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The generation of hierarchical structures is central to language, music and complex action. Understanding this capacity and its

potential impairments requires mapping its underlying cognitive processes to the respective neuronal underpinnings. In language,

left inferior frontal gyrus and left posterior temporal cortex (superior temporal sulcus/middle temporal gyrus) are considered hubs

for syntactic processing. However, it is unclear whether these regions support computations specific to language or more generally

support analyses of hierarchical structure. Here, we address this issue by investigating hierarchical processing in a non-linguistic

task. We test the ability to represent recursive hierarchical embedding in the visual domain by contrasting a recursion task with an

iteration task. The recursion task requires participants to correctly identify continuations of a hierarchy generating procedure,

while the iteration task applies a serial procedure that does not generate new hierarchical levels. In a lesion-based approach, we

asked 44 patients with left hemispheric chronic brain lesion to perform recursion and iteration tasks. We modelled accuracies and

response times with a drift diffusion model and for each participant obtained parametric estimates for the velocity of information

accumulation (drift rates) and for the amount of information accumulated before a decision (boundary separation). We then used

these estimates in lesion-behaviour analyses to investigate how brain lesions affect specific aspects of recursive hierarchical embed-

ding. We found that lesions in the posterior temporal cortex decreased drift rate in recursive hierarchical embedding, suggesting an

impaired process of rule extraction from recursive structures. Moreover, lesions in inferior temporal gyrus decreased boundary

separation. The latter finding does not survive conservative correction but suggests a shift in the decision criterion. As patients also

participated in a grammar comprehension experiment, we performed explorative correlation-analyses and found that visual and

linguistic recursive hierarchical embedding accuracies are correlated when the latter is instantiated as sentences with two nested

embedding levels. While the roles of the inferior temporal gyrus and posterior temporal cortex in linguistic processes are well

established, here we show that posterior temporal cortex lesions slow information accumulation (drift rate) in the visual domain.

This suggests that posterior temporal cortex is essential to acquire the (knowledge) representations necessary to parse recursive

hierarchical embedding in visual structures, a finding mimicking language acquisition in young children. On the contrary, inferior

frontal gyrus lesions seem to affect recursive hierarchical embedding processing by interfering with more general cognitive control

(boundary separation). This interesting separation of roles, rooted on a domain-general taxonomy, raises the question of whether

such cognitive framing is also applicable to other domains.
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Introduction
Humans have the ability to process hierarchical structures

(Fitch and Martins, 2014; Wilson et al., 2017), and this

capacity has been mostly studied in the domain of lan-

guage. For instance, in the sentence ‘instinctively, birds

that fly swim’, the adverb ‘instinctively’ modifies the verb

‘swim’ and not the verb ‘fly’, despite being more distant to

the former in the linear structure. This is because, within

the underlying syntactic structure, ‘instinctively’ is closer to

‘swim’ than to ‘fly’ regarding hierarchical depth: {instinct-

ively, {birds {that fly} swim}} (Berwick and Chomsky,

2015). Such hierarchy in language is thought to result

from an innate recursive procedure (Berwick et al., 2013;

Berwick and Chomsky, 2015; Everaert et al., 2015), which

when applied stepwise, generates multiple nested hierarch-

ical levels. Although ‘infinite recursion’ is considered a core

feature of human language, it is rare to find sentences with

more than two levels of hierarchical embedding. One im-

portant limitation is that, in spoken language, working

memory capacity is strongly taxed due to an increasing

number of elements that have to be held active before sen-

tence meaning integration. In other domains, these memory

limitations might not be as pronounced (e.g. the visuospa-

tial), even though the theoretical limit of recursion is never

achieved.

The mechanisms supporting hierarchy in language are

thought to be implemented by dedicated neural systems

(Berwick et al., 2013). Evidence for this view comes from

neuroimaging (EEG and functional MRI) and lesion stu-

dies. The patholinguistic condition of agrammatism, for in-

stance, interferes with the processing of complex syntax,

while other linguistic abilities are largely preserved

(Grodzinsky and Santi, 2008). It remains unclear, however,

whether areas putatively supporting hierarchical linguistic

processes could also support recursive hierarchical embed-

ding (RHE) in other domains. Here, we aim to investigate

whether lesion patterns associated with agrammatism also

interfere with RHE in the visual domain, by testing patients

with an acquired chronic brain lesion in the left

hemisphere.

While studies on the neural correlates of RHE are scarce,

there is converging evidence that syntactic processing relies

on two major hubs: the inferior frontal gyrus (IFG) and the

posterior temporal cortex (pTC) (Friederici, 2011; Hagoort

and Indefrey, 2014; Matchin et al., 2017). Within the pTC,

some studies implicate the posterior superior temporal

sulcus and others implicate the posterior middle temporal

gyrus (MTG) (see Hagoort and Indefrey, 2014, for a meta-

analysis). The role of these areas has been discussed along

two rationales: computations within IFG may be necessary

to implement recursive generation of linguistic hierarchies

(Friederici et al., 2011; Zaccarella et al., 2017), a finding

that would explain central symptoms of agrammatism

(Matchin and Rogalsky, 2018). Alternatively, functional

MRI results are compatible with the interpretation that

IFG implements domain-general ‘computations’ (e.g. relat-

ing to working memory or cognitive control), which oper-

ate on domain-specific ‘representations’ supported by pTC

(Rogalsky et al., 2011; Matchin, 2018; Matchin et al.,

2017). These representations might be both simple lexical

units or complex hierarchical templates containing a set of

features that dictate how basic units can be further com-

bined (Matchin, 2018). These two models may be tested by

extending research on recursion to other domains.

