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Abstract

Polyps of two moon jellyfish species, Aurelia coerulea and A. relicta, from two Adriatic Sea

coastal habitats were incubated under multiple combinations of temperature (14, 21˚C),

salinity (24, 37 ppt) and food regime (9.3, 18.6, 27.9 μg C ind−1 week−1) to comparatively

assess how these factors may influence major asexual reproduction processes in the two

species. Both species exhibited a shared pattern of budding mode (Directly Budded Polyps:

DBP; Stolonal Budded Polyps: SBP), with DBP favoured under low food supply (9.3 μg C

ind −1 week−1) and low temperature (14˚C), and SBP dominant under high temperature

(21˚C). However, A. coerulea showed an overall higher productivity than A. relicta, in terms

of budding and podocyst production rates. Further, A. coerulea exhibited a wide physiologi-

cal plasticity across different temperatures and salinities as typical adaptation to ecological

features of transitional coastal habitats. This may support the hypothesis that the invasion of

A. coerulea across coastal habitats worldwide has been driven by shellfish aquaculture, with

scyphistoma polyps and resting stages commonly found on bivalve shells. On the contrary,

A. relicta appears to be strongly stenovalent, with cold, marine environmental optimal prefer-

ences (salinity 37 ppt, T ranging 14–19˚C), corroborating the hypothesis of endemicity within

the highly peculiar habitat of the Mljet lake. By exposing A. relicta polyps to slightly higher

temperature (21˚C), a previously unknown developmental mode was observed, by the ses-

sile polyp regressing into a dispersive, temporarily unattached and tentacle-less, non-feed-

ing stage. This may allow A. relicta polyps to escape climatic anomalies associated to

warming of surface layers and deepening of isotherms, by moving into deeper, colder lay-

ers. Overall, investigations on species-specific eco-physiological and ontogenetic potentials

of polyp stages may contribute to clarify the biogeographic distribution of jellyfish and the

phylogenetic relationships among evolutionary related sister clades.
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Introduction

Jellyfish outbreaks have been attributed to natural and/or anthropogenic causes, including cli-

mate change [1–4]. In several coastal ecosystems jellyfish may produce major impacts to

human activities and ecosystem services, including significant losses in different economic sec-

tors [2,5–7] and ecological and societal benefits [8,9]. In this context, understanding the bio-

logical mechanisms and related environmental envelopes underlying jellyfish outbreaks is

crucial to predict and mitigate impacts of recurrent bloom events. Most species of Scyphozoa

have a polymorphic life cycle involving a short-living larval stage (planula), a benthic asexual

post-larval stage (polyp), and a pelagic sexual stage (medusa). For these species, the occurrence

of jellyfish outbreaks is thought to be directly linked to the ecological success of the benthic

stage [10,11].

The moon jellyfish Aurelia aurita (Linnaeus 1758) had been previously described as a nearly

cosmopolitan ecological generalist [12]. Phylogenetic studies later identified at least 3 valid

morphospecies (A. aurita, A. limbata, A. labiata) plus 13 additional molecular species [13–15].

Overall, the Aurelia spp. taxon can be regarded as the most widely distributed scyphozoan

group, a species-complex composed of numerous locally adapted species mainly found in

coastal waters [15–19].

Aurelia spp. polyps can asexually multiply (mainly by polyp budding), produce resting

stages (podocyst formation), or advance the life cycle by the production of juvenile medusae

(ephyrae) via strobilation [20]. Previous studies showed these ontogenetic processes are influ-

enced by key environmental factors such as temperature, food, salinity and light [18,19,21–24].

Temperature cues control differential reproductive energy allocation, favouring polyp budding

at warm temperature regimes or triggering strobilation when cold temperature thresholds are

reached [18,19,22,24]. Food supply has a positive effect on both polyp and ephyra production

[18,19] while podocysts seem to be produced only when food supply is low and temperatures

are typically high [18,25].

Due to the inherent taxonomical uncertainty, the interpretation and cross-comparison of

ecological data referring to different Aurelia species is problematic. Investigations on A. aurita
(sensu lato) showed different eco-physiological responses to environmental factors among dis-

tinct geographical Aurelia populations (e.g. [18,22,23]). Available evidence on the phylogenetic

high diversity of the Aurelia group suggests these differences may be related to inter-specific

genetic differences rather than intra-specific adaptive plasticity [16,26]. Therefore, to produce

species-specific results on Aurelia jellyfish populations new experimental data should be asso-

ciated with suitable taxonomic identification at species level.

