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Rapid development of food factories in both developed and developing countries,

owing to continued growth in the world population, plays a critical role in the food

supply chain, including environmental issues such as pollution, emissions, energy and

water consumption, and thus food system sustainability. The objective of this study

was to briefly review various environmental aspects of food processing operations,

including aquatic, atmospheric, and solid waste generation, and also to discuss several

strategies that many companies are using to reduce these negative impacts as well

as to improve water and energy efficiency. To obtain higher energy efficiencies in food

processing factories, two key operations can play critical roles: non-thermal processing

(e.g., high pressure processing) and membrane processes. For higher water efficiency,

reconditioning treatments resulting in water reuse for other purposes can be conducted

through chemical and/or physical treatments. With regards to reducing volumes of

processing food waste, two approaches include value-added by-product applications

(e.g., animal feed) and/or utilization of food waste for energy production. Finally, we

present trends for lowering operational costs in food processing.

Keywords: food, energy, water, sustainability, efficiencies

INTRODUCTION

Ever-increasing population growth has resulted in higher demand for food, which has led to rapid
change and expansion in the number of food factories. It was discussed in the 2009 World Summit
on Food Security that by 2050, global food production should rise by at least 70% to feed growing
populations (anticipated to be 9 billion people) (1). There are different environmental inputs (e.g.,
land, water, and energy) and outputs through food systems including raw material/agricultural
production, food processing, packaging, distribution, retail, consumption, and end of life.
Therefore, all food processing—in addition to food production—results in other problematic
outputs such as greenhouse gases, wastewater, as well as packaging and food waste.

Key environmental impacts from food include aquatic, atmospheric, and solid waste generation,
which are influenced by the quantity of resources utilized (including energy and water), waste
generated, and transport used (truck, train, plane, etc.) in the food system (2). These environmental
changes are expected to affect food security and contribute to decreasing the quantity, quality and
affordability of food all around the world (3). Management of energy, water, and other resources
can lead to increases in efficiency, cost savings, and the minimizing of negative environmental
impacts (2).
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Energy efficiency policies, which are closely linked to
several issues including energy security, climate change, and
economic objectives have been paid attention recently (4).
For higher energy efficiency achievement, several approaches
could be used: firstly, replacement of conventional methods
with new technologies (e.g., application of high-pressure
processing instead of conventional heating); secondly, membrane
processing application instead of energy-intensive operations
(e.g., evaporation); and finally, using some technologies for
energy production from food waste such as biological, thermal,
and thermochemical technologies. The purpose of this review
paper is to highlight some environmental impacts of food
processing and to discuss some solutions to address these issues.

ENVIRONMENTAL IMPACTS OF
FOOD PROCESSING

Aquatic Effects
Water is a vital component in the majority of food processing,
and its consumption is of great consideration owing to the high-
quality water utilized during the manufacture of food products as
well as generation of significant volumes of pollutant wastewater.
Domestic and industrial water demand have been increasing
due to population growth, demand for products, and economic
growth, as well as dietary changes into higher animal protein
consumption (5). It was determined that a meat-based diet has
a larger water footprint (∼36% larger) compared to a vegetarian
diet (6). For example, the production of 1 g of animal protein
from egg, milk, or meat requires ∼29, 31, or 112 L of water,
respectively; however, 1 g of cereal protein requires 21 L of
water (7).

During food processing operations, water is used in many unit
operations and applications, including as an ingredient, an initial
and intermediate cleaning source, or as an efficient transportation
mechanism for some raw materials, and is a key agent utilized
in sanitizing plant equipment and areas. Water use will likely
continue to be a critical component of the food industry, but it
has become a target for efficiency and reduction efforts (8).