Here we focus on the visual domain. We study recursive

abilities in individuals with a chronic circumscribed lesion

in the left hemisphere. As most of them participated in

another study on linguistic syntax processing, we are in

the unique position to gain a first insight into potential

correlations between RHE across different modalities.

RHE has been hypothesized to play a role in the process-

ing of visuo-spatial structures (Pinker and Jackendoff,

2005). To supply experimental evidence, a visual recursion

task (REC) was recently developed in which participants

generate novel hierarchical levels using a recursive embed-

ding rule (Martins et al., 2016). In a control iteration task

(ITE) items are added sequentially to existing hierarchies

without generating new levels. As recursive competence in

this task correlates with similar abilities in music and action

(Martins et al., 2017), we consider it ideal to tap into

shared RHE resources across domains.

In the visual domain, the contrast REC versus ITE acti-

vates anterior regions within superior temporal sulcus,

along with several regions within the default mode network

(DMN) and medial temporal lobe (MTL) (Martins et al.,

2014a; Fischmeister et al., 2017). These regions fit the

classical view that the visual ventral stream and the par-

ieto-medial temporal pathway (PMT) integrate items in

contextual frames (Kravitz et al., 2011). Recently, this re-

search has been extended to the domains of music and

action (Martins, 2017; Martins et al., 2017). While we
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found no evidence for the involvement of IFG or pTC in

these domains, we found areas involved in tonal sequence

representation (anterior STG) in music (Martins, 2017),

and areas involved in motor imagery for the motor

domain (premotor cortex, basal ganglia, cerebellum;

Martins et al., 2019). In favour of Matchin’s hypothesis

(Matchin, 2018; Matchin et al., 2017), this suggests that

domain-specific ‘representations’ might be involved in the

processing of RHE.

If domain-specific representations are recruited for highly

trained behaviour as applies to trained musicians, this does

not preclude the possibility that de novo analysis of recur-

sive structure may rely on more domain-general capacities,

therefore tapping into a similar neuronal network across

tasks. In fact, previous behavioural research with untrained

participants during the acquisition of RHE suggests com-

munalities across visual, music and action domains

(Martins et al., 2017).

Importantly, the general capacity to instantiate RHE is

thought to result from the interaction of a core RHE ma-

chinery with two peripheral systems: sensory-motor and

conceptual-intentional (Everaert et al., 2015). Crucially,

the interaction of the core capacity with sensorial systems

of different domains requires specialized interfaces. For in-

stance, RHE in music and oral language hinges on auditory

working memory system, while in the visual domain RHE

is dependent on a visual working memory system. While

these interfaces might have constraints specific to each

domain, it is possible that similar neural networks are ne-

cessary to instantiate the core capacity across domains.

To elucidate the processes involved in the acquisition of

RHE in the visuo-spatial domain vis a vis with the pro-

cesses involved in syntactic processing, we tested indivi-

duals with a chronic acquired left hemisphere lesion

resulting from various aetiologies. If a distinct network is

required for the inference of the recursive process in a novel

task, we expect that variance across participants will vary

depending on lesion location. Furthermore, we can test this

relationship by correlating performance in the visual recur-

sion task with some aspects of a linguistic task involving

syntactic embedding, and performed in a largely overlap-

ping cohort of participants.

As behavioural measures of response accuracy and la-

tency are expected to largely vary in clinical populations,

we extend our behavioural analysis to a more comprehen-

sive analytical framework. The drift-diffusion model

(DDM; Smith and Ratcliff, 2004) is a sequential sampling

model for the analysis of choice-reaction time data, which

is the combination of reaction time and accuracy measures.

The DDM model yields estimates of: (i) the velocity at

which a decision is made (v0, drift); (ii) the amount of

information that is required to make the decision (a0,
boundary); and (iii) the amount of time required to com-

plete non-decision processes (t0, non-decision time). Here,

we used a hierarchical version of the DDM model (Wiecki

et al., 2013) to obtain estimates that take into account

inter-subject variability.

As an example of how the DDM can explain non-linear

dynamics of the decision process, consider the scenario

where impairment may lead to slower responses in a spe-

cific task condition. Simple analyses of behavioural per-

formance would not be able to compare the alternative

explanations of whether the slow responses are due to

more information being needed to make the decision

(larger boundary separation) or due to a reduction in the

rate at which information accumulates (drift rate). Changes

in either of these two factors could produce responses with

larger reaction times. Therefore a sequential sampling

model is needed to correctly estimate the dynamics of the

underlying decision process.

For the detection of brain regions involved in parsing the

RHE properties of our stimuli, the v0 (drift) parameter is

particularly informative since it has been shown to account

for information accumulation in both behaviour and neural

(spike) data (Gerstein and Mandelbrot, 1964; Srinivasan

and Sampath, 2013; Durstewitz et al., 2016).

Here, we investigate the mechanisms supporting the ac-

quisition of RHE in the visual domain, by assessing per-

formance in a population with acquired focal chronic

lesions of the left hemisphere. We target the effects of

lesion site on interindividual variance in behavioural per-

formance and hypothesize that lesions in brain areas central

for recursive analysis in the linguistic domain (IFG and

pTC) also affect RHE in vision. Regions within the right

hemisphere might be relevant for rule acquisition in general

and for the acquisition of linguistic competence (Dehaene-

Lambertz et al., 2002). However, since linguistic impair-

ment in adults is largely caused by left hemispheric lesions,

these will be the focus of our analysis. Thus, we predict

that patients with lesions in these areas of the left hemi-

sphere will be slower in the accumulation of information

necessary to process RHE (modelled as drift rate).

Comparing accuracy in the novel visual recursion task

and accuracy in a syntax task (reported in detail else-

where), we hypothesize that performance in REC (rather

than ITE) correlates with performance in understanding

multiple embedded sentences.