Recently, an integrative morphometric and molecular approach helped in resolving taxo-

nomic uncertainty around the moon jellyfish populations in the Mediterranean Sea, identify-

ing three different species, namely the non-indigenous A. coerulea and A. solida, and the

native A. relicta [27].

In this study, we analysed the combined effects of three key environmental factors—tem-

perature, salinity and food supply—on polyp reproduction of two species, A. coerulea and A.

relicta, from two different coastal habitats located at two opposite sides of the Adriatic basin:

the Varano lake (Italy) and the Mljet lake (Croatia). The aim of this work was to obtain a better

understanding of the biological mechanisms supporting the spatial separation and local popu-

lation success of two different Aurelia species (one native and one non-native of the Mediterra-

nean sea) in two spatially and ecologically distinct habitats, and to analyse their inter-specific

eco-physiological differences.
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Materials and methods

Ethics statement

The moon jellyfish Aurelia coerulea and A. relicta are not endangered or protected species and

they are renowned as outbreak-forming invertebrate species with a high regeneration poten-

tial. Permit of sampling A. relicta in the protected area of the Big Lake of Mljet was kindly pro-

vided by the Natural Park of Mljet (Croatia). No permits were needed for sampling in the lake

of Varano (Italy) adult A. coerulea medusae brooding planula larvae, which gave origin to the

corresponding experimental polyp group.

Locations

The polyps originated from two semi-enclosed coastal sounds with limited contact with the

open sea in the Adriatic: the Varano coastal lake (Italy: 41˚52’ N, 15˚44’ E), inhabited by a

dense population of A. coerulea [27], an invasive alien species, and the marine lakes of Mjlet

(Croatia: 42˚46’ N, 17˚21’ E) inhabited by the endemic A. relicta [14,27]. These two marine

lakes are characterized by contrasting hydrological features determined by their geomorpho-

logical differences.

The Lake of Varano, about 65 km2 in surface area, is the largest coastal lake in Italy. It is

classified as a lagoon, and is located on the Italian east coast, separated from the Adriatic Sea

by a 10 km long land stripe with two small artificial canals at the extremities. The mean depth

is 3.5 m with a maximum at 6 m. The water temperature ranges between 6.7 and 30.2˚C and

the salinity varies between 21.6 and 35.0 ppt [28]. The bottom waters are generally saltier and

warmer. This is due to the strong evaporation and the input of fresh water that flows over the

salty-warm water. The water exchange between the lake and the sea, which is primarily driven

by the semi-diurnal tide, is weak and the water residence time is 1.5 year. The Lake of Varano

is an oligo-mesotrophic ecosystem [28].

The Mljet lakes, Veliko Jezero (Big Lake) and Malo Jezero, are monohaline marine lakes

located in the southern Adriatic island of Mljet, Croatia. These lakes are moderately eutrophic

ecosystems (29). The Big Lake has an area of 1.45 km2 and a maximum depth of 46 m. During

summer there is a strong thermocline at 15–20 m depth and the temperature varies between

the constant minimum of 11˚C in the bottom layers and 28˚C in surface. The salinity ranges

mainly between 37.5 and 38 ppt [29]. The surface exchange of water with the open Mediterra-

nean Sea is weak, driven by a 1 km long, 10 m wide and 3.8 depth channel. These lakes are

therefore virtually isolated from the Adriatic Sea [29–31].

The polyps of the two species live in contrasting environmental temperatures. In the Mljet

lake, the polyps of A. relicta are found at depths (� 20 m) below the summer thermocline, at

temperatures usually ranging between 11–20˚C throughout the year [29, 30]. In contrast, pol-

yps of A. coerulea in the Varano lake are exposed to a wider range of temperatures (6–30˚C

[28]). The experimental conditions were chosen to reflect as much as possible the natural con-

ditions of each polyp group. Therefore, only A. coerulea polyps—living in the transitional habi-

tat of the Varano coastal lagoon (under fluctuating salinity values) were studied under two

different salinity values (24 and 37 ppt).

Experimental design

All polyps were kept in separate microcosms in order to study their individual responses.

