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Background: Secreted frizzled-related protein 2 (sFRP2) plays an important role in

metabolic syndrome and cardiovascular diseases (CVDs); However, its relevance with

cardiometabolic diseases remains to be elucidated. We aimed to determine the serum

levels of sFRP2 in patients at different stages of heart failure (HF) with or without type 2

diabetes mellitus (T2DM), and assess the correlation between circulating sFRP2 levels

and cardiometabolic risk factors.

Methods: In this study, serum samples from 277 patients visiting Zhongshan Hospital

affiliated to Fudan University were collected. These patients were clinically diagnosed and

categorized as five groups, including the control group, pre-clinical HF group, pre-clinical

HF+T2DM group, HF group and HF+T2DM group. Serum sFRP2 levels were measured

with enzyme-linked immunosorbent assay (ELISA) tests and the clinical characteristics of

each patient were recorded. Spearman rank correlation analysis and multiple stepwise

linear regression analysis were conducted. Univariate and multivariate logistic regression

analysis were performed to screen risk factors for HF in patients with CVDs.

Results: Serum sFRP2 levels were significantly lower in the HF+T2DM group

compared with the other four groups. Spearman rank correlation analysis showed

that sFRP2 was negatively correlated with parameters including patients’ age, fasting

plasma glucose (FPG), glycated hemoglobin A1c (HbA1c), cardiac troponin T (cTNT),

N-terminal pro-B-type natriuretic peptide (NT-proBNP), high-sensitivity C-reactive protein

(hs-CRP), left atrial dimension (LAD) and left ventricular posterior wall (LVPW), and

positively correlated with hemoglobin, estimated glomerular filtration rate (eGFR),

albumin, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and left

ventricular ejection fraction (LVEF). However, in multiple regression analysis, significant

associations with ln(sFRP2) were observed only in FPG, hs-CRP and LAD. Higher

serum sFRP2 was significantly linked to lower odds of HF in patients with CVDs.
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Conclusion: sFRP2 progressively decreased when glucose homeostasis and cardiac

function deteriorated. sFRP2 acted as a risk factor for HF in patients with CVDs, especially

in those with concomitant T2DM.

Keywords: secreted frizzled-related protein 2 (sFRP2), cardiometabolic risk factors, heart failure (HF), type 2

diabetes (T2DM), cross-section study

INTRODUCTION

Despite numerous advances in diagnosis and treatment,
cardiovascular diseases (CVDs) remain the leading cause of
global mortality. Heart failure (HF), characterized by dyspnea
or limited activity due to fluid retention and/or reduced
cardiac output, is the end stage of most CVDs and affects
at least 23 million people worldwide (1). To emphasize
the importance of early intervention and guide therapy, the
American College of Cardiology Foundation/American Heart
Association (ACCF/AHA) started to promote the concept of HF
stages in 2001 (2) and have categorized HF into four stages.
Stage A is defined as high risk for HF, including hypertension,
metabolic syndrome, tobacco use, and known cardiotoxic agents.
Stage B is defined as heart disease without signs or symptoms
of HF. Stage C refers to HF with prior or current symptoms,
and stage D refers to refractory HF requiring specialized
interventions (3). The China Medical Association (CMA) has
adapted this concept since 2007 and has classified HF into pre-
HF, pre-clinical HF, clinical HF and refractory HF stages (4),
which correspond to stages A to D in the American guideline,
respectively. The progression of HF stages is irreversible and is
associated with a decrease in 5-year survival (5). The rational
for treating each stage of HF varies from controlling risk
factors, treating structural heart disease to reducing morbidity
and mortality.

In the past decade, the prevalence of type 2 diabetes (T2DM)
has increased by 30% globally (6), with the number of influenced
Chinese adults increasing from 128million in 2007 to 155million
in 2017 (7). Previous studies have consistently demonstrated
a 2- to 4-fold increased risk of HF in individuals with
T2DM compared with their age- and sex-matched non-diabetic
counterparts, even after adjustment for other cardiovascular risk
factors (8, 9). The blood glucose control level also influences
the development and progression of HF (10–12). Moreover,
HF patients with concomitant T2DM exhibit significantly worse
outcomes compared with those without T2DM (13). Therefore,
investigating the T2DM-related characteristics in a HF patient
cohort may give insight into our understanding of how the
metabolic disorders incorporate with CVDs.

