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Abstract: The aim of this investigation was to synthesize high porosity TiO2 aerogel by applying
sol-gel and subcritical drying methods and to identify the influence of reagent’s nature and synthe-
sis conditions on their structural and optical properties. Methods of XRD, FT-IR, BET, STA, SEM,
and UV-vis were applied to investigate and compare the properties of synthesized TiO2 aerogels
and to determine the most effective synthesis route. The structural parameters of the synthesized
materials can be varied by changing the precursor type (titanium (IV), isopropoxide (TIP), or tetra-
butylorthotitanate (TBOT)) and the nature of the solvent used for additional exchange (n-hexane (nH),
cyclohexane (CH), or diethyl ether (DE)). All of the subcritical dried samples show the amorphous
structure, which tends to crystallize into the anatase phase after calcination. The number of micro
and mesopores and the specific surface area depends on the synthesis conditions. The pores with the
highest diameter have been found for additionally nH exchanged and aged aerogel synthesized from
precursor TIP. Despite the imperfections in the structure, the produced aerogels show structural and
optical properties typical of the TiO2 structures mentioned in the literature.

Keywords: TiO2 aerogel; sol-gel synthesis; solvent exchange; ageing; subcritical drying

1. Introduction

Recently, aerogels, as a group of nanomaterials with an immense number of possible
applications, have been gaining significant interest in the research community. These com-
pound materials are dried gels with several specific properties such as high specific surface
area, high porosity, low apparent density, large volume of open micro and mesopores, high
thermal and acoustic insulation, low refractive, and low dielectric constant [1–4]. Aerogels
can be obtained from carbon [5–9], polymers [10–14], or inorganic compounds, namely,
SiO2, Al2O3, TiO2, ZrO2, and others [1,4,15–17].

The TiO2 aerogel can be obtained by the sol-gel method using special drying methods
such as supercritical [18–20], sublimation [21], and subcritical [22] drying or drying under
ambient conditions [23] to preserve the formed mesopores. The most commonly used
method for aerogel drying is supercritical drying, and it requires specific equipment and
results in high production costs. As an alternative, subcritical drying is a technically simple
and economically viable method for the bulk production of aerogels. It must be noted that
TiO2 gel has a weaker network skeleton than SiO2 gel. Therefore, surface modification [24],
gel ageing [22], and additional solvent exchange [25] can be used to prevent the shrinking
and cracking of the TiO2 gel network and to obtain TiO2 aerogel during the drying.
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It is a well-known fact that TiO2 has three crystallographic phases in nature: brookite,
anatase, and rutile. Anatase TiO2 shows the best photocatalytic activity because of its
valence band characteristics, conduction, and crystal structure [26]. Wide interest in TiO2
as a semiconductor [27] can be explained by its promising performance as a heterogeneous
photocatalyst for energy and environmental applications, including the photodegradation
of organic pollutants for air and water purification [28], the photo-assisted removal of toxic
heavy metals [29], the production of solar fuels [30], and the development of self-cleaning
surfaces and reflectors [31]. Recently, TiO2 aerogels have also been investigated as an
electron transport layer in perovskite-based solar cells [20]. Mesoporous titania is widely
used as photoanode material in dye-sensitized solar cells (DSSC) because the mesopores (2–
50 nm) are capable of encapsulating bulky dye molecules and the permeation of electrolytes
that cannot be accomplished using micropores (< 2 nm) [32]. To increase the efficiency of
the solar perovskite-based solar module, it would be desirable to maximize the working
effective perovskite area by using a mesoporous TiO2 aerogel with a high surface area.

This investigation aimed to synthesize high porosity TiO2 aerogel by applying sol-gel
and subcritical drying methods and to determine the influence of reagent’s nature and
synthesis conditions on their structural and optical properties to further their applica-
tion for the mesoporous network charge carrier material of perovskites during solar cell
manufacturing.