Before the experiment, all polyps were kept at salinity 37. One month prior to the experiment,

Aurelia coerulea and A. relicta polyps were individually transferred to a total of 270 micro-

cosms and incubated under different salinity/temperature conditions and feeding treatments

Asexual reproduction and somatic growth of Aurelia spp. polyps from the Adriatic Sea
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(Table 1), in order to acclimate to the experimental conditions. These conditions were chosen

to reflect the variations experienced by the polyps in their natural environments. The micro-

cosms consisted of small polystyrene flasks (50 ml) filled with 30 ml of 1.2-μm filtered seawa-

ter. A 12:12 light-dark cycle, typical of winter/spring light conditions [23] was set up. The

polyps were individually fed with newly hatched Artemia salina nauplii (dry weight: 2.3 μg

ind−1 or 0.93 μg C ind−1; based on [32]) placed one by one in contact with the tentacles using a

Pasteur pipette under a stereo microscope. A preliminary assay estimated that 10 nauplii was

the mean number of prey captured and swallowed by each single polyp at each feeding session,

corresponding to 9.3 μg C. Availability of a higher number of nauplii resulted in a variable

number of non-captured prey. Ten nauplii were therefore provided as a standard food portion

to each polyp throughout all experimental feeding sessions. The polyps were fed at three food

regimes: once a week (F1), twice a week (F2) and three times a week (F3) and the water was

replaced 2–3 hours after feeding with seawater at the same temperature and salinity conditions

(Table 1). The number of new buds, podocysts and ephyrae were counted after each feeding

session and then removed from the microcosm. In order to evaluate the somatic growth, the

calix diameter was measured on the first and the last day of the experiment, for 6 polyps in

every condition. Measurements were performed using a stereo microscope with a graduated

eyepiece. If the calix was not round, the average of the maximum and the minimum dimen-

sions was used.

Three-way ANOVAs were performed on the observations. Data for the A. coerulea polyp

group were first analysed on their own and then merged with the A. relicta polyp group in

order to compare results between species. All counted values were square root transformed

and tested for the normality of the data (Shapiro-Wilk test) and the homogeneity of variance

(Bartlett test). When these assumptions were not satisfied, additional non-parametric tests

were carried out (Kruskal-Wallis) in order to allow the use of the ANOVAs results. When sig-

nificant interactions were found between factors, two-way and one-way ANOVAs were car-

ried out and implemented with interaction plots to verify whether the effect produced by a

factor on the quantitative variable was due to interaction with another factor. All these tests

were carried out using R-statistics 2.14.1.

Results

Budding

Polyps of both species produced buds under all experimental conditions at a nearly constant

rate for each treatment (Fig 1). The total bud production rates increased with the food supply

and were higher at 24 salinity for the A. coerulea polyp group. The effect on budding under

temperature changes differed between the two species, with high significant effect only on A.

relicta polyps. A highly significant stimulatory effect on the number of buds per polyp was

Table 1. Experimental conditions.

Species Location Experimental conditions

Salinity (ppt) Temperature (˚C) Feeding treatment (μg C ind−1 week−1)

Aurelia coerulea Varano (Italy) 24 / 37 14 / 21 F1: 9.3, F2: 18.6, F3: 27.9

Aurelia relicta Mljet (Croatia) 37 14 / 21 F1: 9.3, F2: 18.6, F3: 27.9

Experimental conditions to examine the effects of temperature, salinity and food supply on the asexual reproduction of Aurelia coerulea and A. relicta

polyps.

https://doi.org/10.1371/journal.pone.0178482.t001
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observed under increasing feeding regimes in both species (A. coerulea: F (2, 168) = 223.21,

P<0.0001; A. relicta: F (1, 158) = 130.39, P<0.0001; Table 2).

The new budded polyps were counted in two categories: directly budded polyp (DBP) or

stolonal budded polyp (SBP). The DBP are produced by the stalk of the parent and start to

grow tentacles before detaching from the parent, using a pedal stolon (Fig 2A). By contrast,

SBP start growing from the parent’s pedal stolon and the development of the new polyp does

not start until the stolon has attached to the substrate (Fig 2B). For the 270 polyps incubated,

the most common mode of budding was the direct budding. Indeed, 66% of the new polyps

were directly budded (DBP).

