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ABSTRACT Candida auris is an emerging multidrug-resistant fungal pathogen caus-
ing nosocomial and invasive infections associated with high mortality. C. auris is
commonly misidentified as several different yeast species by commercially available
phenotypic identification platforms. Thus, there is an urgent need for a reliable diag-
nostic method. In this paper, we present fast, robust, easy-to-perform and interpret
PCR and real-time PCR assays to identify C. auris and related species: Candida duo-
bushaemulonii, Candida haemulonii, and Candida lusitaniae. Targeting rDNA region
nucleotide sequences, primers specific for C. auris only or C. auris and related spe-
cies were designed. A panel of 140 clinical fungal isolates was used in both PCR and
real-time PCR assays followed by electrophoresis or melting temperature analysis, re-
spectively. The identification results from the assays were 100% concordant with
DNA sequencing results. These molecular assays overcome the deficiencies of exist-
ing phenotypic tests to identify C. auris and related species.
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Candida auris is an emerging multidrug-resistant yeast that can cause invasive
infections and is associated with high mortality. It was first described in 2009 after

being isolated from the external ear discharge of a patient in Japan (1). Since then, C.
auris infections have been reported from South Korea (2, 3), India (4–6), Pakistan (5),
Kuwait (7), Israel (8), South Africa (5, 9), the United Kingdom (10–12), Spain (13), the
United States (14, 15), Colombia (16), and Venezuela (5, 17). The Centers for Disease
Control and Prevention (CDC) and other research groups reported that almost all C.
auris isolates are highly resistant to fluconazole, with the other azoles showing variable
antifungal activity and isavuconazole and posaconazole being the most active ones.
Moreover, up to one-third were resistant to amphotericin B, and a few were resistant
to echinocandins. Some isolates demonstrated elevated MICs to all three major anti-
fungal classes (azoles, echinocandins, and polyenes), indicating that treatment options
against these multidrug-resistant isolates would be limited (18–20). C. auris is of great
concern to public health agencies, due to the possibility that biologic and epidemio-
logic factors could trigger an even more extensive worldwide emergence of C. auris
infections (21). Therefore, it is important for clinical microbiology and public health
laboratories to rapidly and accurately identify this organism to help prevent health
care-associated outbreaks and improve survival among infected patients by enabling
appropriate early antifungal therapy implementation (22, 23).
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C. auris is phenotypically close to Candida haemulonii (1). It was reported that
laboratories worldwide, relying on commercially available phenotypic platforms for
yeast identification, commonly misidentify C. auris as C. haemulonii but also as several
other yeast species (C. famata, C. guilliermondii, C. lusitaniae, C. parapsilosis, C. sake,
Rhodotorula glutinis, and Saccharomyces cerevisiae) (18, 22, 24, 25). Moreover, some
clinical laboratories do not identify all Candida to the species level, placing C. auris
isolates in the “other Candida spp.” category (18). Thus, the prevalence of C. auris is
probably significantly underestimated due to unreliable identifications (4, 18, 25).

Given the current diagnostic urgency surrounding this pathogen, the aim of this
work was to develop molecular-based methods that can quickly and accurately identify
C. auris and related species (C. duobushaemulonii, C. haemulonii, and C. lusitaniae). The
performance of the proposed methodology was evaluated using a comprehensive
panel of clinical isolates with a wide spectrum of variable fungal species.

RESULTS
Primer design. The specific primers enabling the identification of C. auris and

related species, C. duobushaemulonii, C. haemulonii, and C. lusitaniae are listed in Table
1. The designed amplicons cover a fragment of 5.8S, all of ITS2, and a fragment of 28S.
CauF and CauR primers were designed to selectively amplify a 163-bp-long PCR
product specific for C. auris only. CauRelF and CauRelR primers were designed to
selectively amplify PCR products from either C. auris, C. duobushaemulonii, C. haemu-
lonii, or C. lusitaniae. Amplified fragments differ in length (215 bp, 208 bp, 197 bp, and
203 bp, respectively) and composition and can be easily distinguished upon melting
curve analysis.

Candida auris-specific PCR and real-time PCR assays. A 163-bp PCR product
specific for Candida auris was observed for all 44 C. auris DNA samples. No PCR products
were detected for other yeast and mold isolates or human DNA (100% sensitivity and
100% specificity). Moreover, robust and reproducible amplicons were observed for all
isolates when DNA extracts were replaced with a direct single-colony pick in the
established assay (Fig. 1).