Materials and methods

Participants

Forty-four participants (n = 19 female) with an acquired
chronic left hemispheric brain lesion were included. They
were recruited at the Clinic for Cognitive Neurology,
University Hospital Leipzig. Mean age � SD (range) was 50
years � 10.6 (24–74), and time since event 23.1
months � 22.3 (3–115). Participants were in the chronic
stage after a vascular lesion (n = 37; 25 ischaemic stroke, five
subarachnoid haemorrhage, seven intracerebral haemorrhage)
traumatic brain injury (n = 3), encephalitis (n = 1) or suffered
from brain tumours in the stage of a ‘stable disease’ (n = 3).
We deliberately chose patients with lesions related to different
aetiologies as this reduces the bias for specific lesion patterns
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due to the nature of the disease (e.g. vascular territories in

ischaemic stroke). All patients were in the chronic stage of
the disease and showed no clinical or radiological sign of rele-

vant affection of brain areas distant to the focal lesion which
entered the analysis (Supplementary Table 1 for details, includ-

ing some additional comments on the rationale of patient se-
lection). Participants gave informed consent; data were

collected according to the Declaration of Helsinki after ap-
proval of the local ethics committee.

Patients underwent an extensive clinical testing during their
therapeutic stay at the clinic, which was used to judge eligibil-

ity for participation. Severe cognitive impairment was an ex-
clusion criterion. A left hemispheric lesion in a structure
considered to be part of the extended language network was

present in all patients. However, manifest aphasia at the time
of participation was not mandatory. Overall, 12 patients

showed no aphasia at the time of testing, of whom seven
had shown a clinically relevant aphasia in the acute stage of

their disease. At the time of testing 13 participants had an
aphasia that was classified according to the Aachen Aphasia

Test (AAT) (Huber et al., 1984), the standard diagnostic tool
for aphasia in German (seven amnestic, three Broca, two

Wernicke, one non-classifiable). Nineteen participants had clin-
ically manifest language impairment termed ‘residual aphasia’

according to AAT logics. In sum, the cohort was mildly im-
paired, but only four patients had never shown aphasic symp-

toms, while 32 showed a clinically-relevant language
impairment at the time of testing. For details see

Supplementary Table 1.

Imaging

For all participants (n = 44), structural imaging was available.
Thirty-nine scans were performed at in-house scanners (3T

Siemens MRI system Trio� or Verio� system, Siemens
Medical Systems) including 3D T1-weighted (1 mm isovoxel),

and fluid-attenuated inversion recovery (FLAIR) images. In
four patients clinical MRI at a lower resolution [3–5 mm

slice thickness, including FLAIR or turbo inversion recovery
magnitude (TIRM) and T1 images] was available; in one pa-

tient a cranial CT was used for lesion delineation. For the
lesion-behaviour analyses, lesions were manually delineated

in all three planes on each slice of the T1 or cranial CT
images using MRIcron (Rorden and Brett, 2000), for MRI

FLAIR/TIRM-images served as a reference. Images were then
transformed into standard stereotactic space (MNI) using
SPM8 (www.fil.ion.ucl.ac.uk/spm) and the ‘clinical toolbox’

(nitrc.org/projects/clinicaltbx/), which allows for normalizing
images from different modalities into the same space. The uni-

fied segmentation approach was applied (Ashburner and
Friston, 2005) and estimation of normalization parameters

was restricted to healthy tissue using predefined lesion masks
(Brett et al., 2001). The resulting normalized binary lesion

maps were next analysed in NiiStat (https://github.com/neuro-
labusc/NiiStat), including a ‘traditional’ voxel-wise analysis but

also providing options for a region-based analysis. While the
former can be considered more sensitive to smaller lesion foci

correlating with behaviour, the latter is less susceptible to false
negatives, since the issue of multiple comparison correction is

greatly reduced.

Experimental tasks

Visual Recursion Task

For the Visual Recursion Task (REC), participants were shown
a sequence of three images (steps 1–3), which depicted a pro-
cess generating a visual fractal. After the first three images,
participants were asked to discriminate, from two choices,
the image corresponding to the correct continuation of the
previous sequence of three (i.e. the fourth step). One of the
choices was the correct image, and the other was a foil. The
task is an adaptation of the one used and described in detail
elsewhere (Martins, 2012; Martins et al., 2014a, b). REC was
composed of 27 trials, nine of each foil category. Variability
was achieved by varying the number of constituents compos-
ing the visual fractal, as described in (Martins et al., 2014b).

Each trial began with the presentation of three images of a
fractal generation in the top half of the screen, sequentially
from left to right (Fig. 1A) at a rate of 2 s between image
onsets. After the presentation of the first three steps, two
new images were presented simultaneously in the bottom
half of the screen. One image corresponded to the correct con-
tinuation of the recursive process that generated the first three
fractals, and the other corresponded to a foil (or ‘incorrect’
continuation). Participants were asked to select the image that
continued the recursive process. The position of the ‘correct’
image (left or right) was randomized. After the initial instruc-
tions, each trial had a maximum duration of 30 s before a
timeout. No feedback was given regarding the correctness of
choice. Total duration of the task (27 trials) was �12 min.

To control for effects of information processing demands,
we included stimuli with different degrees of visual complexity
(complexity ‘3’, ‘4’, and ‘5’). Furthermore, to control for the
usage of simple visual heuristic strategies in REC performance,
we included several categories of foils (‘Odd’, ‘Position’ and
‘Repetition’; Fig 1B). Complexity and foil-type allow for nine
types of stimuli (three complexity levels � three foil types).
Three examples of each type of stimuli were generated using
the programming language Python, resulting in the total set of
27 stimuli.