As presented in Table 2, a highly significant difference was found between the 2 budding

modes (A. coerulea: F (1, 348) = 300.59, P<0.0001; A.relicta: F (1, 168) = 80.45, P<0.0001) as

well as a significant interaction between the budding mode and the temperature, for both pop-

ulations (A. coerulea: F (1, 348) = 180.43, P<0.0001; A. relicta: F (1, 168) = 245.17, P<0.0001).

Direct budding appears to be always favoured at 14˚C (Fig 1) while at 21˚C it is only favoured

at the lowest feeding treatment (F1). Stolon budding was favoured at 21˚C under high feeding

treatment (F3). The interaction between budding mode and feeding treatment was highly sig-

nificant [F (2, 348) = 7.80, P<0.0001] for A. coerulea polyps.

Podocysts

Podocysts were produced in most conditions, except for the A. relicta polyps maintained at

14˚C under the F1 feeding regime (Fig 3). Nonetheless, not every single polyp produced podo-

cysts. The production rates were higher at 21˚C, with the A. coerulea polyps showing the

Fig 1. Budding rates. Mean budding rates and upper standard deviation from polyps of Aurelia coerulea and

A. relicta under different combinations of experimental conditions over 85 days. F1, F2, F3 = Feeding regimes

of 9.3, 18.6, 27.9 μg C ind−1 week−1, respectively; Salinity 24 or 37 ppt; Temperature 14˚C or 21˚C.

DBP = Directly Budded Polyp, SBP = Stolonal Budded Polyp.

https://doi.org/10.1371/journal.pone.0178482.g001
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Table 2. Statistical results.

Group A. coerulea Group A. coerulea vs. A.relicta

Dependent variable Factor F df p-value Factor F df p-value

Total number of buds Food 223.21 2 0.000*** Food 130.39 2 0.000***

Temperature 0.33 1 0.564 Temperature 26.42 1 0.000***

Salinity 198.65 1 0.000*** Group 11.33 1 0.000***

Salinity*Food 7.123 2 0.001** Temperature*group 42.8 1 0.000***

Group A. coerulea Group A. relicta

Dependent variable Factor F df p-value Factor F df p-value

Number of DBP/SBP Budding mode 132.23 1 0.000*** Budding mode 80.45 1 0.000***

Food 136.19 2 0.000*** Food 53.39 2 0.000***

Temperature 4.22 1 0.041 Temperature 49.57 1 0.000***

Budding mode*Temperature 180.43 1 0.000*** Budding mode*Temperature 245.17 1 0.000***

Budding mode*Food 7.8 2 0.000*** Budding mode*Food 2.4 2 0.000

Group A. coerulea Group A.coerulea vs. A.relicta

Dependent variable Factor F df p-value Factor F df p-value

Number of podocysts Food 0.29 2 0.746 Food 0.95 2 0.3904

Temperature 44.11 1 0.000*** Temperature 6.39 1 0.124*

Salinity 12.22 1 0.000*** Group 2.4 1 0.000***

Temperature*Salinity 15.93 1 0.000***

Group A. coerulea Group A.coerulea vs. A.relicta

Dependent variable Factor F df p-value Factor F df p-value

Calyx Diameter growth Food 9.15 2 0.000*** Food 4.37 2 0.0169*

Temperature 36.28 1 0.000*** Temperature 24.85 1 0.000***

Salinity 0.64 1 0.426 Group 77.76 1 0.000***

Summary of three-way ANOVA run on experimental data collected from 270 polyps of A. coerulea and A. relicta to examine the effects of food, temperature,

salinity on the total number of buds, the number of podocyst, the calyx diameter growth, or the effects of budding mode, food and temperature on the

relative number of DBP/SBP. The use of *, **, and *** denotes levels .05, .01, and .001 of statistical significance, respectively.

https://doi.org/10.1371/journal.pone.0178482.t002

Fig 2. Budding modes. Budding modes of Aurelia coerulea and A. relicta polyps. (A) Polyp producing a Directly Budded Polyp (DBP) from

the stalk; (B) polyp producing Stolonal Budded Polyps (SBP) from the pedal stolon. Scale bars: 1 mm.

https://doi.org/10.1371/journal.pone.0178482.g002
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highest podocyst production frequency at salinity 24, 93% of polyps (i.e., 14 out of 15) against

60% of polyps (i.e., 9 out of 15) at salinity 37. In the same conditions, the A. relicta polyps pro-

duced fewer podocysts than the A. coerulea polyps.