Similar results were obtained when real-time PCR was applied, as an amplicon with
a melting temperature (Tm) of 85.1 � 0.2°C, corresponding to C. auris, was observed
only for 44 C. auris DNA samples and not for any other fungal or human DNA samples
(Fig. 2 and Table 2). The limit of detection (LOD) for the C. auris-specific assay was
established at the level of 10 CFU/reaction (threshold cycle [CT], 28.61 � 0.25). The
accuracy of the assay was confirmed by a proficiency test against a panel of 46 isolates
(Table 3). The distribution of the amplicons’ melting temperatures obtained for C. auris
isolates is presented in Fig. 3.

Candida auris related-species-specific real-time PCR assay. PCR products were
observed for the following DNA samples: 7 C. haemulonii isolates (Tm, 84.8 � 0.2°C), 44
C. auris isolates (Tm, 85.6 � 0.15°C), 6 C. duobushaemulonii isolates (Tm, 86.2 � 0.1°C),
and 6 C. lusitaniae isolates (Tm, 87.6 � 0.1°C). No PCR products were detected for other
yeast and mold isolates or human DNA (100% sensitivity and 100% specificity) (Fig. 4
and Table 2). The LOD for the C. auris related species-specific assay was established at
the level of 1,000 CFU/reaction (CT, 27.83 � 0.87). The accuracy of the assay was
confirmed by testing a proficiency panel of 46 isolates (Table 3). The distribution of the

TABLE 1 Primers used in the study

Primer Sequence Specificity

CauF 5=-CGCACATTGCGCCTTGGGGTA-3= C. auris
CauR 5=-GTAGTCCTACCTGATTTGAGGCGAC-3=
CauRelF 5=-GCGATACGTAGTATGACTTGCAGACG-3= C. auris and related species

(C. duobushaemulonii,
C. haemulonii, and
C. lusitaniae)

CauRelR 5=-CAGCGGGTAGTCCTACCTGA-3=
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amplicons’ melting temperatures obtained for C. haemulonii, C. auris, C. duobushaemu-
lonii, and C. lusitaniae isolates is presented in Fig. 5.

DISCUSSION

In 2016, the CDC released an alert informing of an emerging pathogen, Candida
auris, that is causing invasive infections (18), due to the challenging identification,
common multidrug resistance, and outbreaks of this pathogen in health care settings
(15).

A rapid and accurate identification of C. auris is important for not only the appro-

FIG 2 Melting profile of Candida auris-specific real-time PCR. 1, C. auris B11800 (Colombia); 2, C. auris VPCI 1133/P/13 (India); 3, C. duobushaemulonii CAS11-3561;
4, C. lusitaniae DPL 284; 5, C. albicans DPL 225; 6, C. sake 3000724892; 7, Saccharomyces cerevisiae DPL 269; 8, negative control; VPCI, Vallabhbhai Patel Chest
Institute; DPL, David Perlin Laboratory.

FIG 1 Example of Candida auris-specific PCR product analysis. M, 100-bp DNA ladder (fragment sizes
1,000, 900, 800, 700, 600, 500, 400, 300, 200, and 100 bp); A series, results of Candida auris-specific PCR;
B series, results of colony Candida auris-specific PCR; lane 1, negative control; lane 2, C. auris VPCI
671/P/12; lane 3, C. haemulonii ATCC 22991; lane 4, C. duobushaemulonii B09383; lane 5, C. lusitaniae
CAS08-0577; VPCI, Vallabhbhai Patel Chest Institute.
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priate use of antifungal treatment but also the implementation of effective infection
control measures (12, 26). However, many laboratories do not routinely identify non-
albicans Candida isolates to the species level, or they utilize phenotype-based yeast
identification methods, such as chromogenic agar, biochemical tests, or automated
systems, which commonly misidentify C. auris as many different yeast species. C. auris
may be misidentified as C. sake, Rhodotorula glutinis, or Saccharomyces cerevisiae by API
20C AUX, as C. haemulonii by BD Phoenix, as C. haemulonii or C. famata by Vitek-2, or
as C. famata, C. lusitaniae, C. guillermondii, or C. parapsilosis by MicroScan (12, 18, 22, 24,

TABLE 2 Specificity of Candida auris-specific and Candida auris related-species-specific assays