The clear understanding of the relation between the precursor type, gel ageing, ad-
ditional solvent exchange, and other synthesis parameters that control the formation
mechanism of TiO2 aerogel and affect its properties remains an unsolved issue. Sufficiently
good results are obtained for TiO2 aerogels after supercritical drying [18,19,22], while the
results after subcritical drying, as a more cost-effective technology, are quite limited, and
the properties of synthesized products are lower compared with the supercritical dried
ones. In this study, the structural properties of subcritical dried (400 mbar, 70 ◦C, 8 h)
TiO2 aerogels were obtained by using two types of precursors (titanium (IV) isopropox-
ide (TIP) or tetrabutylorthotitanate (TBOT)). The obtained gel network was very flexible.
The effect of ageing (72 h, 40 ◦C) on gel stiffness has been evaluated. The additional
exchange in low surface tension solvent (n-hexane (nH), cyclohexane (CH), or diethyl
ether (DE)) was applied to determine a more stable network structure. The properties
of the synthesis products were evaluated by applying the methods of X-ray diffraction
(XRD), Fourier transform infrared spectroscopy (FT-IR), the Brunauer, Emmet, and Teller
(BET) method, simultaneous thermal analysis (STA), scanning electron microscopy (SEM),
and ultraviolet-visible (UV-vis) spectroscopy, which are discussed in Section 2—Results
and Discussions. A more detailed materials characterization and test methodology are
presented in Section 3—Materials and Methods. The conclusions are presented separately
in Section 4.

2. Results and Discussions
2.1. XRD Analysis

XRD analysis was carried out to evaluate the structural changes of synthesized TiO2
aerogels in dependence of precursor nature (TIP and TBOT), ageing (72 h, 40 ◦C), the
solvent type used for additional solvent exchange (nH, CH, DE), and subcritical drying
(400 mbar, 70 ◦C, 8 h). As expected, probably due to the low temperatures of sol-gel
synthesis and subcritical drying conditions, all of the investigated TiO2 aerogel samples
show the amorphous structure, and a more detailed structural characterization by this
method cannot be implemented (Supplementary Materials; Figure S1). [33,34]. For this
reason, other analysis methods (STA, FT-IR, BET, SEM, granulometric analysis, and UV-vis)
were applied for the synthesis products characterization.

2.2. Thermal Analysis

Figure 1 a and b show the thermogravimetric (TG), and c and d show the differential
thermal analysis (DTA) curves of the synthesized titania aerogels. The TG curves show a
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mass loss below ~ 225 ◦C. This can be attributed to the adsorbed impurities and moisture,
while a mass loss above 225 ◦C can be related to the decomposition of the organic groups
(–CH2 and –CH3) [33] and to the fracturing of the –OH groups [24].
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Figure 1. TG (a,b) and DTA (c,d) curves of TiO2 aerogels after subcritical drying in dependence of precursor type (TIP
(a), TBOT (b)), ageing (without aging (1–4), aged (5–8)) and solvent used for additional solvent exchange (1, 5—without
exchange; 2, 6—CH; 3, 7—nH; 4, 8—DE).

The obtained total mass loss was found to vary between 27–30% and 26–33% for
samples prepared using precursors TIP (Figure 1a) and TBOT (Figure 1b), respectively.
This means that during subcritical drying, the decomposition of organic groups and
solvent residuals were not fully reached. This situation differs from supercritical drying
conditions, where higher temperatures were applied, the decomposition of organic groups
was obtained during synthesis, and the mass loss in TG curves reached approximately up
to 5% [33].

According to the weight-loss trend in the TiO2 aerogel (Figure 1a,b; Table S1), the
decrease that started at about 228 ◦C and continued to ~350 ◦C and the exothermic peak in
the same temperature range (Figure 1c,d; Table S1) corresponds to the removal of solvents
and alkoxy groups [35,36]. The STA analysis shows that the exothermic peaks in the
temperature range of 366–560 ◦C were formed (Figure 1c,d; Table 1). Such kinds of peaks
are characteristic of anatase formation and were observed in all samples [22]. These peaks
can be attributed to the conversion of Ti(OH)4 to TiO2 (dehydroxylation) and occurred
during the crystallization of anatase [35,36].
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Table 1. The main characteristics of the thermal effects typical of anatase formation.