The number of podocysts produced per A. coerulea polyp was highly significantly influ-

enced by temperature (F (1, 168) = 44.11, P<0.0001), salinity (F (1, 168) = 12.22, P<0.0001)

and by the interaction between temperature and salinity (F (1, 168) = 15.93, P<0.0001)

(Table 2). The number of podocysts produced per A. relicta polyp was significantly influenced

by temperature (F (1, 168) = 180.43, P<0.01) (Table 2). Overall, a highly significant difference

was found between the podocyst productions of the two Aurelia polyp groups (F (1, 168) =

20.80, P<0.0001).

Somatic growth

Throughout the experiment, the calyx diameters of A. coerulea polyps were larger than those

of A. relicta polyps (Fig 4). As expected, the highest feeding regime (F3) led to a proportionally

higher increment of polyp size in both populations. Both polyp populations achieved larger

size increases at 14˚C than at 21˚C. Highly significant differences in polyp size were detected

in A. coerulea group according to feeding treatment (F (1, 60) = 9.15, P<0.0001) and tempera-

ture (F (1, 60) = 36.28, P<0.0001), but the effect of salinity was not significant (F (1, 60) = 0.64,

P = 0.426). Results from A. relicta polyps showed a significant effect of feeding treatment on

the somatic growth (F (1, 59) = 4.37, P<0.05) and a highly significant effect of temperature

(F (1, 59) = 24.85, P<0.0001). A highly significant difference (F (1, 59) = 77.76, P<0.0001)

Fig 3. Podocyst production. Mean production rates of podocysts (PC) obtained from polyps of Aurelia

coerulea and A. relicta under different combinations of experimental conditions over 85 days. F1, F2,

F3 = Feeding regimes of 9.3, 18.6, 27.9 μg C ind−1 week−1, respectively; Salinity 24 or 37 ppt; Temperature

14˚C or 21˚C.

https://doi.org/10.1371/journal.pone.0178482.g003
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between the A. coerulea and the A. relicta polyps was observed, with the latter growing less

than the former ones (Fig 4). Further, the A. relicta polyps at 21˚C exhibited degrowth, i.e.

decrease in calyx size with respect to initial conditions.

Strobilation and polyp regression

Strobilation leading to liberation of ephyrae was low and only observed at 14˚C in the A.

coerulea polyps, whereas no ephyrae were produced by the A. relicta polyps. Overall, the

low number of produced ephyrae prevented the application of statistical tests. However, it

was noticed that the number of strobilae and the number of ephyrae produced per polyp in

the A. coerulea group increased with the feeding regime (Fig 5). Conversely, the low produc-

tion of ephyrae at salinity 37 suggests a negative effect of high salinity on the A. coerulea
group.

The A. relicta polyps exhibited a previously unrecorded phenomenon. Overall, for the 3

feeding regimes at 21˚C, 78% of polyps (i.e., 35 out of 45) degenerated—with complete resorp-

tion of tentacles, mouth, and pedal disk—each polyp transforming into a unattached, drifting

non-feeding stage (RS) (Fig 6). After a dormant period, a fully differentiated, individual polyp

with pedal disk, tentacles, mouth reformed from each non-feeding drifting stage while in the

water column, then reattached to the bottom and became indistinguishable from a newly born

polyp derived from planula metamorphosis. These polyps were able to repeatedly switch

between the active and the resting phase. The increased feeding regime apparently increased

the number of polyps entering a resting phase, i.e. from 60 (F1: 9 polyps out of 15) to 93% (F3:

14 polyps out of 15) of the experimental population. Conversely, no comparable regression

stage was ever observed within the A. coerulea polyp group.

Fig 4. Calyx diameter increase. Comparison of means of calyx diameter increase of the Aurelia coerulea

and A. relicta polyps incubated under different combinations of experimental conditions over 85 days. F1, F2,

F3 = Feeding regimes of 9.3, 18.6, 27.9 μg C ind−1 week−1, respectively; Salinity 24 or 37 ppt; Temperature

14˚C or 21˚C. Vertical lines: SD.

https://doi.org/10.1371/journal.pone.0178482.g004
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Fig 5. Ephyrae production. Cumulative number of ephyrae produced by A. coerulea polyps at 14˚C under

different combination of salinities and food regimes (F1, F2, F3 = food regimes of 9.3, 18.6, 27.9 μg C ind−1

week−1, respectively; Salinity 24 or 37 ppt). No ephyrae were produced by A. relicta polyps.