Secreted frizzled-related protein (sFRP) family consists of 5
members (sFRP1-5) that structurally resemble the Wnt frizzled
receptors and play important roles in cardiac development
and various cardiovascular pathophysiological conditions (14).
Among these proteins, sFRP2 is considered to be the most
potent modulator of the Wnt signaling (15). Previous studies
have shown divergent roles of sFRP2 in myocardial fibrosis
(16–18), hypertrophy (19), angiogenesis (20), cardiac cell death
(21), and regeneration (22, 23) via bi-directional regulation of

the canonical Wnt pathway, activation of non-canonical Wnt
pathway or modulation of other signaling pathways (24). The
expression of sFRP2 in cardiac tissues was increased in the early
stage of HF and subsequently decreased with the progression
of HF (19). In patients with severe decompensated HF, serum
sFRP2 levels were higher in those experiencing primary outcome
events (25). However, data on serum sFRP2 are still lacking
in healthy subjects and in patients with cardiac abnormalities
that have not developed into HF. As an adipokine, sFRP2
expression in the white adipose tissue (WAT) was upregulated
in obesity (26) and downregulated with moderate weight loss
(27). Serum sFRP2 was positively associated with circulating
insulin, homeostasis model assessment of β cell secretory capacity
(HOMA-β) and insulin resistance (HOMAIR), body mass index
(BMI) and triglycerides (TG), and was increased in patients with
abnormal glucose tolerance (AGT) (28). Circulating sFRP4 (29–
32) and sFRP5 (33–36) levels were associated with the risk of
prediabetes/T2DM, obesity and CVDs. Lower levels of serum
sFRP5 was associated with worse prognosis in patients with HF,
especially in those with concomitant T2DM (37). However, it
is obscure whether sFRP2 is involved in the comorbidity of HF
and T2DM.

In this study, we investigated the serum levels of sFRP2
among patients in different HF stages with or without T2DM
and analyzed its association with fasting blood glucose (FBG),
glycated hemoglobin (HbA1c), blood lipid levels, BMI and other
cardiometabolic risk factors. We also explored whether sFRP2
could serve as an indicator of the comorbidity of HF and T2DM.

METHODS

Study Population
This study complied with the principles of the Declaration
of Helsinki and was approved by the Ethics Committee of
Zhongshan Hospital, Fudan University (B2020-078R). During
the period of August 2020 to August 2021, a total of
425 serum samples from patients admitted to Zhongshan
Hospital were initially collected. Those with T1DM, history
of malignancy, autoimmune diseases, severe infection, severe
renal failure (estimated glomerular filtration rate (eGFR) <30
mL/min/1.73 m2 or under renal replacement therapy), severe
hepatic disease (bilirubin > 3× the upper limit of normal,
or aspartate aminotransferase/alanine aminotransferase/alkaline
phosphatase > 5× the upper limit of normal, or cirrhosis), active
bleeding or severe anemia (Hb < 60 g/L) were excluded from
the study.

Finally, 277 of these serum samples were included for the
following analysis. Patients were classified and grouped according
to the Guideline for the diagnosis and treatment of heart failure
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in China (2018 edition) (38) and the guideline for T2DM (2020
edition) (39). The healthy subjects and pre-HF patients (stage
A) were pooled as control group (n = 53) and none of them
was diagnosed with T2DM. The pre-clinical HF patients (stage
B) were subdivided into pre-clinical HF group without T2DM
(n= 57) and pre-clinical HF+T2DM group (n= 54), depending
on their medical history of T2DM. The HF patients, including
both clinical HF (stage C) and refractory HF (stage D), were also
stratified by the medical history of T2DM and thus subdivided
into HF group without T2DM (n = 63) and HF+T2DM group
(n= 50).

The cardiac conditions of these patients were further
determined following the latest guidelines for hypertension (40),
ischemic heart disease (41, 42), valvular heart disease (43),
cardiomyopathy (44), and congenital heart disease (45). Based on
echocardiography, patients with left ventricular ejection fraction
(LVEF)< 40%, 40–49%, and≥50% were subclassified as HF with
reduced ejection fraction (HFrEF), midrange EF (HFmrEF), and
preserved EF (HFpEF), respectively (46).

Clinical Characteristics and sFRP2
Detection
Medical records were carefully documented, including age,
gender, BMI, smoking habit, history of hypertension and CVDs,
medication, New York Heart Association (NYHA) functional
class, biochemistry tests and echocardiographic parameters.

Fasting venous blood was collected with a serum separation
tube, followed by stratification at room temperature for 15min.
Serum were separated and then stored at −80◦C until analysis.