Visual Iteration Task

The second task was iterative but non-recursive (Martins et al.,
2016). The principle underlying ITE is similar to REC in that
it involves a stepwise procedure applied to hierarchical struc-
tures. However, ITE lacks recursive embedding. Instead, in
ITE, additional elements are added to one pre-existing hier-
archical structure, without producing new hierarchical levels
(Fig. 1A, bottom right). As for REC, an understanding of
this stepwise procedure is necessary to correctly predict the
next step. Number of trials, visual complexity and foil cate-
gories and distributions were equivalent to REC.

Procedure

The visual recursion/iteration task and a task assessing com-
prehension of multiple degrees of sentential embedding
(Fig. 4A) were part of a larger assessment battery. The linguis-
tic task was performed one day prior to the visual tasks. For
the visual task half of the participants started the procedure
with ITE [order: Iteration (I)!Recursion (R)] and half started
the procedure with REC (order: R!I).
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Statistical analyses

Visual task data allows the analysis of two factors: Task (REC/
ITE) and Order (I!R/R!I) and their interaction. We ana-
lysed the base parameters of the behavioural experiment
(reaction time and accuracy) and then fed these into a drift-
diffusion-model yielding a measure for the velocity of informa-
tion accumulation (drift, v0) and the amount of information
needed to make a decision (boundary, a0). The third parameter
of the latter analysis, non-decision time (t0), is not analysed
further here. Posterior group-level distributions for all of the
parameters can be inspected in Supplementary Fig. 8.

Reaction time and accuracy

Statistical analyses were performed in R studio (1.1.453). We
ran linear mixed models with the function lmer() with package
lme4 (Bates et al., 2014), with participants as random factor.
Best lambda transformation was found using boxcox() with
package MASS (Venables and Ripley, 2002). All residual dis-
tributions reported in this manuscript were normal, calculated
using Shapiro-Wilk test (all P’s40.2). Models are reported
using ANOVA (type = II) and the R package Anova() for P-

values. When main effects were found, we tested for pairwise
differences with emmeans() (Russell, 2018), using Kenward-
Roger methods to calculate the degrees of freedom, and
Tukey P-value adjustment when comparing three parameters.
Finally, we ran spearman correlations since variables were not
normally distributed, and one-tailed tests since we expected
grammar comprehension to positively correlate with visual re-
cursion accuracy and negatively with response time.

Drift diffusion analysis

Choice reaction time data were fitted to a hierarchical version
of drift diffusion model using customized scripts implemented
in the HDDM toolbox (Wiecki et al., 2013) for Python. Since
the dataset presented very long responses (410 s) we scaled all
of the reaction times by a constant factor (10) so that all of the
reaction times would be in the range of 0–10 s. The analyses
proceeded as follows. First, we fitted to the data models with
different combinations of free parameters over the two factors
of experiment (Order and Task). Each of the models was fitted
to the data using standard MCMC minimization routines with
50 000 iterations, a burn-in period of 5000 and thinning of 1.
For all of the chains, the results converged to stable estimates

Figure 1 Experimental paradigm. (A) The presentation of the visual recursion/iteration task (REC, ITE) comprised four steps including a

successive presentation of the steps 1–3 at the top of the screen to then present the two options for a forced choice at the bottom. Examples for

REC and ITE screen shots are provided for step 4; note that the final choice images are identical for both tasks. Location of correct image was

randomized (e.g. left in the ITE and right in the REC example provided). (B) Examples of fractals used in REC. There were different categories of

‘visual complexity’—3, 4 and 5—and different categories of foils. In ‘odd constituent’ foils, two elements within the whole hierarchy were

misplaced; in ‘positional error’ foils, all elements within new hierarchical levels were internally consistent, but inconsistent with the previous

iterations; in ‘repetition’ foils, no additional iterative step was performed after the third iteration.
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as indicated by the relative diagnostic plots and by the Rhat
statistics (51) which is a measure of chain convergence. For
each of the models we then computed the relative deviance
information criterion (DIC) which is a measure of the good-
ness of fit of the model to the data penalized by the complexity
of the model (i.e. functional form of the free parameters). A
model with a lower DIC score is to be preferred as the most
parsimonious account of the data. Comparisons of the DIC
scores for all models indicated a model with drift rate (v0)
and non-decision time (t0) free to vary over both experimental
conditions and boundary separation (a0) fixed over task-order
conditions as the most parsimonious account of the data. For
brevity, results of the model comparison are reported in the
supplementary information and only results from the best-fit-
ting model are reported in the main text. Estimated parameters
for the best fitting model were finally tested for significant
differences using linear regression analyses with permutation
based-calculation of significance levels implemented in R� with
the package lmPerm (Wheeler and Torchiano, 2016).

Lesion–behaviour analyses

Analyses were conducted with NiiStat (https://github.com/neu-
rolabusc/NiiStat). Anatomical correlates of REC and ITE ac-
curacy (with Task-Order as nuisance variable) were assessed
using both a region- and a voxel-based approach (Bates et al.,
2003; Rorden et al., 2007).