https://doi.org/10.1371/journal.pone.0178482.g005

Fig 6. Regression-regeneration cycle. Regression-regeneration cycle of Aurelia relicta polyp. (A) fully

active polyp, (B) polyp in transition, (C) unattached, drifting non-feeding stage. (o), oral side. Arabic numbers

indicate the progression of the process. Scale bars: 1 mm.

https://doi.org/10.1371/journal.pone.0178482.g006
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Discussion

This study highlighted the differential influence of environmental variables (food supply, tem-

perature, and salinity) on the efficiency and mode of asexual reproduction in the polyp stage of

two Aurelia jellyfish species living at the opposite E-W sides of the Adriatic Sea, in two semi-

enclosed coastal areas subject to remarkably different ecological conditions.

Effect of food

Our results revealed a significant interaction between food supply and budding mode. For

both species, the lowest food regime favoured direct budding (production of DBP) over stolo-

nal budding (production of SBP). SBP usually remain closer to the parent polyp than the pol-

yps originated by DBP. Such parental proximity may be disadvantageous at low food supply

conditions. Indeed, the direct budding produce new polyps not immediately attached to the

substrate, which are therefore susceptible to more movements or drifting by currents before

final attachment. The spreading of DBP may eventually reduce competition for food among

parental and newly budded polyps.

In contrast, for both species the differences of food supply regimes at the chosen experi-

mental conditions did not determine significant variations on podocyst production. This find-

ing corroborates previous observations suggesting that podocyst production occurs as a

resistance strategy to poor food conditions [25]. In (undetermined) Aurelia sp. polyps from

Japanese waters, podocyst production was induced at food regimes�4.8 μg C polyp-1 day-1,

equivalent to 33.6 μg C ind−1 week−1 [25]. In our experiments, the selected food regimes were

always below that threshold (F 1, 2, 3 = [9.3, 18.6, 27.9 respectively] μg C ind−1 week−1), which

may explain the occurrence of podocysts in most feeding treatments. Within these conditions,

the lack of differences among food supply regimes on podocysts suggests that food availability

has a qualitative, yes-or-no effect on podocyst production rather than quantitative. However,

this should be tested in extra feeding conditions.

The effect of food regime observed on ephyrae production from A. coerulea polyps showed

that the number of ephyrae per polyp increases when food is more abundant, confirming pre-

vious results [19,33]. As a corollary, it is reasonable to postulate that an increase in zooplank-

ton prey availability to polyp populations may induce larger blooms of medusae.

In both A. coerulea and A. relicta polyps, all ontogenetic alternatives such as somatic

growth, budding, encystment, and strobilation are influenced by the available food supply.

These mechanisms should be equally regarded as adaptive strategies common to Medusozoa

to face with challenging environmental conditions, by alternatively entering a resting phase at

low metabolic cost or by the liberation of ephyrae, free-living dispersal stage to escaping tem-

porary disadvantageous habitat [34,35].

Food availability also controls the activation of a previously unknown resting mode, i.e. the

morphological regression of the A. relicta polyps from the lake of Mljet. This process makes

possible the alternation of feeding and non-feeding stages. The results imply that under warm

temperature (21˚C), a previously well-fed polyp has a better capacity to trigger the dormant

cycle. Therefore, zooplankton prey may enhance the ability of polyps to enter a quiescent

phase and thus increase their ability to face with subsequent prolonged stressful conditions.

Food supply is one of the key factors governing asexual reproduction and its effect on

reproductive processes can be quantitative (e.g. budding rates, ephyrae production, somatic

growth and quiescence capacity) and/or qualitative (e.g. onset or interruption of podocyst pro-

duction, budding, strobilation, selection of budding mode, triggering dormant cycle). In this

framework, we can hypothesize that increases in zooplankton abundance (due to e.g. climate-

related changes of temperature or salinity, or global climatic oscillations; eutrophication,
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overfishing of planktivorous fishes) may ultimately lead to higher frequency and severity of jel-

lyfish blooms.

Effect of temperature

Polyps of Aurelia relicta can be found in the lake of Mljet at depths where temperatures are

between 11–20˚C throughout the year [29, 30], whereas polyps of A. coerulea in the Varano

lake are exposed to a wider range of temperatures, from 6 to 30˚C [28]. Accordingly, the polyp

asexual growth and reproduction of the two species are differently influenced by temperature.