Species or organism

Candida auris-
specific PCR

Real-time PCR

Candida auris-specific Candida auris related-species-specific

No. of isolates
detected/no. tested

No. of isolates
detected/no. tested Tm (°C)

No. of isolates
detected/no. tested Tm (°C)

C. auris 44/44 44/44 (CT, 19.4 � 2.5) 85.1 � 0.2 44/44 (CT, 17.7 � 1.8) 85.6 � 0.15
C. haemulonii 0/7 0/7 —a 7/7 (CT, 18.2 � 1.3) 84.8 � 0.2
C. duobushaemulonii 0/6 0/6 — 6/6 (CT, 20.4 � 0.7) 86.2 � 0.1
C. lusitaniae 0/6 0/6 — 6/6 (CT, 20.1 � 0.6) 87.6 � 0.1
C. albicans 0/9 0/9 — 0/9 —
C. glabrata 0/10 0/10 — 0/10 —
C. tropicalis 0/11 0/11 — 0/11 —
C. krusei 0/10 0/10 — 0/10 —
C. parapsilosis 0/10 0/10 — 0/10 —
C. metapsilosis 0/4 0/4 — 0/4 —
C. orthopsilosis 0/3 0/3 — 0/3 —
C. dubliniensis 0/3 0/3 — 0/3 —
C. guilliermondii 0/4 0/4 — 0/4 —
C. kefyr 0/2 0/2 — 0/2 —
C. famata 0/1 0/1 — 0/1 —
C. sake 0/1 0/1 — 0/1 —
Rhodotorula mucilaginosa 0/3 0/3 — 0/3 —
Saccharomyces cerevisiae 0/2 0/2 — 0/2 —
Aspergillus fumigatus 0/1 0/1 — 0/1 —
A. flavus 0/1 0/1 — 0/1 —
A. niger 0/1 0/1 — 0/1 —
Fusarium solani 0/1 0/1 — 0/1 —
Human 0/1 0/1 — 0/1 —
ano Tm.

TABLE 3 Proficiency panel results of Candida auris-specific and Candida auris
related-species-specific assays

Species

Candida auris-specific real-time
PCR

Candida auris related-species-
specific real-time PCR

No. of isolates
detected/no. tested Tm (°C)

No. of isolates
detected/no. tested Tm (°C)

C. auris 9/9 (CT, 18.5 � 1) 85.1 � 0.1 9/9 (CT, 18.3 � 1.8) 85.8 � 0.1
C. haemulonii 0/7 —a 7/7 (CT, 20.9 � 0.6) 84.8 � 0.15
C. duobushaemulonii 0/6 — 6/6 (CT, 22.4 � 1.2) 86.2 � 0
C. lusitaniae 0/6 — 6/6 (CT, 21.6 � 1.6) 87.6 � 0.1
C. albicans 0/2 — 0/2 —
C. glabrata 0/2 — 0/2 —
C. tropicalis 0/2 — 0/2 —
C. krusei 0/2 — 0/2 —
C. parapsilosis 0/2 — 0/2 —
C. dubliniensis 0/1 — 0/1 —
C. guilliermondii 0/1 — 0/1 —
C. kefyr 0/1 — 0/1 —
C. famata 0/1 — 0/1 —
C. sake 0/1 — 0/1 —
Rhodotorula mucilaginosa 0/1 — 0/1 —
Saccharomyces cerevisiae 0/2 — 0/2 —
ano Tm.
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25). Nowadays, proper identification of Candida species requires the application of
specialized methods such as matrix-assisted laser desorption ionization–time of flight
(MALDI-TOF) or molecular identification based on sequencing the D1-D2 region of the
28S ribosomal DNA. However, due to the lack of C. auris entries in the FDA-approved
libraries, it remains unidentified by Bruker Biotyper and Vitek-MS, and only when an
additional research use only (RUO) library containing C. auris is incorporated can correct
identification of this organism be obtained by both MALDI systems (25, 27).

In this study, we addressed the challenging identification of Candida auris. We
present both conventional and real-time PCR assays that allow specific identification of
C. auris and related species (C. duobushaemulonii, C. haemulonii, and C. lusitaniae)
within 2 (real-time PCR and colony PCR) to 2.5 (conventional PCR) hours. To meet
different diagnostic needs, we proposed two assays of different specificity ranges; the
first assay identifies C. auris only, while in the second assay, C. auris, C. duobushaemu-

FIG 4 Melting analysis of Candida auris related-species-specific real-time PCR. 1, C. haemulonii ATCC 22991; 2, C. auris VPCI 1133/P/13; 3, C. duobushaemulonii
CAS11-3561; 4, C. lusitaniae DPL 284; 5, C. albicans DPL 225; 6, C. sake 3000724892; 7, Saccharomyces cerevisiae DPL 269; 8, negative control; VPCI, Vallabhbhai
Patel Chest Institute; DPL, David Perlin Laboratory.