For the statistical region of interest approach two atlases
were used: the Atlas of Intrinsic Connectivity of Homotopic
Areas (AICHA), which contains 384 grey matter regions of
interest (Joliot et al., 2015), and the Brodmann atlas, contain-
ing 82 grey matter areas. To find out about the relevance of a
specific region of interest for task performance the proportion
of damage to a given region was computed in each participant
and entered into a general linear model (GLM). This statistic-
ally assesses a correlation between the amount of damage in a
given region and the behaviour in question. The result was
converted to a z-score for each region. To control for
family-wise error, the data were permuted 5000 times to es-
tablish a significance threshold. Only those regions with z-
scores above the permutation threshold P5 0.05 are reported
(Rorden et al., 2007). Relative to voxelwise approaches (see
below), this method increases statistical power by both aver-
aging data and limiting the number of statistical comparisons.
An initial statistical region of interest analysis was conducted
to examine each parameter individually. A second analysis
used each parameter as a nuisance factor for the other vari-
ables using the Freedman–Lane method (Freedman and Lane,
1983), this is a natural extension of GLM that allows us to
compute permutation (Winkler et al., 2014). We were espe-
cially interested in the correlates of REC when taking ITE and
order as nuisance regressors.

Additionally, we performed the ‘traditional’ voxel-wise ap-
proach, conducting independent statistical tests for each voxel
that is covered by a lesion overlap of at least four participants.
To control for multiple comparisons only voxels surviving
5000 permutation correction are reported in the statistical
maps. Using NiiStat, t-tests were computed for every voxel
to see if those individuals with a lesion at that location ex-
hibited reliably different behavioural performance (using our
continuous indices) than those without a lesion. The t-tests
were confined to voxels that sustained damage in at least

10% (n = 4 subjects) of the sample, defining the areas for
which the analysis can provide statistical inference.

Grammar task

All participants of the visual recursion/iteration-task also per-
formed another experiment targeting the comprehension of
complex syntax (Krause et al., submitted for publication). In
that experiment participants listened to sentences containing
three propositions regarding two animals interacting with
each other. Propositions were: (i) the action (e.g. X washes
Y); (ii) the colour of one animal (e.g. X is brown); and
(iii) the mood of one animal (e.g. X laughs). After the auditory
presentation of the sentence (overall set: 132 sentences), par-
ticipants had to choose the correct image from a set of four
images (one correct, three incorrect containing a distractor for
each proposition). Syntactic complexity of the sentences was
manipulated by the embedding depth in that the three prop-
ositions were serially linked by a conjunction or embedded
using embedded relative clauses. An additional manipulation
was introduced by varying argument order (i.e. subject first or
object first relative clause). Here, we only use the differences in
embedding depth, for which we supply an example in Fig. 4A.
Note that only the difference between EMB1 and EMB2 enters
the analysis. EMB0 sentences contain crossed-dependencies,
meaning that the personal pronoun ‘er’ [he] in the last prop-
osition can relate to the animal mentioned first and the one
mentioned second because they share grammatical gender. The
difference in argument order is illustrated in an example in the
Supplementary material including an example for the four-
image choice.

Data availability

Anonymized data are available on request.

Results

Reaction time and accuracy

Accuracy showed a main effect of Order and an interaction

between Task � Order. The main effect for Task did not

reach statistical significance. For reaction time neither main

nor interaction effects were significant.

Results for REC and ITE are presented in Fig. 2. To test

for differences between ITE and REC, we performed two

independent analyses, one with accuracy and another with

response time as dependent variables. As predictors, we

included Task (REC/ITE), Order (R!I versus I!R,

balanced across participants), and the interaction

Task � Order.

For accuracy, we found a significant effect of Order

[F(1,85) = 6.4, P = 0.01] and Task � Order [F(1,85) = 7.4,

P = 0.007]. The main effect of Task was not significant

(P = 0.7). The proportion of correct responses in REC

was lower in the Order when this task was performed

first (R!I versus I!R) [t(61.7) = �3.5; P = 0.0009].

Performance in ITE did not differ between the two orders

[t(61.7) = 1.0; P = 0.3]. We repeated the procedure for
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reaction time and the best fit was the intercept-only model

[with restricted maximum likelihood (REML) = 180],

meaning that Task, Order, and the interaction were not

significant (all P’s4 0.2).

Hierarchical drift diffusion model
results

As reaction time and accuracy interact in a complex

manner even in binary decision tasks, we performed an

additional analysis based on the values that were derived

from a DDM.

We ran a model selection procedure (Supplementary ma-

terial) and found that a model with drift and non-decision

time free to vary over Order and Task factors and bound-

ary distance over Task provided the most parsimonious

account of the data (best model). We then used the poster-

ior estimates for each Task (REC and ITE) while control-

ling for order effects. We thus obtained measures of

performance for REC and ITE independent of the (arbitrar-

ily assigned) order and the overall performance, the latter

depending on a large number of individual differences be-

tween patients which are of no specific interest here. As

illustrated in Fig. 2B the analysis showed a large variance

across participants and no significant differences between

Tasks. The fact that nearly equal numbers of participants

showed REC4ITE and vice versa for both orders supports

the effective cancellation of the order effect for this ana-

lysis, and thereby allows for the lesion–behaviour analysis

across all participants.

Lesion-behaviour correlations:
statistical region of interest and
voxelwise analyses

Lesion-behaviour analyses performed on the ‘base-param-

eters’ reaction time and accuracy yielded no statistically

robust results.

Figure 2 Behavioural data. (A) Percentage of correct answers (acc [%], left) and response time (RT [s], right) in the ITE (blue), and REC (red).

The order of visual tasks was either ‘I!R’ or ‘R!I’ as indicated by the light or darker shading. (B) We combined these data into a hierarchical

DDM (text for details) and obtained posterior estimates for drift rate (drift v0) and boundary separation (boundary a0). Note that order no longer

influences the performance since roughly equal numbers of patients showed values REC4ITE and ITE4REC for these measures (colour coding of

individual data points as in A). The variability can be used across participants in the lesion-behaviour analysis (main text and Fig. 3). For detailed

descriptive statistics, see Supplementary Table 2.
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On the contrary, for the drift rate (v0) and boundary

separation (a0) both statistical region of interest-based and

voxelwise analyses yielded lesion patterns which correlated

significantly with the variability of the parameters across

participants.