Precursor Ageing
Duration, h Solvent Tonset, ◦C Tmax, ◦C Tend, ◦C Heat of

Process, J/g
Mass

Change, %

TIP

0

- 439.6 449.4 458.8 464.98 2.832

CH 433.7 452.7 466.2 807.51 5.169

nH 371.1 409.0 438.3 190.80 1.498

DE 369.4 395.2 427.8 88.94 1.264

72

- 433.6 445.5 454.8 567.30 3.187

CH 439.8 452.8 462.5 702.34 4.752

nH 371.9 383.6 440.5 64.52 0.663

DE 430.5 445.6 457.4 665.72 4.055

TBOT

0

- 488.6 523.4 559.9 336.23 1.841

CH 452.1 490.2 522.1 56.54 0.217

nH 452.1 479.0 515.3 67.1 0.017

DE 454.2 511.0 544.7 151.95 1.002

72

- 434.9 451.1 460.9 596.68 4.021

CH 430.7 445.8 457.0 631.05 3.661

nH 366.7 399.3 436.4 156.37 2.039

DE 371.2 413.6 452.3 260.99 1.883

To confirm the contribution of the determined exothermal peaks in the range of
366–560 ◦C in the DTA curves to the anatase phase formation, part of the samples was
calcined at 500 ◦C for two hours. The temperature of the thermal treatment was selected
according to the DTA results, presented in Figure 1 and Table 1, and according to the infor-
mation found in the literature that the anatase phase formation takes place at temperatures
higher than 400 ◦C [21,22,33]. The calcination temperature was selected, ensuring possible
thermal conversions in the mentioned temperature range. XRD analysis was carried out for
calcinated samples. Obtained XRD patterns (Figure 2a) of calcinated TiO2 aerogels samples
were matched to the reference patterns for the corresponding oxide (PDF-00-064-0863, not
shown), and presumption about the crystallization into the anatase phase have been con-
firmed [22]. The relative intensity of peaks in the XRD pattern (Figure 2a) of the calcinated
samples remains the same in all investigated cases.
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Figure 2. Effect of calcination on XRD (a) and DTA (b) patterns of TiO2 aerogel ((1, 3) without ageing; (2, 4) after ageing. 1,
2 curves correspond to precursor TIP and 3, 4—to TBOT. Indexes: A—anatase phase.
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To evaluate the organic groups decomposition, calcinated samples were also inves-
tigated by STA analysis (Figure 2b). The endothermic peaks visible in all samples at the
temperature range of 119–142 ◦C can be related to the moisture removal. In the tem-
perature region of 225–300 ◦C, the creation of peaks was not observed, indicating that
most organic group decomposition is finalized during the calcination process. In the DTA
curves (Figure 2b, curves 2 and 4) for the calcinated aged samples at 389 ◦C temperature,
the visible exothermic peak can also be related to the formation of anatase. This means
that after the calcination of the aged samples, the amorphous phase transformation to
crystalline anatase was not completed. These peaks in the curves for the samples without
ageing ((Figure 2b, curves 1 and 3) were not found. The visible exothermic peaks in the
temperature range of 540–695 ◦C can be attributed to the conversion of anatase to rutile
(Figure 2b) [25,37].

2.3. FT-IR Analysis

Figure 3 shows the FT-IR spectra of unaged and aged TiO2 aerogels synthesized using
the precursors TIP and TBOT and additional solvent exchange (nH, CH or DE). There are
no significant differences between the curves. The broad absorption bands at ~ 3390 cm−1

and ~ 1633 cm−1 are attributed to the stretching vibrations of the hydroxyl (OH) groups
on the surface and the bending vibrations of the adsorbed water molecules (H–O–H),
respectively [38–41]. The peaks at 2970 and 2871 cm−1 of the TiO2 aerogels belong to the
CH2 symmetric stretching and the CH3 symmetric stretching of the remaining organic
compounds (like dissociative n-hexane (nH) and EtOH) in the pores of the TiO2 aerogels,
respectively [38,40,42]. The absorption peak at 1380 cm−1 can be attributed to the CH3
symmetric deformation vibration [42]. Weak peaks at 1040–1120 cm−1 are due to the
stretching vibration of C–C bonds [40,42].
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Figure 3. FT-IR spectra of TiO2 aerogels after subcritical drying without aging (1–4) and after 72 h aging (5–8) in dependence
of precursor type (TIP (a), TBOT (b)) and solvent used for additional solvent exchange (1, 5—without exchange; 2, 6—CH; 3,
7—nH; 4, 8—DE).

The broad bands between 400 and 1000 cm−1 in the TiO2 aerogel spectrum are related
to the bending vibration of Ti–O–Ti and the stretching vibration of Ti–O [43–45]. However,
the broad peaks in the mentioned range could also be attributed to a combination of the
Ti–O–Ti and Ti–O–C bond stretching vibrations [46]. It should be noted that the absorption
peaks attributed to TiO2 are more intensive for n-hexane exchanged aerogels.