An enzyme-linked immunosorbent assay (ELISA) kit purchased
from Shanghai Yu Bo Biotech Co., Ltd was used to measure the
levels of serum sFRP2 in accordance with the manufacturer’s
instruction manual. The intra-assay and inter-assay variations
were 5.4% and 7.5%, respectively.

Statistical Analysis
Statistical analyses were performed in R software (Version
4.0.4) and GraphPad Prism Software (Version 8.3.0). Continuous
variables were presented as mean ± standard error of mean
or median and interquartile range. Categorical variables were
exhibited as numbers or proportions. Differences among groups
were compared using one-way ANOVA test for normally
distributed continuous variables with homogeneous variance,
otherwise Kruskal–Wallis test along with Dunn post-hoc test
were used. Pearson’s chi-squared test or Fisher’s exact test was
used for categorical variables. Spearman rank correlation analysis
identified factors correlated with sFRP2. The levels of sFRP2
were loge-transformed (ln-transformed) for further analyses
to optimize the fitted equation. Cross-sectional associations
between ln(sFRP2) and cardiometabolic risk factors were
estimated by multiple stepwise linear regression analysis.
Multicollinearity was considered present for a variance inflation
factor (VIF) > 2.5. Univariate logistic regression analysis was
performed to screen risk factors for HF and the variables with
significance were further investigated in the multivariate logistic
stepwise regression analysis. All statistical tests were two-sided
and a P-value < 0.05 was considered as statistically significant.

TABLE 1 | Demographic and laboratory information of the study population.

Control (n = 53) Pre-HF (n = 57) Pre-HF +T2DM (n = 54) HF (n = 63) HF + T2DM (n = 50) P-value

Demographic characteristics

Age (years) 62 (56, 66) 65 (54, 67) 66 (56, 71) 64 (52, 72) 68 (62, 74) 0.15

Gender (male%) 32 (60.4) 40 (70.2) 41 (75.9) 46 (73.0) 31 (62.0) 0.33

BMI (kg/m2 ) 23.8 ± 0.6 24.2 ± 0.5 24.8 ± 0.4 25.1 ± 0.6 24.7 ± 0.6 0.16

Smoking [n (%)] 15 (28.3) 19 (33.3) 19 (35.1) 17 (27.0) 8 (18.0) 0.22

Biochemistry indicators

Hemoglobin (g/L) 142.8 ± 1.6 130.0 ± 2.5 128.7 ± 2.5 121.0 ± 1.9 111.0 ± 3.9 <0.001

Alb (g/L) 46.8 ± 0.5 40.8 ± 0.5 40.5 ± 0.7 38.4 ± 0.6 36.9 ± 0.7 <0.001

eGFR (mL/min/1.73 m2) 87.3 ± 1.9 83.6 ± 2.2 77.6 ± 2.7 75.3 ± 3.0 62.8 ± 3.8 <0.001

FPG (mmol/L) 4.9 (4.6, 5.1) 5.5 (4.9, 6.1) 6.6 (5.6, 8.2) 5.4 (4.7, 6.4) 8.5 (6.1, 10.6) <0.001

HbA1c (%) 5.7 (5.5, 5.9) 5.6 (5.4, 5.8) 6.6 (5.9, 7.8) 5.9 (5.4, 6.4) 7.6 (6.4, 8.1) <0.001

cTNT (ng/mL) 0.005 (0.004, 0.006) 0.019 (0.007, 0.077) 0.015 (0.009, 0.056) 0.082 (0.025, 0.192) 0.055 (0.028, 0.142) <0.001

NT-proBNP (pg/mL) 36.3 (27.5, 43.4) 310.0 (64.6, 698.0) 284.0 (77.1, 1410.0) 1263.0 (676.0, 2759.0) 2261.0 (647.0, 5270.0) <0.001

TC (mmol/L) 4.97 (4.47, 5.48) 3.32 (2.88, 3.88) 3.63 (2.98, 4.88) 3.76 (3.14, 4.26) 3.32 (2.83, 3.93) <0.001

TG (mmol/L) 1.47 (1.10, 2.21) 1.33 (0.94, 1.70) 1.58 (1.02, 2.03) 1.25 (0.93, 1.87) 1.51 (1.15, 2.12) 0.09

LDL-C (mmol/L) 2.82 (2.46, 3.32) 1.56 (1.26, 2.17) 1.64 (1.32, 2.56) 2.01 (1.57, 2.62) 1.56 (1.25, 2.02) <0.001