For the statistical region of interest analysis, temporal

cortex areas correlated with the variation of v0 when fac-

toring out ITE as nuisance factor. Drift rate v0 (speed of

information integration during REC decision-making

processes) was lower when the participant’s lesion included:

the posterior MTG (z = 3.0), according to the AICHA atlas,

and BA 21 according to the Brodmann altas (z = 3.3). The

results are depicted in Fig. 3C.

Using the voxelwise approach (Fig. 3B), lesions in the left

MTG correlated with decreased drift rate v0. Interestingly,

lesions in parts of the IFG were associated with a decrease

in the boundary separation a0, indicating that participants

with lesions in these areas acquire less information before

they make a decision. Only 39 voxels in the posterior MTG

survived thresholding in the drift results (z4 3.7, 5000 per-

mutations, P = 0.05), converging with the statistical region

of interest approach. No voxels survived thresholding for

the boundary separation.

Additional analysis regarding the
correlation with a Grammar task

As most of the participants (n = 41) also performed a task

on complex grammar comprehension, which is reported

in detail elsewhere (Krause et al., submitted for publica-

tion), we performed a correlation analysis between the

performance in the visual tasks (REC and ITE) and an

aspect of the grammar experiment which can be con-

sidered a linguistic counterpart of the REC/ITE-learning

task reported here. As detailed in the ‘Materials and

methods’ section, the linguistic task requires that partici-

pants judge the meaning of sentences with increasing

levels of embedding. Here, we use the performance for

single- and double-embedded sentences (EMB1 and

EMB2, for an example see Fig. 4A). The percentage of

correct responses in the Grammar task are provided in

Supplementary Table 3.

To test for communalities between our visual task and

the performance in the different embedding levels of the

grammar tasks, we ran Spearman correlations between

accuracy in REC and ITE, and accuracy in EMB1 and

EMB2. For this behavioural analysis we chose accuracy

and not the DDM parameters v0 and a0 in order to com-

pare similar constructs. The DDM is a model for 2-forced

choice tasks and therefore cannot be directly applied to

the 4-choice grammar tasks. Therefore, since we cannot

obtain a ‘grammar drift’ to compare with the ‘visual drift’,

we decided to compare grammar accuracy with visual

accuracy.

Scatterplots are depicted in Fig. 4B. P-values are given for

one-tailed tests, as we expected a positive correlation be-

tween the visual and grammar tasks. We found that, for

accuracy, the correlation with EMB1 was marginal for ITE

(rs = 0.24, P = 0.066) and significant for REC (rs = 0.38,

P = 0.008); EMB2 correlated only with REC (rs = 0.27,

P = 0.042) but not with ITE (rs = 0.01, P = 0.5). The full

correlation matrix (including EMB0) is depicted in

Supplementary Fig. 3.

To test whether these differences between REC and ITE

were consistent, i.e. to test if EMB2 was more correlated

Figure 3 Lesion-behaviour analyses. (A) The area covered.

Left: Coloured areas show a lesion in at least one patient, in the

lighter area at least four lesions overlap representing the area in

which the analysis was performed; right: area of maximal overlap

(n = 15) projecting to the insular cortex as is typically seen in stroke

dominated lesion studies. (B) Voxel-wise approach: Uncorrected

(unc.) maps are shown for boundary separation (a0, red) and drift

rate (v0, purple) for the REC, with ITE as nuisance variable. IFG

lesions were associated with lower a0, meaning that participants

collected less information before reaching a decision. On the other

hand, lesions in the MTG and STG were associated with lower drift

rate, meaning that these patients collected information slower. Only

39 voxels in the MTG (blue area circled for illustration purpose)

survived correction for REC v0. (C) Statistical region of interest-

symptom mapping, shows significant correlations between REC v0

and MTG for the AICHA (purple) and the Brodmann atlas (BA21,

blue).
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with REC than with ITE, we ran linear mixed models with

accuracy (%) in the visual task as the dependent variable

and predicted by Task (ITE versus REC), and by the cov-

ariate ‘accuracy’ in grammar comprehension EMB(x) (for

x = 1 and 2), and the two-way interactions EMB(x) � Task.

We ran two similar models, one for each grammar embed-

ding depth (EMB1 and EMB2) (Table 1).

For EMB1, the best model (REML = 27.2) included

grammar comprehension only, but no effect of Task, and

no interaction. This means that comprehension of sentences

with one level of embedding predicted equally well both

REC and ITE accuracy, as suggested by the correlation

analyses (a similar result was found for EMB0, as reported

in Supplementary Table 4). On the other hand, the best

model for EMB2 was the full model, including the inter-

action EMB2: Task. This means that the correlation be-

tween EMB2 and visual task accuracy differed between

REC and ITE, with this relationship being stronger for

REC (REC:EMB2, B = 0.004, SD = 0.002, t = 1.9). To in-

vestigate whether this effect could be caused by outliers, we

calculated Cook’s distances (Cook and Weisberg, 1982)

and found all were lower than 1.06. We repeated the analysis

removing the data points with highest Cook’s distances

(threshold of four times the mean) and obtained the same

results (Supplementary Fig. 4 and Supplementary Table 5).

Finally, considering that general cognitive abilities, such

as attention, could potentially account for these differences

between REC and ITE, we inspected the correlation matrix

between our visual tasks and a number of standard cogni-

tive measures, including verbal and spatial working

memory and measure of alertness as a basic function of

attention (see Supplementary Fig. 5 for details). Including

these variables in our model had no influence on the spe-

cific relationship between REC and EMB2 (Supplementary

Table 6).