The intensity of the absorption bands characteristic of TiO2 increases after calcination
as well (Figure 4). The bands attributed to Ti–O stretching vibration appear at 669 cm−1.
The band at 450 cm−1 and 517 cm−1 corresponds to the superimposing of Ti–O bending
vibration. These bands also confirm the crystallization and the transition to the anatase
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phase. The absorption bands (at 2970, 2871, 1380, 1040–1120 cm−1), earlier attributed to
the residual organic groups are significantly reduced or entirely disappear after calcina-
tion [32,39,41].
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2.4. BET Analysis

Figures 5–9 present the BET results for subcritical dried unaged and aged TiO2 aerogels
synthesized using the precursors TBOT and TIP and the additional solvent exchange (CH,
nH, or DE).

Subcritical dried unaged TiO2 aerogels synthesized from TBOT indicate a relatively
narrow bi-modal pores size distribution in the range of 0–5 nm (Figure 5a). The effect
of additional solvent exchange is negligible, and all peaks were found at pores with a
diameter of 0.97 and 3.10 nm, and the peaks of pores up to 0.97 nm were more than two
times higher than those for 3.10 nm. The comparison of curves obtained after ageing
with unaged ones indicates that ageing changes the porosity of subcritical dried TiO2
aerogels (Figure 5b). After ageing TiO2 aerogels synthesized using precursor TBOT, highly
expressed polydispersity is indicated, where pore size distribution changes from bimodal
to trimodal, with a decrease in the first peak height (at a nanopore diameter of about
1.0 nm) and a significant increase of the second peak at a pore diameter of 3.09 nm and an
evident appearance of the third peak at 5.92 nm. The height of the third peak was found
to be highly dependent on the solvent type used for exchange. The highest and widest
third peak was found for additionally nH exchanged TiO2 aerogels. This peak is about
2–6 times higher compared to the TiO2 aerogels exchanged in other solvents. Besides,
ageing increases the number of pores with diameters in the range of 8–16 nm.

The N2 adsorption–desorption isotherms of the TiO2 aerogel prepared from TBOT
are presented in Figure 6. According to the IUPAC classification [47,48], the obtained
isotherms can be classified as a type-I with an H4 hysteresis loop, excluding the aged and
nH exchanged sample, for which a type-IV isotherm with an H2 hysteresis loop was found.
A type-I isotherm and H4 hysteresis loop indicate that the synthesized structure has a
microporous and mesoporous structure with narrow slit pores. These data correlate well
with the obtained pore size distribution curves presented in Figure 5. A type IV isotherm
and H2 hysteresis found for additionally nH exchanged aerogel are typical for the solids
with mesopores and micropores [49], whose structure is disordered and the distribution of
pore size and shape is not well defined [47–49].
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Figure 5. Pore size distribution of the subcritical dried TiO2 aerogel synthesized using precursor TBOT vs. exchanging
solvent type (• –without exchange, # –nH, N –cH, � –DE)—without (a) and after (b) ageing.
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Figure 6. Isotherms for subcritical dried TiO2 aerogel synthesized using precursor TBOT and
additional nH exchange (unaged (N—without exchange, •—nH) and aged (�—without exchange,
# —nH)).

In Figure 7, there are plots of the pore size distribution for the TiO2 aerogel synthesized
using the precursor TIP and the additional solvent exchange (nH, CH, or DE). As in the
previously discussed case, an apparent effect of solvent nature, as well as ageing, was found.
Pore diameter distribution curves also are multimodal. The curves for nH exchanged TiO2
aerogels indicate the creation of a bigger diameter of pores compared to the other ones. The
highest peak in the region of pore diameter 5–10 nm was found for both unaged and aged
samples. While the peak for aged samples is higher compared to those for unaged ones,
the pore diameter distribution curves also show small peaks in the region of 13–16 nm for
unaged samples, which after ageing was shifted to the zone of larger values, i.e., 16–20
nm. The effect of ageing on aerogel pore size distribution is insignificant when additional
exchange in other solvents (CH or DE) was used, and it was very close to those obtained
for unaged samples.
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Figure 7. Pore size distribution of subcritical dried unaged (a) and aged (b) TiO2 aerogel synthesized using the precursor
TIP and additional solvent exchange (•—without exchange, #—nH, N –cH, �—DE).