HDL-C (mmol/L) 1.24 (1.08, 1.48) 1.08 (0.86, 1.31) 1.08 (0.83, 1.31) 0.99 (0.85, 1.13) 0.98 (0.80, 1.16) <0.001

hs-CRP (mg/L) 1.0 (0.4, 1.3) 1.0 (0.1, 2.8) 1.4 (0.6, 5.4) 3.8 (1.0, 8.8) 3.5 (1.2, 26.2) <0.001

Continuous variables are presented as mean ± standard error of mean or median (interquartile range). Categorical variables are expressed as number (percentages). Statistically

significant values are indicated in italic. BMI, body mass index; Alb, albumin; eGFR, estimated glomerular filtration rate; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin;

cTNT, cardiac troponin T; NT-proBNP, N-terminal pro-B-type natriuretic peptide; TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density

lipoprotein cholesterol; hs-CRP, high-sensitivity C-reactive protein.
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RESULTS

Clinical Characteristics of the Study
Population
The 277 participants were divided into 5 groups: control
group (n = 53), pre-clinical HF group (n = 57), pre-
clinical HF+T2DM group (n = 54), HF group (n = 63)
and HF+T2DM group (n = 50). There was no significant
difference in demographic characteristics such as age, gender,
BMI and smoking habit among these groups. The pre-
clinical HF+T2DM group and HF+T2DM group had higher
FPG and HbA1c than their nondiabetic counterparts and
the control group (Table 1). Compared with the control
group, the levels of cardiac troponin T (cTNT), N-terminal
pro-B-type natriuretic peptide (NT-proBNP) and left atrial
dimension (LAD) increased in the pre-clinical HF group and
further elevated in the HF group (Tables 1, 2). Similar results
were obtained in the pre-clinical HF+T2DM group and the
HF+T2DM group. Patients with CVDs exhibited reduced LVEF
and elevated pulmonary artery pressure (PAP) compared with

the control group. Echocardiographic examinations showed
enlarged left ventricular end-diastolic dimension (LVDd) and left
ventricular end-systolic dimension (LVDs), as well as thickened
interventricular septal thickness (IVS) and left ventricular
posterior wall (LVPW) in the HF group and HF+T2DM group
compared with the control group, pre-clinical HF group and
pre-clinical+T2DM group (Table 2).

Serum sFRP2 Levels in Different Groups
Next, we compared the serum sFRP2 levels among the patient
groups (Figure 1). There was no significant difference between
the control group and the pre-clinical HF group (P = 0.94)
or the HF group (P = 0.43). However, compared with the
control group, serum sFRP2 level decreased significantly in
the HF+T2DM group (P < 0.0001). Although no significant
difference was found between the pre-clinical HF group and
the pre-clinical HF+T2DM group (P = 0.62), the HF+T2DM
group had lower levels of serum sFRP2 than the HF group (P
< 0.0001). Our results showed that serum sFRP2 levels reduced

TABLE 2 | Medical history and echocardiography of the study population.

Control (n = 53) Pre-HF (n = 57) Pre-HF+T2DM (n = 54) HF (n = 63) HF+T2DM (n = 50) P-value