Together, these results suggest that while grammar com-

prehension correlates with both REC and ITE, as previ-

ously shown in Martins et al, 2014b), for higher-levels of

sentence centre-embedding this correlation becomes specific

for REC and not for ITE.

Discussion
The ability to represent hierarchies with multiple levels of

embedding is an essential component of human cognition.

In language, this capacity has been extensively investigated

with both functional MRI and lesion studies highlighting

the importance of a network comprising an anterior and a

posterior ‘hub’ (in IFG and posterior temporal lobe, re-

spectively) (Friederici, 2009, 2011; Hagoort and Indefrey,

2014; Matchin et al., 2017). The exact function of these

hubs remains ambiguous, and it is unclear whether they

support mechanisms specific to language or more generally

the processing of hierarchical structures (Matchin et al.,

2017; Matchin and Rogalsky, 2018).

Here, we report the first study investigating the acquisi-

tion of RHE in the visual domain in patients with an

acquired chronic brain lesion in the language network.

We find that, despite the brain lesion, participants were

able to acquire a recursive regularity in a sequence of

four steps. The generation of new hierarchical levels in

visuo-spatial structures was compared to the ability to ac-

quire an iterative rule that sequentially added visual elem-

ents within a fixed hierarchy, without generation of new

levels. The presence of a circumscribed chronic left hemi-

spheric brain lesion in all participants enabled us to per-

form lesion-behaviour analyses probing into whether left

hemispheric neuronal structures support the ability to

infer recursive visual processes, as they do for language.

Participants performed the task rather well with substan-

tial inter-individual variance. With regard to the neuronal

underpinnings, lesions in the left (posterior) middle tem-

poral lobe correlated with lower performance in the detec-

tion of the recursive process. As this applies to the drift

parameter of our analysis, the critical deficits affected in-

formation accumulation and integration during decision-

making. Less robustly, lesions in IFG decreased boundary

separation, in other words, patients with a lesion in this

area tended to acquire less information before deciding

how the hierarchy generating rule continued. The latter

can be conceived as a lower threshold at which participants

are confident to respond correctly. Regarding the issue of

supramodality of RHE, we compared the visual task to a

linguistic task performed by most participants. We found

that the ability to process single embedded sentences corre-

lated equally well with REC and ITE performance.

Conversely, patients performing worse on the comprehen-

sion of double embedded sentences performed worse spe-

cifically in REC.

These data, together with previous literature, suggest that

pTC is important for the formation of RHE representations

across different domains. In the next sections, we will dis-

cuss these findings in the broader context of hierarchical

cognition.

Table 1 LMM Dependent variable: ITE and REC accur-

acy (%)

Df SS F P

Model 1: EMB1

Task 1 0.02 0.6 0.45

EMB1 accuracy (%) 1 0.17 5.4 0.02*

EMB1* Task 1 0.06 2.0 0.15

Model 2: EMB2

Task 1 0.02 0.6 0.45

EMB2 accuracy (%) 1 0.06 1.9 0.17

EMB2* Task 1 0.12 3.9 0.05*

We ran two Linear Mixed Models (LMM), one for EMB1 and another for EMB2, to test

whether the visual tasks differed in how much they are predicted by EMB1 and EMB2.

We found that EMB1 predicted both REC and ITE, with no significant difference between

tasks (top). Conversely, EMB2 predicted better REC than ITE (bottom, see main text

for details).

SS = sum of squares.

*P5 0.05.
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The contrast REC–ITE isolates
recursive hierarchical embedding

The essential difference between REC and ITE is that only

for REC a self-similarity between the global structure and

subordinate elements evolves along increasingly complex

images. On the contrary, for ITE, the addition of more

elements follows a simple sequential rule. This parallels

differences in language when multiple embedded propos-

itions are compared to a serial presentation of the same

propositions. [As an example: ‘The mouse the cat the dog

bit chased escaped’ versus ‘the dog bit the cat, the cat

chased the mouse, the mouse escaped’.]

Previous research has demonstrated that performance for

REC is correlated with the ability to represent recursive

embedding in tonal hierarchies and in action planning,

when factoring out overall performance in both tasks

(Martins et al., 2017). This suggests that the cognitive re-

sources used in the acquisition of RHE representations are

shared across domains. This hypothesis would be consistent

with our behavioural results showing that accuracy in REC

correlates (more strongly than ITE) with the ability to ad-

equately parse sentences with two centre-embedded clauses.

Moreover, the areas which correlate with the derived par-

ameters of drift and boundary (Fig. 4 and Table 1)—IFG

and posterior temporal—are considered hubs for the pro-

cessing of complex grammar (Friederici, 2011; Hagoort

and Indefrey, 2014; Zaccarella et al., 2017).

Additional support for the fundamental difference be-

tween ITE and REC comes from the analysis of order ef-

fects in the current experiment. The alternating order of the

two tasks across patients was introduced to counterbalance

mere learning effects; however, we find a strong task-order

effect for REC only. Performance in REC, when performed

prior to ITE, was significantly worse than for the inverse

task order. On the contrary, ITE performance did not

change depending on task-order. These findings replicate

previous results with children (Martins et al., 2014b). The

fact that task-order effects are not present for ITE suggests

that there is a ‘natural sequence’ in the acquisition of RHE

representations in that acquisition of recursion requires pre-

vious acquisition of more simple iterative representations.