Agriculture and food processing can affect water quality via
chemistry (e.g., heavy metals, including lead, arsenic, iron, etc.)
and bacterial aspects (such as coliforms and Streptococci spp.)
(9). When discharged into the environment, water containing
chemical and/or microbial pollution can negatively impact
aquatic life. Heavy metals are a risk to fish, and subsequently to
human health (10)—so much so that limits for consumption of
some types of fish have been recommended by health agencies.
Furthermore, irrigation of crops with polluted wastewater may
be problematic, as absorption of the pollutants by growing
vegetables, fruits, or other crops, may ultimately lead to
contaminants becoming part of the human food supply chain,
and thus wastewater may actually be considered a risk factor for
human health (9).

Atmospheric Effects
The main reason for atmospheric emissions from the food
industry is extensive energy usage. The majority of energy
consumption occurs during the heating of buildings, powering

different processes, sterilization, transportation of raw materials
and products, and other unit operations. Use of conventional
fossil fuels may decrease through increasing the use of renewable
energy (e.g., geothermal, wind, or solar energy) (11). Emissions
of CO2 are predicted to rise significantly in the next 20 years
if the production and use of traditional energy via the burning
of fossil fuels continues to increase. Increasing levels of CO2

in the atmosphere eventually overwhelm the natural carbon
cycling by oceans and forests and have driven atmospheric CO2

concentrations far above pre-industrial levels. It is thus probable
that global temperatures will increase by at least 1.0–3.5◦C (12).

Another key parameter leading to atmospheric pollution from
the food industry is product transport. The effect of transport
depends on various parameters such as the mode of transport,
the type, age and condition of vehicles, and the delivery distance.

Further, agricultural activities (which produce most of the
raw food products) lead to various air emissions, which will
further exacerbate global warming, and include emissions of
ammonia, methane, nitrous oxide, as well as sulfur and dust
particulate, especially PM10 (a mixture of dust, smoke, soot, salt,
acids, metals, and other fine particles) (13). Additionally, during
fermentation and decomposition of organic materials, as well as
during combustion of fossil fuels, volatile organic compounds
(VOCs) are produced, which can contribute to ozone formation
when combined with nitrogen oxides (NOx) and sunlight (14,
15). Some VOCs also result in negative health effects such as eye,
nose, and throat irritation.

Food processing and packaging of raw materials can cause
significant air pollution. Apart from air emissions due to fossil
fuel combustion, indoor organic dust pollution is unique to
this sector (16). Dutkiewicz et al. (17) carried out a study
in which air samples for the determination of concentrations
of microorganisms, dust and endotoxin were collected at 6
sites in the division producing potato flakes and meal from
dried potato pulp and at 2 sites in the division producing
potato syrup from imported starch. The concentrations of
total airborne microorganisms were within a range of 28.3–
93.1 × 103 cfu/m3. Mesophilic bacteria were dominant at
all sampling sites, forming 73.1–98.8% of the total count. Its
airborne concentration increased rapidly after the peeling of
potatoes and attained maximal values at cutting and blanching
(steaming and sulfuration) of potatoes, and at sacking of potato
meal. Several studies also confirmed high levels of particles
in food processing industries, such as bacteria, endotoxin, and
occupational antigens in places like breweries (18) and sugar-beet
processing plants (19).

Solid Waste Generation
It has been reported that ∼1.3 billion tons of food products,
such as fresh fruits, vegetables, meats, bakery, and dairy products,
are lost along the food supply chain (20). Another estimation
indicated that in the United States, about 40% of food produced
is lost as waste during processing and distribution by retailers,
restaurants, and consumers (21). Additionally, it has been
projected that food waste in the European Union will increase
from 89 million tons in 2006 to 126 million tons in 2020 (22).
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Food processors are substantial waste producers, as they
can generate considerable quantities of solid waste (food
waste, packaging, etc.) and various liquid effluents (23). These
processing wastes can include fruit and vegetable residues,
discarded fruits and vegetables, molasses and bagasse from sugar
refining, bones and blood from meat and fish processing, non-
fermentable residues from wineries, distilleries, and breweries,
wastes from dairy factories (e.g., cheese whey), and wastewaters
from various unit operations such as washing, blanching, and
cooling (24). The disposal of these types of food wastes into
the environment should be avoided due to several reasons,
including poor biological stability, considerable concentrations
of organic components, poor oxidative stability, and significant
nutritional value which can be lost from the human food
chain. Additionally, a high amount of food waste coupled
with microbial decomposition can result in adverse effects on
the environment as well as human health (25). To minimize
environmental burdens due to food waste, and also to lower
the risks to human health, proper management, recycling, and
value-added applications are necessary (24).