Figure 8 presents the N2 adsorption–desorption isotherms for the TiO2 aerogel pre-
pared from TIP. The isotherms for the TiO2 aerogels without additional solvent exchange
can also be attributed to the type-I isotherms with an H4 hysteresis loop. As in the TBOT
case, the nH exchanged TiO2 aerogels attained type-IV isotherms with an H2 hysteresis
loop [47,48]. The hysteresis loop for the nH exchanged aged aerogel is wider than for
the unaged and nH exchanged samples. That coincides well with the pore distribution
curves (Figure 7). The curve peaks of pore size distribution are shifted toward a larger pore
diameter zone after ageing.
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Figure 8. Isotherms for subcritical dried TiO2 aerogel synthesized using the precursor TIP and
additional nH exchange (unaged (N—without exchange, • –nH) and aged (� –without exchange,
#—nH)).

For comparison, BET analysis was also carried out for the calcinated TiO2 aerogels
without additional solvent exchange. The obtained isotherms and pore size distribution
are presented in Figure 9. For both precursor cases, the isotherms type after calcination
changes from type-I with an H4 hysteresis loop to type-IV isotherm with an H2 hysteresis
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loop [47,48]. The hysteresis loops (Figure 9a,c) are significantly wider compared to the sam-
ples before calcination (Figures 6 and 8), and after calcination, the adsorption–desorption
intersection zone shifts to lower relative pressure p/p0 values. Meanwhile, the quantity of
adsorbed Vads for the samples obtained with precursor TIP was higher than for TBOT and
indicated the creation of the mesoporous structure. The calcination results in a more even
pore size distribution, one highly expressed peak, and the evident effect of precursor nature
and ageing (Figure 9b,d). For unaged calcinated TiO2 aerogel synthesized using TBOT,
the pore size distribution curves have a high peak in the region of pores with a diameter
of 7–15 nm and only a small narrow peak at 5 nm. For aged TiO2 calcinated aerogel, the
pore diameter distribution curve shows a very narrow high peak in the region of 2.5–5 nm
(Figure 9b). Using the precursor TIP effect of ageing on calcinated aerogel, the pore size
distribution is not very significant (Figure 9d). For unaged and aged calcinated aerogels,
the pore diameter distribution curves show two peaks of different heights: the lower one
was found in the region of 4–5 nm and the higher one in the region of 6–15 nm. There, the
highest value of pore diameter was 11 nm. For aged samples, the number of these pores
was found to be 1.4 times higher compared to the calcinated unaged samples.
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Figure 9. The BET adsorption–desorption isotherms (a,c) and pore size distribution (b,d) of calcinated TiO2 aerogel vs.
precursor (TBOT (a,b), TIP (c,d) and aging (•, N—unaged, #, �—aged).

The summary of other TiO2 aerogel parameters obtained during the BET test is
presented in Tables 2 and 3. The comparison of them indicates that calcination results in a
significant decrease in the specific surface area [1] and in increased pore size. In contrast,
the ageing effect on the TiO2 aerogel pore size is highly dependent on the precursor and
solvent used for additional exchange, and clear dependence is difficult to identify.
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Table 2. Morphological parameters of TiO2 aerogels vs. precursor nature, solvent type, and ageing
duration.

Precursor Ageing
Duration, h Solvent Surface Area,

m2/g
Pore Volume,

cc/g

TIP

0

- 318.597 0.146
CH 331.262 0.165
nH 374.564 0.247
DE 313.811 0.151

72

- 367.579 0.167
CH 384.475 0.207
nH 263.443 0.234
DE 366.314 0.213

TBOT

0

- 264.054 0.146
CH 302.115 0.165
nH 340.861 0.247
DE 296.781 0.151

72

- 378.066 0.216
CH 423.731 0.245
nH 354.656 0.233
DE 377.213 0.224

The difference in measured values obtained from repeated runs was found to be lower than 5%.

Table 3. Morphological parameters of calcinated aerogels vs. precursor nature and aging duration.

Precursor Ageing Duration, h Surface Area, m2/g Pore Volume, cc/g

TIP
0 64.523 0.104

72 80.582 0.140

TBOT
0 58.774 0.098

72 47.802 0.087

The microstructure of calcinated aged samples is typical for TiO2 aerogels (Figure 10)
[26,50,51]. The particles are highly polydispersed and tend to agglomerate.
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2.5. UV-Vis Analysis

UV-vis analysis was carried out to evaluate the optical properties of the synthesized
aerogels. All of the obtained spectra are typical for catalytic titania powders and consist of
a strong UV absorption with a shoulder at about 335 nm (Figure 11a).
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Figure 11. Diffuse reflectance spectra of TiO2 aerogel powders: (a) before calcination; (b) after calcination. 1–4 curves
correspond to precursor TBOT and 5–8 to TIP; 1, 3—without aging and solvent exchange; 2, 4—aged, without solvent
exchange; 5, 7—unaged, nH exchanged; 6, 8—aged, nH exchanged.