History of cardiovascular diseases

IHD [n (%)] / 47 (82.6) 51 (94.4) 30 (47.6) 27 (54.0) <0.001

VHD [n (%)] / 4 (7.0) 6 (11.1) 19 (30.2) 14 (28.0) <0.01

Cardiomyopathy [n (%)] / 2 (3.5) 2 (3.7) 8 (12.7) 5 (10.0) 0.16

CHD [n (%)] / 3 (5.3) 3 (5.6) 6 (9.5) 3 (6.0) 0.83

Hypertension [n (%)] 19 (35.8) 33 (57.9) 45 (83.3) 27 (42.9) 40 (80.0) <0.001

Chronic medication

ACEI/ARBs [n (%)] 12 (22.6) 16 (28.1) 17 (31.5) 14 (22.2) 18 (36.0) 0.45

CCBs [n (%)] 11 (20.8) 15 (26.3) 17 (31.5) 13 (20.6) 22 (44.0) <0.01

Beta-blockers [n (%)] 1 (1.9) 28 (49.1) 22 (40.7) 20 (31.7) 21 (42.0) <0.001

Diuretics [n (%)] 3 (5.7) 6 (10.5) 7 (13.0) 29 (46.0) 19 (38.0) <0.001

Digoxin [n (%)] / 0 (0.0) 1 (1.9) 7 (11.1) 4 (8.0) <0.05

Nitrate esters [n (%)] / 8 (14.0) 11 (20.4) 11 (20.7) 16 (32.0) 0.12

Antiplatelet [n (%)] / 40 (70.2) 28 (51.9) 31 (49.2) 28 (56) 0.10

Anticoagulant [n (%)] / 9 (15.8) 3 (5.6) 15 (23.8) 4 (8.0) <0.05

Insulin [n (%)] / / 9 (16.7) / 17 (34.0) <0.05

OAD [n (%)] / / 49 (90.7) / 19 (38.0) <0.001

Statins [n (%)] 7 (13.2) 33 (57.9) 19 (35.2) 13 (20.6) 24 (48.0) <0.001

Echocardiographic parameters

LVEF (%) 67 (63,69) 62 (56, 66) 63 (57, 66) 60 (35, 64) 58 (44, 65) <0.001

ARD (mm) 33 (30, 34) 34 (30, 36) 33 (31, 36) 33 (31, 37) 34 (32, 38) 0.17

LAD (mm) 36 (33, 38) 40 (37, 43) 41 (38, 44) 47 (41, 51) 44 (42, 48) <0.001

LVDd (mm) 46 (44, 47) 46 (44, 51) 47 (44, 53) 53 (46, 58) 51 (47, 59) <0.001

LVDs (mm) 30 (28, 30) 30 (29, 34) 30 (28, 35) 35 (30, 47) 32 (30, 43) <0.001

IVS (mm) 9 (8, 10) 10 (9,11) 10 (9, 13) 10 (9, 10) 10 (9, 10) <0.001

LVPW (mm) 8 (8, 9) 9 (9, 10) 9 (9, 10) 10 (9, 11) 10 (9, 11) <0.01

PAP (mmHg) 30 (29, 30) 31 (30, 35) 33 (31, 38) 36 (31, 44) 35 (31, 45) <0.001

Continuous variables are presented as mean ± standard error of mean or median (interquartile range). Categorical variables are expressed as number (percentages). Statistically

significant values are indicated in italic. IHD, ischemic heart disease; VHD, valvular heart disease; CHD, congenital heart disease; ACEI/ARB, angiotensin-converting enzyme inhibitors or

angiotensin II receptor blockers; CCB, calcium channel blocker; OAD, oral antidiabetic drugs; LVEF, left ventricular ejection fraction; ARD, aortic root dimension; LAD, left atrial dimension;

LVDd, Left ventricular end-diastolic dimension; LVDs, left ventricular end-systolic dimension; IVS, interventricular septal thickness; LVPW, left ventricular posterior wall; PAP, pulmonary

artery pressure.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 October 2021 | Volume 8 | Article 723205

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Cao et al. Decreased sFRP2 in Cardiometabolic Disorders

FIGURE 1 | Serum sFRP2 in different groups (***P < 0.001, ****P < 0.0001).

in the co-occurrence of HF and T2DM, rather than in either
individual condition.

Association of sFRP2 With Clinical
Variables
The correlation between sFRP2 and clinical variables were
analyzed with Spearman rank correlation analysis using data
from all the 277 participants. The presence and absence of
diseases were assigned as 1 and 0, respectively. No, past and
current tobacco use were assigned as 0,1,2, respectively. The
detailed data are shown in Table 3. The Spearman correlation
coefficient between sFRP2 and FPG was <-0.5, suggesting
a moderate inverse correlation. SFRP2 had weak negative
correlations with HbA1c, cTNT, NT-proBNP and weak positive
correlations with hemoglobin and eGFR, as evidenced by the
coefficients between −0.4 and −0.2 or 0.2 and 0.4. Although the
P-values were <0.05, the correlation coefficients of sFRP2 with
age, albumin, TC, LDL-C, high-sensitivity C-reactive protein
(hs-CRP), LVEF, LAD and LVPW were between −0.2 and 0.2,
indicating that the correlations were marginal.

With ln(sFRP2) serving as the dependent variable and the
clinical variables correlated with sFRP2 in Spearman correlation
analyses as independent variables, a multiple stepwise regression
analysis was performed using data from all the 277 participants.
During the stepwise regression, age, hemoglobin, Alb, eGFR,
HbA1c, cTNT, NT-proBNP, LDL-C and LVPW were removed
to reach the lowest Akaike information criterion (AIC) level.
Potential confounders such as medications (with or without
drugs were assigned as 1 and 0, respectively) were also added as
independent variables, but no significant associations were found
(data not shown). Finally, FPG, TC, hs-CRP, LVEF and LADwere

TABLE 3 | Spearman’s correlation of sFRP2 with clinical variables.