Many food wastes mostly consist of various carbohydrates
(such as starch, cellulose, and hemicellulose), lignin, proteins,
and lipids, as well as various organic acids and minerals (ash).
Due to the generally high carbohydrate composition of these
wastes, the production of renewable energy may be a viable
alternative to landfilling. Apart from energy generation, most
food wastes contain compounds that could be used as substrates
and nutrients for various microbial and enzymatic processes
(26, 27). Additionally, utilization of food waste can lead to
improvement in the bottom line for both the company and
for the locality, and can lead to lower environmental pollution
and/or pressure.

STRATEGIES FOR ENVIRONMENTAL
IMPACT REDUCTION

There are many opportunities to improve the environmental
footprint of food processing operations. Three of these
include improving energy efficiency, water efficiency, and waste
reduction (Figure 1), which will be discussed in this paper. There
are many more that are not considered in this paper, however,
and the reader is referred to other papers in this Research Topic
[e.g., (28, 29)].

Energy Efficiency
Non-thermal Processing
One challenging topic for all food processing sectors has always
been energy efficiency enhancement; illustrating this point,
the food industry was classified as the fifth biggest consumer
of energy among 20 manufacturing sectors in US in 2002
(30). Depending upon the type of products produced, a great
quantity of energy is often applied during the conversion of raw
substances into higher-value food products (31). For example,
to evaporate 1 kg of water from products, an average of 6 MJ
of heat is needed during drying process; however, to reduce
the temperature of products under −20◦C, 1 MJ (or 0.3 kWh)

of electricity is required during freezing processes (8). In this
regard, heating processes are often the most energy-intensive
types of unit operations used in the food industry, and can
include pasteurization, sterilization, dehydration, evaporation,
and drying. In conventional heating methods, heat is transferred
to the food material via conduction, convection, and radiation
heat transfer. Often, the movement of heat from the surfaces of
the materials toward their centers is considered a limitation for
thermal treatment due to relatively slow heat transfer through
food products. However, other effective techniques for heat
transfer by using newer technologies (e.g., molecular interactions
via microwave) are gaining acceptance (31). Applications of these
newer methods not only results in better energy utilization and
heat recovery, but can also improve the overall sustainability
of food production as well as the nutritional quality of final
products (32).

Non-thermal methods are also gaining popularity. These
techniques offer several advantages to food manufacturers,
such as minimizing the impact on nutritional and sensory
properties of food products, they can extend shelf life by
preventing or destroying microorganisms, and they can be more
energy efficient as well (33). In addition to saving energy by
applying these technologies, most of these new approaches
also result in water savings, increased reliability, lower energy
required (and thus lower emissions), and improved product
quality (34). Some of these emerging methods include high
pressure processing (HPP), ultrasound (US), pulsed electric
fields (PEF), and pulsed light treatment (PL) (35). Table 1

summarizes the effects of the application of several non-thermal
technologies on energy efficiency improvement, and will be
discussed below.

During HPP, momentary pressure within the range of
300–700 MPa is transmitted throughout the food products,
resulting in a reduction of processing time and consequently
energy consumption (47, 48). To compare application time and
temperature between HPP and conventional processing, (36)
reported that HPP (600 MPa/20◦C/60 s) resulted in a lower
microbial population throughout 12 weeks, and hence a greater
shelf life than thermal pasteurization (65◦C for 1min and 85◦C
for 25 s). Another study found that HPP (400 and 600 MPa/5
min/20◦C) was a better alternative for apple processing vs.
conventional pasteurization (75◦C/10min) (37). In terms of
processes such as chilling and freezing, there is an obvious reason
for lower energy consumption during HPP than conventional
methods because, during the phase change during HHP, the
latent heat of water is nearly 30% lower compared to that
at atmospheric pressure (49). Due to water expansion during
freezing, pressure increments can lead to lower freezing points
(50). HPP can be used to use pressure to induce freezing and
thawing, so that the growth kinetics of ice crystals results in a
finer crystal structure within the food matrix (51, 52).