Some samples after calcination display a light grey coloration due to a broad, weak
transition in the visible spectral region. Such grey coloration can be attributed to the
surface defects / doping impurities in oxides and is often caused by surface diffusion.
The calcination of the TiO2 aerogel powders leads to an absorption range shift to a longer
wavelength by about 30 nm (Figure 11b) [52,53]. A similar wavelength shift has been
reported for zirconia gels modified with organic agents [54].

The optical bandgap energy Eg of heat untreated and calcinated samples were calcu-
lated by the Tauc Plot method (Figure 12).
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Figure 12. Tauc plot of TiO2 aerogel powders: (a) before calcination; (b) after calcination (1–4 curves correspond to precursor
TBOT and 5–6 to TIP; 1, 3—unaged and without solvent exchange; 2, 4—aged and without solvent exchange; 5, 7—unaged
and nH exchanged; 6, 8—aged and nH exchanged).
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It was calculated that the indirect bandgap energy (Eg) of uncalcined samples was
3.32 eV, with a standard deviation of 0.037 eV. The bandgap energy of amorphous aerogels
is slightly higher compared to crystalline anatase [55]. It should be noted that the bandgap
energy (Eg) of the calcinated samples decreased to 3.08 eV (the standard deviation was
0.026 eV). The obtained results are consistent with the literature data that anatase as an
indirect bandgap semiconductor has bandgap energy of between 3–3.2 eV [55–58].

3. Materials and Methods
3.1. Materials

In this paper, the following reagents were used: titanium (IV) isopropoxide (TIP, 98%
Fluorochem, UK), tetrabutylorthotitanate (TBOT, 95% Fluorochem, Hadfield, UK), nitric
acid (HNO3, 65%, Chempur, Piekary Śląskie, Poland), ethanol (EtOH, 99.5%, Emparta ASC,
Darmstadt, Germany), distilled water, n-hexane (nH, 99%, Chempur, Poland), cyclohexane
(CH, 99%, Chempur, Poland), and diethyl ether (DE, 99.5%, Chempur, Poland). All reagents
were used without further purification.

3.2. TiO2 Aerogels Synthesis

The TiO2 gels were prepared with the acid-catalyzed sol–gel method using TIP or
TBOT, HNO3, EtOH, and H2O, with a molar ratio of 1:0.08:21:7.35, respectively. The
titania precursor (TIP or TBOT) was dissolved in the EtOH (Solution A). HNO3, EtOH,
and distilled water were mixed (Solution B). Both of the obtained solutions were stirred
intensively for 20 min. Solution B was added to Solution A under intense stirring. The
wet gels were formed in 1–2 s. Half of all of the obtained gels were additionally aged at
40 ◦C for 72 h. The unaged and aged gels were solvents exchanged twice in EtOH at 40 ◦C
for 24 h to remove water from the gel network. Part of obtained alcogels was additionally
exchanged in selected solvents: n-hexane, diethyl ether, or cyclohexane at 40 ◦C for 24 h.
After the solvent exchange, the samples were washed with acetone. The drying of the
gel network was performed at the subcritical condition of the pressure in a vacuum oven
(400 mbar) at 70 ◦C for 8 h (VC50 (SalvisLAB, Rotkreuz, Switzerland) with the volume of
50 L, vacuum system Vacuubrand PC 8 / RC 6 (Vacuubrand GMBH + CO KG, Wertheim,
Germany); max. pumping speed was 5.9/6.9 m3/h). The synthesis products were sieved
through a sieve with a mesh width of 80 µm. Additionally, some of the dried gels were
thermally treated at 500 ◦C for 2 h (SNOL 10/1300, SnolTherm business unit, part of Umega
Group, AB, Utena, Lithuania, with a heating rate of 4 ◦C/min).