Indicator ρ P-value

Age −0.1591595 <0.01

Gender −0.0567796 0.35

BMI −0.0980334 0.16

Smoking −0.0538868 0.38

IHD −0.0252443 0.68

VHD −0.0699490 0.25

Hypertension −0.1141791 0.06

Hemoglobin 0.2127307 <0.001

Alb 0.1946989 <0.01

eGFR 0.2082241 <0.001

FPG −0.5345865 <0.001

HbA1c −0.3071817 <0.001

cTNT −0.2118334 <0.001

NT-proBNP −0.3009578 <0.001

TC 0.1492633 <0.05

TG −0.0672510 0.29

LDL-C 0.1639592 <0.01

HDL-C 0.1214094 0.06

hs-CRP −0.1856972 <0.01

LVEF 0.1175641 <0.05

ARD −0.0618573 0.32

LAD −0.1438706 <0.05

LVDd −0.1023572 0.10

LVDs −0.116702 0.06

IVS −0.093653 0.13

LVPW −0.1213423 <0.05

PAP −0.0072189 0.91

Statistically significant values are indicated in italic. BMI, body mass index; IHD,

ischemic heart disease; VHD, valvular heart disease; Alb, albumin; eGFR, estimated

glomerular filtration rate; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin;

cTNT, cardiac troponin T; NT-proBNP, N-terminal pro-B-type natriuretic peptide; TC,

total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C,

high-density lipoprotein cholesterol; hs-CRP, high-sensitivity C-reactive protein; LVEF, left

ventricular ejection fraction; ARD, aortic root dimension; LAD, left atrial dimension; LVDd,

Left ventricular end-diastolic dimension; LVDs, left ventricular end-systolic dimension; IVS,

interventricular septal thickness; LVPW, left ventricular posterior wall; PAP, pulmonary

artery pressure.

selected as independent variables in the optimized model. The P-
value of the model was <2.2e-16 and the adjusted R-squared was
0.5109, which indicated 51.09% of the changes in ln(sFRP2) could
be attributed to these factors (Table 4). VIFs were <1.5 in all
analyses, suggesting that no collinearity was observed. As shown
in Figure 2, residuals were equally distributed and approximately
accorded with a normal distribution.

Relationship Between sFRP2 and the Risk
of HF
To investigate the risk factors of HF in patients with CVDs,
a univariate logistic regression analysis was performed between
pre-clinical HF patients (the pre-clinical HF group and pre-
clinical HF+T2DM group) and HF patients (the HF group and
HF+T2DM group). In total, 224 of the 277 participants were
included in this analysis. As shown in Table 5, hemoglobin,
albumin, eGFR and ln(sFRP2) were negatively associated with
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the odds of HF, whereas FPG, HbA1c, and hs-CRP showed
positive associations with the odds of HF. The 7 variables with
significance were further investigated in the multivariate logistic
stepwise regression analysis. Finally, hemoglobin, albumin, eGFR
and ln(sFRP2) were included in the logistic regression equation
(Table 6).

DISCUSSION

In our study, sFRP2 decreased significantly in the HF+T2DM
group compared with the control group and the pre-clinical
HF+T2DM group. Serum sFRP2 was negatively correlated with
cTNT, NT-proBNP, LAD, LVPW, and positively correlated with
LVEF. In addition, higher sFRP2 was significantly associated to
lower odds of HF in patients with CVDs. These results suggest
that the decreased circulating sFRP2 may be a risk factor for
HF. Several experimental studies supported our observations
and revealed the potential mechanisms. sFRP2 attenuated

TABLE 4 | Multiple regression analysis of ln(sFRP2) and clinical variables.

Estimate Std. error t value P-value

(Intercept) 7.361267 0.414689 17.751 <0.001

FPG −0.179817 0.015973 −11.258 <0.001

TC 0.058419 0.030584 1.910 0.06

hs-CRP −0.006420 0.001744 −3.682 <0.001

LVEF 0.005843 0.003451 −1.693 0.07

LAD −0.014792 0.006302 −2.347 <0.05

Statistically significant values are indicated in italic. FPG, fasting plasma glucose; TC,

total cholesterol; hs-CRP, high-sensitivity C-reactive protein; LVEF, left ventricular ejection

fraction; LAD, left atrial dimension.

cardiac fibrosis and HF induced by pressure overload (19)
and autoimmune myocarditis (16) via the Wnt/β-catenin and
TGF-β pathways, respectively. sFRP2 prevented cardiomyocyte
apoptosis (21) and pathological hypertrophy (19). SFRP2

TABLE 5 | Risk factors for HF in 244 cardiac patients: univariate logistic

regression.