Ultrasound (US) is energy generated by sound waves (53)
and has shown high potential for increased heat transfer and
faster cooking rates compared to conventional cooking methods
(54). The main mechanism of action is cavitation. When air
bubbles implode, high localized pressures and temperatures
occur, and can reach 50 MPa and up to 5,000◦C (55) (Figure 2).
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FIGURE 1 | Examples of three options for improving energy and water sustainability in food factories.

Efficacy depends upon the food matrix and upon the intensity
of the US; heat transfer improvement of about 30–60% has
been seen (57). The main advantage to using US is the fact
that temperatures are generally between 40 and 50◦C during
ultrasonic pasteurization, which are considerably lower than
the temperatures used in conventional pasteurization processes.
In this regard, it has been reported that Escherichia coli and
Saccharomyces cerevisiae were reduced by more than 99% after
ultrasonication, whereas Lactobacillus acidophilus was reduced
by 72 and 84% depending on the media used (58). Hence, the
resistance to ultrasound treatment of spores and Gram-positive
and coccal cells is higher than vegetative, Gram-negative and rod-
shaped bacteria. Ultrasonication combined with heat was applied
to examine the inactivation of Listeria innocua and mesophilic
bacteria in raw whole milk (59). A combination of US and heat
led to an increase in the kill rates compared to the rates of
thermal treatment alone, and a synergistic rather than an additive
effect was observed. Zhu et al. (60) demonstrated that the use
of ultrasound (21.2 kHz, 2min) enhanced the efficacy of selected
sanitizers (such as water, chlorine, acidified sodium chlorite,
peroxyacetic acid, and acidic electrolyzed water) in reducing E.
coli O157:H7 populations in spinach.

Use of US to preserve the nutritional and sensory properties
of various food products has been widely evaluated (61–63). In
terms of drying processes, combinations of US with moderate
heat can result in significant reductions of both processing
temperature and processing time compared to the use of air-
drying alone. (38) found that the time required to dry carrot slices
decreased from 35min to 25min when using air-drying alone at
60◦C vs. air-drying combined with US at the same temperature.
Ortuño et al. (64) conducted an experimental study on the
convective drying kinetics of orange peel slabs (thickness 5.95 ±
0.41mm) at 40◦C and 1 m/s with and without power ultrasound
application. Obtained data indicated that ultrasonic application
influenced both internal and external mass transport. Kek et al.
(65) evaluated ultrasound pre-osmotic treatment prior to hot-
air drying of guava slices. According to the results, ultrasonic
pretreatment lowered the drying time by 17–33%, increased the
effective diffusivity by 18–35%, and increased the drying rate
constants of guava slices by 37–42%.

In fact, there are several advantages to using US for
food processing instead of conventional processing; these
may include more effective bulk mixing and micro-mixing,
faster heat transfer, better mass transfer, decreased thermal
and concentration gradients, reduced processing temperatures,
smaller equipment size, faster start-up, smaller production
increments, and reduction in the number of processing steps (7).