3.3. Characterization

Methods of X-ray diffraction (XRD), simultaneous thermal analysis (STA), Fourier
transform infrared spectroscopy (FT-IR), Brunauer, Emmet, and Teller (BET), scanning
electron microscopy (SEM), and ultraviolet–visible spectroscopy (UV-vis) were applied
to investigate and compare the properties of synthesized TiO2 aerogels and to determine
the most effective synthesis route. XRD analysis was performed by using the D8 Advance
diffractometer (Bruker AXS, Karlsruhe, Germany) operating at the tube voltage of 40 kV and
tube current of 40 mA. The X-ray beam was filtered with a Ni 0.02-mm filter to select the
CuKα wavelength. The diffraction patterns were recorded in a Bragg–Brentano geometry
using a fast counting detector Bruker LynxEye based on the silicon strip technology. The
specimens were scanned over the range of 2θ = 3–70◦ at a scanning speed of 6◦/min using
a coupled two theta/theta scan type.

STA (differential scanning calorimetry—DSC and thermogravimetry—TG) was also
employed to measure samples thermal stability and phase transformation at a heating rate
of 15 ◦C/min, when the temperature ranged from 30 ◦C up to 950 ◦C under air atmosphere.
The test was carried out with the Linseis instrument STA PT1000. Ceramic sample handlers
and platinum crucibles were used.
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The specific surface area was determined by the Brunauer, Emmet, and Teller (BET)
method. Measurements were performed on an Autosorb iQ (Quantachrome Instruments,
Boynton Beach, Fla., USA) using an N2 gas adsorption isotherm at 77 K.

SEM investigations were performed using a standard electron microscope JEOL 5510
working on SE regime. Particles were Au-covered.

FT-IR analysis was performed on a Perkin Elmer FT-IR System spectrometer (Perkin
Elmer, USA) in the main infrared spectrum range of 4000–400 cm−1 (±0.01 cm−1). The
tablet-shaped samples were pressed in a vacuum press from the mixture of 1 mg of the test
substance and 200 mg of KBr.

Room temperature diffuse reflectance spectra were measured on a Perkin Elmer (Wal-
ham, MA, USA,) Lambda 35 spectrophotometer equipped with a reflectance accessory
(RSA-PE-20, Labsphere, North Sutton, NH, USA) and a vertical sample holder with a quartz
glass window between 250 nm and 900 nm. As a reference, white and black certified
reflectance standards Labsphere® were used. The f-f transitions of Ho2O3 micro powders
were used as a reference. Peak maxima and intensities were in good agreement with the
theory. From the measured diffuse reflectance R (%), the Kubelka-Munk function F(R)
has been calculated [59]. The diffuse reflectance spectra of Ho2O3 powders are visualized
in Figure 13.
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The Tauc Plot method was used to determine the optical energy bandgap (Eg) of
selected samples. The optical absorption strength depends on the difference between the
photon energy and the bandgap as:

(F(R)hν)1/n = A(hν − Eg), (1)

where h is Planck’s constant, ν is the photon’s frequency, for indirect allowed transitions
n = 2, Eg is the bandgap, and A is the slope of the Tauc plot in the linear region [60].

4. Conclusions

The structure of TiO2 aerogels synthesized by applying the sol-gel method and subcrit-
ical drying conditions have been investigated. The effects of titanium precursor (TIP and
TBOT), solvent (nH, CH, DE) used for additional solvent exchange, ageing, and calcination
have been evaluated. It was found that all subcritical dried samples show amorphous
structures, which tend to crystallize into the anatase phase after calcination. All synthesized
aerogels are highly polydispersed systems with a variation of pore size in the region of
0.5–17 nm. The number of micro and mesopores and the specific surface area SBET of
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aerogels are highly dependent on the synthesis conditions. The pores with the highest
diameter have been found for additionally nH exchanged, aged aerogel synthesized from
precursor TIP. The calcination significantly decreases the specific surface area SBET and
increases the pore sizes of subcritical dried samples without additional solvent exchange.
Despite the imperfections in the structure, the produced TiO2 aerogels show structural
and optical properties typical of the TiO2 structures mentioned in the literature. The ob-
tained results seem promising for the application of synthesized aerogels for photovoltaic
purposes. Further investigations are planned to evaluate their suitability in terms of their
application in perovskite solar cells.

Supplementary Materials: The following are available online. Figure S1: XRD patterns of TiO2
aerogels after subcritical drying without aging (1–4) and after aging (5–8) in dependence of precursor
type (TIP (a), TBOT (b)) and solvent type used for additional solvent exchange (1, 5—without
exchange; 2, 6—CH; 3, 7—nH ; 4, 8—DE); Table S1. The main characteristics of thermal effects are
attributed to the organic groups decomposition.
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