This has also been shown for the domain of language in

which children need to acquire conjunctive representations

before they are able to acquire the construction of subor-

dinate clauses (Roeper, 2011). This effect is influenced by

exposure and inductive processes and not only by natural

ontogenetic development (Dewar and Xu, 2010; Perfors

et al., 2011a, b). Our data showing an asymmetric effect

of Order for REC and ITE is additional evidence that REC

Figure 4 Relationship between REC, ITE and grammar task. (A) Example of the linguistic task of a different study in which the majority

of the participants took part. Regarding the tasks reported here (ITE/REC) performance for one aspect of syntactic complexity, namely

embedding, was correlated with results in the visual task. The three syntactic propositions were presented either sequentially (E0, i.e. no

embedding) or with an embedded relative clause (EMB1, one embedding containing two propositions) or with a 2-fold centre-embedded

structure (EMB2). Note that for the three example sentences (out of n = 132) the same image would be correct in the successive picture

selection task (see screenshot in Supplementary Fig. 2). The task required selection of the correct picture from a set of four (one correct and

three distractors for each proposition). (B) Scatterplots depicting the relationship between accuracy in the visual tasks (REC and ITE) and in the

grammar tasks EMB1 (left) and EMB2 (right). Correlation coefficients are presented in the text. See also Table 1.
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builds on shared resources with ITE while also adding a

specific representation layer. The current results and previ-

ous research suggest that this layer pertains to the simul-

taneous representation of multiple hierarchical levels.

The temporal cortex supports
recursive hierarchical embedding
representations

Lesions in posterior temporal cortex were associated with

slower integration of information during processing of

RHE. The velocity of information integration during deci-

sion making (drift rate) has been proposed to reflect the

availability of memory representations that guide the accu-

mulation of perceptual information in a top-down manner,

as shown for instance in lexical priming (Voss et al., 2013;

Mulder et al., 2014). As our participants were naı̈ve to the

visual stimuli and rules, this suggests that the formation of

RHE representations is crucial to process multiple hierarch-

ical levels simultaneously. A central neuronal hub for this

capacity seems to reside in posterior temporal cortex.

Our findings are partially consistent with language re-

search showing an involvement of the posterior temporal

cortex in top-down syntactic prediction and lexical access

(Matchin et al., 2017). A recent study also demonstrated

that the posterior MTG is a common area of activity

during syntactic processing in language and music (Musso

et al., 2015). Overall, different parts of the temporal cortex

have been shown to support processing of RHE in well-

trained participants in different domains: the representation

of tonal hierarchies mostly activates the anterior STG

(Martins, 2017), language the left posterior STG

(Friederici, 2011; Hagoort and Indefrey, 2014; Matchin

et al., 2017), and the visual domain more anterior portions

of the MTG (Martins et al., 2014a).

As the MTG is associated with semantic memory, these

findings invite the speculation that the bottleneck for the

capacity to acquire RHE is less dependent on general multi-

demand fronto-parietal systems (as also shown in Duncan,

2010; Fedorenko et al., 2012, 2013), or on specialized

areas instantiating RHE ‘computations’ such as those pro-

posed for language (e.g. BA44; Friederici et al., 2011;

Zaccarella et al., 2017), but rather on the formation of

RHE ‘representations’. In support to this interpretation,

posterior temporal cortex is found to be active in both

semantics and syntax comprehension in children younger

than 7 years of age, while IFG becomes active only at the

age of 10 (Skeide et al., 2014). Thus, while posterior tem-

poral gyrus plays a significant role in the acquisition of

RHE, IFG is active during automatic and expert processing

(Jeon and Friederici, 2013).

Finally, we found IFG to be associated with boundary

separation, which could be more related with controlled

retrieval of existing representations. Interestingly, our re-

sults suggest a division of labour in the processing of

RHE between the anterior and the posterior hubs, which

is somewhat consistent with the language model in which

domain-general cognitive control systems operate with

domain-specific representations (Matchin et al., 2017).

Limitations and perspectives

First, in this study we have included only patients with

lesions in cortical areas in the left hemisphere. Therefore,

we are not able to determine whether the right MTG is

equally important in the acquisition of RHE representa-

tions. In our previous functional MRI results with similar

visual recursive tasks we found bilateral brain activity, but

no hemisphere-specific regions. While we cannot make

claims about the uniqueness of left hemisphere in the pro-

cessing of RHE, we can conclude that the left pTC is cru-

cial to instantiate RHE representations in both vision and

language. Future studies should address potential differ-

ences between hemispheres by our results with performance

in a comparable sample of participants with an acquired

right hemispheric lesion.

Second, while the MTG is important in the acquisition of

RHE representations, we cannot determine whether learn-

ing mechanisms supported by subcortical structures are

involved in this process. It is possible that the episodic

memory (supported by hippocampus) or procedural sys-

tems (supported by basal ganglia) are also fundamental to

build RHE representations. Future research including pa-

tients with lesions or functional impairment in these sys-

tems will be crucial to evaluate these hypotheses.

Finally, the current theory-driven investigation in mildly

affected patients does not serve an apparent clinical goal.

Nonetheless, the demonstration of supramodality of a cog-

nitive process such as RHE supports integrative interdiscip-

linary cognitive rehabilitation to be a promising and exciting

avenue in research (Cahana-amitay and Albert, 2015).

Conclusion
In this study, we hypothesized that the acquisition of RHE rep-

resentations in the visual domain were supported by neural areas

known to be involved in the processing of hierarchical structures

in language (IFG and pTC). We tested a group of patients with

chronic acquired left hemisphere lesions with a set of tasks de-

signed to isolate the ability to acquire RHE in vision. Crucially,

these patients had not been exposed to these tasks prior to this

study. We found that lesions in posterior MTG specifically im-

paired the ability to adequately integrate information about

RHE during task decision making. This area might be funda-

mental for the acquisition of RHE representations in vision and

across domains.
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