FIG 3 Distribution of melting temperatures of amplicons obtained for C. auris isolates in the Candida
auris-specific real-time PCR assay.
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lonii, C. haemulonii, and C. lusitaniae can be identified and distinguished from each
other. The differential specificities of the assays were obtained by a detailed analysis of
rDNA sequences deposited in the NCBI nucleotide database that enabled the design of
highly specific primers. Using 140 fungal isolates and human genomic DNA, we were
able to identify C. auris isolates with 100% accuracy in all developed assays. Moreover,
in C. auris related-species-specific real-time PCR, signature melting profiles and corre-
sponding Tm values were generated for C. auris, C. duobushaemulonii, C. haemulonii,
and C. lusitaniae, enabling their unambiguous discrimination. Excellent results were
achieved with both assays during the development phase, as well as during the
proficiency panel validation.

In summary, we have developed two rapid, accurate, easy-to-perform and interpret
molecular diagnostic assays to identify C. auris and related species (C. duobushaemu-
lonii, C. haemulonii, and C. lusitaniae) that overcome the deficiencies of existing
phenotypic assays. Moreover, we expect that in the future, this diagnostic platform may
be adjusted for the direct detection of C. auris in swabs from patients and from the
hospital environment.

MATERIALS AND METHODS
Fungal isolates and culture conditions. In this study, we used a total of 140 fungal isolates (9 C.

albicans, 44 C. auris, 3 C. dubliniensis, 6 C. duobushaemulonii, 1 C. famata, 10 C. glabrata, 4 C. guilliermondii,
7 C. haemulonii, 10 C. krusei, 6 C. lusitaniae, 4 C. metapsilosis, 3 C. orthopsilosis, 10 C. parapsilosis, 2 C. kefyr,
1 C. sake, 11 C. tropicalis, 3 Rhodotorula mucilaginosa, 2 Saccharomyces cerevisiae, 1 Aspergillus fumigatus,
1 A. flavus, 1 A. niger, and 1 Fusarium solani) and 1 sample of human genomic DNA (Roche). Thirty-eight
C. auris isolates were obtained from Vallabhbhai Patel Chest Institute, University of Delhi (Delhi, India),
and 6 isolates were obtained from Clinica General del Norte (Barranquilla, Colombia). The remaining 96
laboratory and clinical isolates were stocked in the Perlin laboratory collection at the Public Health
Research Institute (Newark, NJ, USA) (69 isolates) and the Fungal Reference Laboratory Collection at the
Centers for Disease Control and Prevention (Atlanta, GA, USA) (27 isolates). Isolates were grown on yeast
extract-peptone-dextrose (YPD) agar plates (at 24°C for C. haemulonii, C. duobushaemulonii, and C. sake
isolates and at 37°C for all other isolates) prior to testing. Species identification of all Candida isolates was
performed by sequencing of the rDNA region (partial sequences of the 18S and 28S rRNA genes and
complete sequences of the internal transcribed spacer 1, 5.8S rRNA gene, and internal transcribed spacer
2), which was amplified with Fun-rDNAF (5=-GGTCATTTAGAGGAAGTAAAAGTCG-3=) and Fun-rDNAR
(5=-YGATATGCTTAAGTTCAGCGGGTA-3=) primers (S. Katiyar, personal communication), and further nu-
cleotide BLAST analysis (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

DNA extraction. In all specificity tests and proficiency panel experiments, DNA from fungal isolates
was prepared by a 10-min incubation of a single colony in 100 �l of extraction buffer (60 mM sodium
bicarbonate [NaHCO3], 250 mM potassium chloride [KCl], and 50 mM Tris, pH 9.5) at 95°C and the
subsequent addition of 100 �l anti-inhibition buffer (2% bovine serum albumin). After vortex mixing, this
DNA-containing solution was used for PCR (28). As for the analytical sensitivity evaluation experiments,
DNA was isolated using a FastDNA kit (MP Biomedicals) according to the manufacturer’s instruction.

