions that have been hypothesized to describe the flight dis-
tributions of seabirds (exponential, gamma, Pareto (corresponding to a 
Lévy flight), q-exponential) that are then “observed” using a sampling 
regime typical of immersion loggers deployed in the field, we were able 

F IGURE  4 Gamma Q–Q plots to assess model fit to the observational data. Data set identifiers correspond to Table 2
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TABLE  4 Estimated parameters (with approximate 95% confidence intervals) for the gamma distribution for each of the three observational 
data sets. Additionally, we show the calculated theoretical mean and variance based on the fitted parameters. Data set identifiers correspond to Table 2

Gamma α (shape) β (rate) Mean Variance

BBA2002 1.38 (1.29–1.47) 1.15 (1.06–1.24) 1.20 1.05

walb2004 0.314 (0.293–0.334) 0.392 (0.363–0.422) 0.799 2.04

walb1998 0.0730 (0.0385–0.107) 0.170 (0.133–0.206) 0.430 2.53



9264  |     JOHNSON et al.

to test the effectiveness of our statistical methods. In particular, we 
focused on the extent to which incorporating truncation and aggrega-
tion, which are part of the sampling procedure, into the likelihood esti-
mation was necessary in order to determine accurate parameter values 
and correctly identify the underlying model. The results indicated that 
the inference procedure using the exact likelihood performs as well or 
better than the naive likelihood in all cases, that is, accounting for the 
observation process improves our ability to both identify the model 
and estimate parameters. This improvement comes with a computa-
tional cost, as evaluating the exact likelihood is slower, and some tun-
ing of the maximization procedure is required for individual data sets 
to achieve convergence. For low- and medium-resolution data (or if 
a Pareto distribution is considered, regardless of the resolution), the 
computational costs are worthwhile. For the very high-resolution data 
(at least every 10 s) available from loggers in recent years, it may be 
sufficient to use the naive likelihood, with no need to incorporate the 
observational process.

Even when using the likelihood that incorporates the observa-
tional process, care must be taken when analyzing data that have been 
aggregated at timescales that are much longer than the events of in-
terest. In these cases, the parameters can be significantly biased, and 
a model different from that used to generate the data may be chosen 
as the best model. In practice, it may therefore be impossible to accu-
rately compare flight patterns from loggers that provide aggregated 
data at coarse scales from those that provide fine scale data. Instead, 
the latter may need to be degraded (reaggregated) to the coarser scale 
to determine whether patterns from the two regimes are at least con-
sistent, even if it is not possible to determine whether the parameters 
are the same. This also puts a constraint on the biological questions 
that may be compared between data taken at different resolutions. 
For instance, short scale inferences about foraging intervals within a 
food patch may be unreliable, whereas inferences about longer scale 
movement between patches may be accessible.

Based on the simulated data, we were not able to identify the 
process model underlying the “observations” with the coarse sam-
pling regime consistently and accurately. Thus, we must be cautious 
when attempting to infer whether or not this particular aspect of 
the foraging strategy of the albatross has changed over the past 
two decades based the type of data at hand. Even for the higher 
temporal resolution data that we present here, the lack of model fit 
indicated by the Q–Q plots (Figure 4) is concerning. In particular, 
there are more long flights than would be typical for the best fit-
ting gamma model. The question is why would this be the case? In 
some cases, where concurrent location data are available, we may 
be able to determine that some longer flights may not represent 
foraging behaviors, and can be excluded. This was the case for a 
proportion of the data for which we had concurrent location data. 
The longer flights could also indicate individual birds that are not 
exhibiting foraging behavior (for instance attempting to fly out of a 
storm). In the current analysis, we have treated the behavioral state 
as known, such that the wet status corresponds to feeding/handling 
attempts and dry to flying foraging. Thus, we have not utilized a 
more complex statistical approach, such as state-space modeling 

(Patterson, Thomas, Wilcox, Ovaskainen, & Matthiopoulos, 2008) 
that can allow concurrent estimation of behavioral state. If the ob-
served longer flight patterns are a result of a separate nonforaging 
flying, these methods may be useful for identifying them.

Another possibility is that the mismatch between the data and the 
models is a symptom of interindividual differences in behavior, or oth-
erwise more complex behavior than the simple models here allow. If 
this is the case, improving the models themselves, as well as the statis-
tical techniques to analyze them, will be a more fruitful way forward. 
Even in the case of developing new models for the underlying behav-
ior, it may be that direct parameterization of all model components 
is not possible. Instead, the quantified patterns explored here could 
be directly compared with model outputs, for instance emergent flight 
lengths from an optimal foraging or individual-based model. Although 
model parameterization and validation of more complex models can 
be challenging, they can allow us to better understand why we see 
particular patterns and to better predict how behavior may change into 
the future.
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