The A. coerulea polyps were able to keep stable their total bud production at both experimental

temperatures (14˚C, 21˚C), which is consistent with the optimal budding temperature for Aur-
elia spp. known to occur in the range 13–25˚C [20–23]. Conversely, the budding of A. relicta
polyps was negatively affected at 21˚C. In addition, Han & Uye [18] observed in Aurelia sp.

polyps from Japan an increase in budding production with temperature warmer than 25˚C.

Therefore, in spite of being often referred to a supposed large phenotypical plasticity of A. aur-
ita, such wide range and differences in optimal temperatures reflect the existence of multiple

cryptic Aurelia species and their peculiar adaptation to different conditions [26,27].

The identification of a significant interaction between the budding mode and temperature

represents a key finding. Our results showed that polyps allocate more energy towards stolonal

bud production (SBP) at warm temperature (21˚C) and intermediate food availability (two

feeding sessions per week,�18.6 μg C ind−1 week−1). This change in budding mode appears

stronger for A. relicta polyp group.

This effect of temperature on budding mode does not agree with the results of Han & Uye

[18] obtained with Aurelia sp. polyps from Japan reared at similar or higher food supply (11.9,

23.1, 46.2, 70 and 93.1 μg C ind−1 week−1) and temperature (18, 22, 26 and 28˚C). Their experi-

ments showed that the production of direct budded polyps (DBP) was the major mode in

every treatment (94% of total buds). Altogether, these results corroborate the hypothesis that

different Aurelia spp. may show wide intra- and inter-specific plasticity in terms of eco-physio-

logical acclimation or evolutionary adaptive responses to environmental conditions. The

genus Aurelia is known as one of the most specious taxa among Scyphozoa: for this reason,

integrating morphological and molecular taxonomy will help to clarify the variability of

ecophysiological responses within the Aurelia species complex [27].

In the field, Aurelia spp. strobilation occurs after polyps are exposed to a prolonged drop in

temperature. A reduction of water temperature is known to trigger upregulation of one or

more secreted proteins, which act as strobilation inducers in A. aurita polyps [36]. However,

our results showed the production of ephyrae may occur without a drop in temperature.

Indeed, limited strobilation was triggered in the A. coerulea polyps from the Varano lake main-

tained in the laboratory under constant low temperature (14˚C). A similar observation was

also reported by Holst [37] with North Sea A. aurita polyps maintained in the laboratory at

15˚C for 22 months, but no explanatory hypothesis was provided. It might be worth noting

that in both Holst’s and our experiments, strobilation at constant temperature was observed

only in winter, i.e. when polyp strobilation occurs in nature. This periodicity could be coinci-

dental, but could also imply the presence of an internal biological rhythm.

Furthermore, A. relicta polyps from the lake of Mljet showed to be able to enter a temporary

regression-regeneration process, morphological regression into an unattached and atentacled

propagule, followed by the reformation of a tentacled feeding polyp. We suggest this process

may be triggered by warm temperature: it was only observed at 21˚C, unusual for A. relicta
polyps, usually living in the Mljet lake under isotherms up to 19–20˚C. In this free-drifting

stage, the polyp may potentially survive unusual warmer temperatures, by escaping from
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unsuitable environmental conditions either sinking or drifting to more suitable (i.e. colder)

depths or locations. Therefore, the drifting propagule can be seen as an additional strategy to

the benthic podocyst as a stress-survival mechanism. These polyp-to-unattached propagule

reversible transformation somehow recalls the asexual dispersive mechanism described by

Vagelli as “gemmation” [38], who reported the internal and external production of free-swim-

ming, ciliated planuloid propagules, either produced from the inner gastrovascular cavity or

from the outer body surface of scyphistomae of Aurelia aurita (although taxonomic identifica-

tion of the investigated species remained uncertain), following intense polyp feeding periods

at optimal rearing conditions. In both cases these free-swimming propagules acted as disper-

sive stages, by means of a novel cloning mechanism adding to the well-known mechanisms of

budding, podocyst formation, and strobilation. In all these processes, there is an increase of

the final number of main forms of the life cycle (scyphistomae, ephyrae and medusae). In the

case of the reversible transformation observed in A. relicta, the outcome is not linked to an

increase in the total number of individuals, but merely to the survival of polyps occasionally

exposed to unfavourable environmental conditions. Indeed, high temperature (21˚C) has a sig-

nificant negative effect on polyp somatic growth, particularly for the A. relicta polyps. In a pre-

vious study, Han & Uye [18] showed an inverse relationship between the somatic growth and

the number of buds produced, explained by the body mass loss by the bud production. How-

ever, because A. coerulea polyps have similar total bud productivity at both experimental tem-

peratures, the observed size decrease cannot only be explained by a higher bud production.