OR (95% CI) P-value

Age 1.0166780 (0.9958878, 1.0379020) 0.12

Gender 0.8284024 (0.4743534, 1.4467070) 0.51

BMI 1.0403330 (0.9532089, 1.1354200) 0.38

Smoking 0.7870194 (0.5334641, 1.1610890) 0.23

Hypertension 0.8865784 (0.5183912, 1.5162700) 0.66

Hemoglobin 0.9744476 (0.9620449, 0.9870103) <0.001

Alb 0.8674282 (0.8141866, 0.9241514) <0.001

eGFR 0.9779109 (0.9655423, 0.9904378) <0.01

FPG 1.1219660 (1.0124180, 1.2433680) <0.05

HbA1c 1.2742450 (1.0220770, 1.5886280) <0.05

cTNT 1.0953920 (0.8179942, 1.4668600) 0.54

TC 1.0374960 (0.8384569, 1.2837850) 0.74

TG 0.9669338 (0.7421804, 1.2597490) 0.80

LDL-C 1.0332420 (0.7431301, 1.4366110) 0.85

HDL-C 0.5222179 (0.2337020, 1.1669200) 0.11

hs-CRP 1.0210930 (1.0052670, 1.0371690) <0.01

ln(sFRP2) 0.5360921 (0.3668849, 0.7833375) <0.01

Statistically significant values are indicated in italic. BMI, body mass index; Alb, albumin;

eGFR, estimated glomerular filtration rate; FPG, fasting plasma glucose; HbA1c, glycated

hemoglobin; cTNT, cardiac troponin T; TC, total cholesterol; TG, triglyceride; LDL-C,

low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; hs-CRP,

high-sensitivity C-reactive protein.

FIGURE 2 | Residuals of the fully adjusted model. (A) Residuals vs. Fitted; (B) Normal QQ.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 October 2021 | Volume 8 | Article 723205

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Cao et al. Decreased sFRP2 in Cardiometabolic Disorders

TABLE 6 | Risk factors for HF in 244 cardiac patients: multivariate logistic

regression.

OR (95% CI) P-value

Hemoglobin 0.9856071 (0.9714623, 0.9999579) <0.01

Alb 0.9123722 (0.8501815, 0.9791121) <0.05

eGFR 0.9835357 (0.9700838, 0.9971742) <0.01

ln(sFRP2) 0.6633438 (0.4362906, 0.9985590) <0.05

Statistically significant values are indicated in italic. Alb, albumin; eGFR, estimated

glomerular filtration rate.

transgene mice exhibited higher LVEF and reduced infarct size
due to the increased angiogenesis mediated by ATF6 signaling
(20). In cardiac regeneration therapy, sFRP2 also improved
bone marrow stromal cells (BMSCs) transplantation (22, 23)
and enhanced the differentiation of cardiac progenitor cells
(CPCs) (47). However, Yang et al. reported that in HF patients,
sFRP2 was positively associated with extracellular volume (ECV)
fraction, a parameter in cardiovascular magnetic resonance
(CMR) imaging used to assess myocardial fibrosis. During
follow-up periods, patients with primary cardiac events had
higher levels of sFRP2 (25). Since they only enrolled patients
with severe decompensated HF and NYHA functional class III–
IV, the disparity may be attributed to different stages of HF and
the elevated sFRP2 in their studymay be a compensatory factor to
counteract myocardial fibrosis. Indeed, an initial compensatory
increase of cardiac sFRP2 level followed by a substantial decrease
of sFRP2 during the progression of HF has already been reported
in an animal model (19).

Our study also revealed that sFRP2 was lower in the
HF+T2DM group than in the HF group and was negatively
correlated with FPG and HbA1c. A previous study showed
higher sFRP2 levels in patients with AGT (28). Since the diabetic
patients in our study was subdivided from patients with CVDs,
the effect of CVDs on sFRP2 may be the main reason for
the difference. This discrepancy may also be attributed to their
enrollment of pre-diabetes patients. Prediabetes is also associated
with increased risk of CVDs (48) and HF (49). Further studies are
needed to explore whether sFRP2 is associated with prediabetes
and whether this association, if any, is involved in CVDs and HF.