Primer design. According to the rDNA sequence alignment (DNASTAR Lasergene 14), primers
specific for Candida auris only or for C. auris and related species (C. duobushaemulonii, C. haemulonii, and
C. lusitaniae) were designed (Table 1). Primers were then synthesized by Integrated DNA Technologies.

FIG 5 Distribution of melting temperatures of amplicons obtained for C. haemulonii, C. auris, C.
duobushaemulonii, and C. lusitaniae isolates in the Candida auris related-species-specific real-time PCR
assay.

Kordalewska et al. Journal of Clinical Microbiology

August 2017 Volume 55 Issue 8 jcm.asm.org 2450

https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://jcm.asm.org


Candida auris-specific PCR. PCR mixtures were prepared in a total volume of 30 �l, consisting of 15
�l of 2� EmeraldAmp MAX PCR master mix (TaKaRa Bio Inc.), 1 �l of each primer (CauF and CauR) at 10
�M, and 2 �l of DNA. PCR was performed in a T100 thermal cycler (Bio-Rad Laboratories, Inc.). The
thermal profile included an initial denaturation for 3 min at 95°C followed by 30 cycles of 20 s at 95°C,
20 s at 68°C, and 20 s at 72°C. The presence of amplicons was examined electrophoretically on 2%
agarose gels stained with GelStar (Lonza).

Candida auris-specific and Candida auris related-species-specific real-time PCR. Species-specific
and related-species-specific real-time PCR mixtures were 30 �l per reaction, containing 15 �l of 2�
One-Step SYBR RT-PCR buffer IV, 1 �l of PrimeScript enzyme mix II (TaKaRa Bio, Inc.), 1 �l of each primer
(CauF and CauR or CauRelF and CauRelR, respectively) at 10 �M, and 2 �l of DNA. Real-time PCR was
performed on an Mx3005P qPCR system (Stratagene). The Candida auris-specific assay consisted of a
3-min incubation at 95°C, followed by 30 cycles of 15 s at 95°C, 20 s at 68°C, and 20 s at 72°C, and then
72°C for 5 min. The Candida auris related-species-specific assay consisted of a 3-min incubation at 95°C,
followed by 30 cycles of 15 s at 95°C, 30 s at 66°C, and 30 s at 72°C, and then 72°C for 5 min. Immediately
after amplification, a melting curve analysis was performed at 95°C for 1 min, and then from 70°C to 95°C
with a ramp rate of 0.2°C/s.

Analytical sensitivity evaluation. The analytical sensitivity of the assays was determined by testing
10-fold serial dilutions of DNA samples ranging from 1 to 106 CFU/reaction in triplicates. Two C. auris
isolates were initially tested for the Candida auris-specific assay, and 1 C. auris, 1 C. duobushaemulonii, 1
C. haemulonii, and 1 C. lusitaniae were used to evaluate the Candida auris related-species-specific assay.
The LOD was determined as the smallest amount of template that elicited a positive CT (threshold cycle)
value and an unambiguous melting profile.

Proficiency panel. Real-time PCR assay performance was validated on a panel of 46 clinical isolates
(2 C. albicans, 9 C. auris, 1 C. dubliniensis, 6 C. duobushaemulonii, 1 C. famata, 2 C. glabrata, 1 C.
guilliermondii, 7 C. haemulonii, 2 C. krusei, 6 C. lusitaniae, 2 C. parapsilosis, 1 C. kefyr, 1 C. sake, 2 C. tropicalis,
1 Rhodotorula mucilaginosa, and 2 Saccharomyces cerevisiae) pulled from the initial 140 isolates. The
proficiency test was performed by a person who was blind to the sample identification (ID).

Colony Candida auris-specific PCR. To further reduce the time to diagnosis, we introduced a colony
PCR into our diagnostic assay. Instead of using DNA extracts, a sterile toothpick was touched to a single
colony and dipped into the PCR mixture, and then Candida auris-specific PCR was performed as
described above. Forty-six clinical isolates pulled from the initial 140 isolates (proficiency panel) were
tested for the efficiency of the colony PCR.

Statistical analysis. Melting temperature (Tm) values for each species were determined by melting
curve analysis using the MxPro software (version 4.1) (Stratagene). The Tm distribution was analyzed by
GraphPad Prism 6.05 software. The accuracies of the novel assays discriminating C. auris from other
species were evaluated by calculating the sensitivity and specificity for each assay.
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