We postulate that the podocyst production should also be considered as a body mass loss and

therefore having a negative effect on somatic growth. In addition, subtle increases of tempera-

tures are known to dramatically increase respiration rates [39]. This effect may cause impor-

tant energy loss and thus should play an important role in the low somatic growth observed at

the higher temperature. The stronger reduction in size observed within the Mljet polyps at

21˚C indicates A. relicta is negatively affected by high temperatures, witnessing to be a steno-

thermal species with a more restricted acclimation ability than A. coerulea.

Effect of salinity

Salinity is considered a key factor affecting physiological performances of estuarine organisms

[40]. However, unlike temperature and food supply having direct effects on the reproductive

processes of the Aurelia spp. polyps, salinity appears to have only an indirect and thus less con-

spicuous influence, enhancing the efficiency of different reproduction modes rather than act-

ing as a trigger.

In A. coerulea polyps from the Varano lake, low salinity seems to be coupled to better physi-

ological performances. The wide distribution of A. coerulea in marinas, estuaries, and coastal

lagoons may be accordingly in agreement with reduced salinity preferences [20,27]. However,

more experiments on the effect of salinity on polyp reproduction are needed to clarify the colo-

nization and blooming potential of different cryptic species of Aurelia spp.

Conclusions

The two habitats (the Varano lake and the Mljet lake) are characterized by contrasting hydro-

logical features induced by their geomorphological differences. Indeed, the two sites show

wide variations in salinity and temperature ranges. The A. coerulea polyps in the poly-haline

lagoon of Varano face large seasonal variations, with salinity ranges between 22 and 32 ppt

and temperatures oscillating between 7 and 30˚C [28]. Conversely, the A. relicta polyps live in

the mono-haline lagoon of Mljet at stable marine salinity (37) and under a narrower range of

temperatures over the year (11–20˚C) [29].
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Assuming that a high budding rate is a response to favourable conditions, the best produc-

tivities have been observed under low salinity (24 ppt) for the A. coerulea polyps, and at cold

temperature (14˚C) for A. relicta polyps. Compared to latter group, the A. coerulea polyps are

euryvalent, being adapted to a fluctuating transitional habitat, therefore more tolerant and less

negatively affected by relatively warm temperature (21˚C). Such adaptive plasticity allows

them to maintain a stable budding production at the two temperatures. However, the increase

of podocyst production suggests that warm temperatures may be somehow stressful to polyps

of A. coerulea. As suggested by Scorrano et al. [27], the preferential lagoonal- or harbour-lim-

ited distribution of A. coerulea provides strong indication this species entered the Mediterra-

nean Sea through aquaculture and/or boating vectors, and that its high eco-physiological

acclimation potential represent the key for its invasion success worldwide. Further investiga-

tions on the eco-physiological tolerance and ontogenetic potentials of polyp stages may

improve our knowledge on the mechanisms underlying the biogeographic distribution of

extant representatives of the Aurelia species complex, facilitating design and implementation

of management and mitigation measures against potential impacts of jellyfish blooms. Also,

the concept of phylogenetic niche conservatism [41] assumes that closely related species, due

to a longer evolutionary history in common, tend to be more similar in terms of ecological

niche requirements than distantly related species [42]. This can be considered as a potential

evolutionary driving force, with both morphology and ecological requirements as lineage-spe-

cific evolving traits, leading to divergence associated to reproductive isolation and, eventually,

speciation. It may be difficult to establish whether niche differences represent mechanistic

explanations or just consequences of lineage splitting and speciation. However, species-specific

eco-physiological potentials (e.g. tolerance to low salinity or high temperature of transitional

habitats) may be regarded as a source of additional evolutionary information, which, in combi-

nation with morphological and molecular data, may help to compare the degree of phyloge-

netic relatedness within closely related species, such as cryptic species complex.
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