It is intriguing that serum sFRP2 levels reduced in the co-
occurrence of HF and T2DM, rather than in either individual
disease. We performed a univariate logistic regression analysis
specifically in patients with CVDs and T2DM (the pre-clinical
HF+T2DM group and the HF+T2DM group, data not shown),
and found a more obvious inverse association between ln(sFRP2)
and HF (OR: 0.42, 95% CI: 0.24–0.74, P < 0.01) compared
with that in all the patients with CVDs (OR: 0.54, 95% CI:
0.37–0.78, P < 0.05). Patients with the comorbidity of HF and
T2DM have distinct biomarkers compared to those without
T2DM (50) and sFRP2 is potentially one of them. A falling heart
undergoes metabolic perturbations characterized by impaired
lipid metabolism and a substrate preference switch toward
glycolysis and ketone body oxidation (51). The hyperglycemia,
insulin resistance, and hyperinsulinemia in T2DM trigger a
cascade of deleterious effects that contribute to the development
of HF (52). sFRP2 was reported to be associated with lipogenesis

and insulin resistance (53), which indicated that sFRP2 might
modulate heart function via regulating metabolism.

In our study, the level of hs-CRP in the HF+T2DM
group was higher than that in other groups and sFRP2
was negatively correlated with hs-CRP. This is unsurprising
since HF and T2DM are accompanied by chronic low-grade
systemic inflammation (54). Previous studies have reported
the association between sFRP2 and inflammation. sFRP2 was
downregulated in inflammation-induced muscle atrophy and
prevented inflammatory muscle atrophy (55). sFRP2 enhanced
the osteo/odontogenic differentiation and paracrine potentials
under inflammation conditions via inhibiting canonical Wnt/β-
catenin and nuclear factor kappa B (NF-kB) signaling pathways
(56). However, Zhou et al. demonstrated that serum sFRP2
was significantly upregulated in patients with COPD and
knockdown of sFRP2 in peripheral blood mononuclear cells
(PBMCs) attenuated airway inflammation (57). Thus, further
studies are mandated to explore the detailed roles of sFRP2 in
cardiovascular inflammation.

The main strengths of our study are the inclusion of
people with different HF stages, which allow us to explore
the association of sFRP2 and severity of HF. Furthermore,
we collected and adjusted multiple cardiovascular risk factors.
However, several limitations should be noted. First, the cross-
sectional design precluded us from drawing casual conclusions
and further studies are required to define the role of sFRP2
in cardiac function and glucose homeostasis. Second, there
were significant differences in etiologies between each group,
although there were no significant differences of sFRP2 between
ischemic and non-ischemic heart diseases in each group (data
not shown) and Spearman rank correlation analysis confirmed
no significant association between sFRP2 and etiologies. Third,
the measurement of serum sFRP2 by ELISA could not reflect
its sources and targets. SFRP2 gene is ubiquitously expressed
in adipose tissue, small intestine, colon, heart, skeletal muscle
and other organs, with the highest expression in adipose tissue
(58, 59). As an adipokine, circulating sFRP2 is not linearly
correlated with SFRP2 gene expression in WAT (27), indicating
that other sources of sFRP2 production should be investigated.
Since the cardiac sFRP2 expression increased in the early stage
of HF and subsequently decreased with the development of
HF (19), less sFRP2 production from heart may explain the
declined circulating sFRP2. Previous studies focused on the
autocrine and paracrine function, while the changes in serum
sFRP2 may indicate its endocrine function. SFRP2 exerts effects
on cardiomyocytes, cardiac fibroblast cells, endothelial cells (24)
and adipocytes (28) and its function exhibits a high degree of cell
specificity. More researches are necessary to explore why serum
sFRP2 reduced in the comorbidity of HD and T2DM and the
relevant mechanism.

CONCLUSIONS

The level of sFRP2 was negatively correlated with age, FPG,
HbA1c, cTNT, NT-proBNP, hs-CRP, LAD and LVPW, and
positively correlated with hemoglobin, eGFR, albumin, TC,
LDL-C and LVEF. Higher serum sFRP2 was significantly linked
to lower odds of HF in patients with CVDs. sFRP2 is a promising
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risk factor for the comorbidity of HF and T2DM, which might
pave novel ways for the diagnosis and treatment of clinical HF
from the perspective of metabolism.
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