Pulsed electric field (PEF) can be an effective inactivation
method for microbial cells when it is combined with low to
moderate processing temperatures (<50◦C) through inducing
permeabilization of biological cells. During this process, tissues
are exposed to an electrical field [typically a very short timeframe
(µs)] and high-voltage (kV) pulses (Figure 3). Effectiveness
depends on the electric field strength, applied temperature,
processing time, and energy input (67). Heinz et al. (39) evaluated
the effect of temperature (35–70◦C) on the lethality of PEF
for E. coli contamination in apple juice. They observed a
negative correlation between energy requirements and treatment
temperatures. To obtain a 7-log10 inactivation of E. coli at 24
kV/cm, the energy requirements declined from 160 to 100 kJ/kg,
with a temperature increment of 40 to 50◦C. Additionally, it
was reported by Korolczuk et al. (40) that, for S. enteritidis, by
increasing pulse width from 0.05 to 1 µs during PEF processing
(50 kV/cm and 15◦C), a lower amount of energy (from 44
to 32 kJ/kg) was required. Further, the application of PEF (3–
5 kV/cm, 1.6 µs pulse duration, 40–80 pulses) for sugar beet
dehydration led to a lower level of force being required for
beet slicing (from 16 to 8N), which then decreased the total
energy requirement for processing (41). Another study also
confirmed that PEF (7 kV/cm, 1.5 µs pulse duration, 40–80
pulses) resulted in more than 50 % energy savings compared to
traditional methods for the drying of plants (i.e., grass, maize, and
lucerne) (42).

PEF has been used before and during drying processes because
of improved mass transfer and localized structural changes of cell
membranes, as well as an increase in membrane permeability
(68, 69). It has been shown that drying of red pepper at 45◦C
takes 4.9 h, but after PEF pre-treatment (2.5 kV/cm, 100Hz,
4 s), drying time was reduced by 35% (43). Another recent
investigation optimized PEF pre-treatment of radish (1.446 V/cm
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TABLE 1 | Examples of energy efficiency improvements by non-thermal processing applications*.

Method Process conditions Key results References

HPP Pressure: 600 MPa

Temperature: 20◦C

Time: 60 s

Compared to thermal pasteurization (65◦C for 1min and 85◦C for 25 s), HPP

resulted in longer shelf life and lower microbial population over 12 weeks.

(36)

Pressure: 400 and 600 MPa

Temperature: 20◦C

Time: 5 min

Final apple product of HPP indicated better results including higher fresh-like,

value-added products with reasonable shelf life rather than conventional

pasteurization (75◦C/10min).

(37)

US Frequency: 20 kHz

Power capacities: 100w

Max time duration: 40 min

US application directly coupled to the food samples led to optimum energy

transfer for food dehydration.

(38)

PEF Temperature: 35–70◦C

Electric field strength: 8–40 kV/cm

Energy input: 5–120 kJ/kg

Pulse repetition rate: 2–95 Hz

A significant reduction was observed in energy consumption from 160 to

100 kJ/kg by higher temperature (from 40 to 50◦C) during achievement a

7-log10 inactivation of E. coli.

(39)

Temperature: 4–20◦C

Electric field strength: 30–80 kV cm

Pulse frequency: 1–815Hz

Energy input: 0–300 kJ/kg

Pulse width: 0.05, 0.1, 0.25, 0.5, 1, 2 and

3 µs

Lower energy consumption (from 44 to 32 kJ/kg) was observed for destruction

of S. enteritidis through increasing pulse width from 0.05 to 1 µs.

(40)

Electric field strength: 3–5 kV/cm

pulse duration: 1.6 µs

40–80 pulses

Owing to lower force required for a beet slicing by PEF application, total process

energy requirement reduced.

(41)

Electric field strength:

pulse duration: 1.5 µs

40–80 pulses

For drying plants such as grass, 50 % energy saving was achieved by PEF rather

than traditional methods.

(42)

Electric field strength: 1.0–2.5 kV/cm

Pulse frequency: 100Hz

Pulse width: 30 µs

PEF as a pretreatment led to time reduction of drying the red pepper by ∼34.7%. (43)

PEF application as a pretreatment for drying crystal radish indicated higher

drying rate and lower drying time and energy consumption.

(44)

PL PL treatment for 3 s resulted in 7.29-log CFU/ml reduction of E. coli inoculated in

apple juice.

(45)

The population of L. innocua was reduced by 1.39 log CFU using PL treatment

and there was no significant growth after 8 days of storage at 4◦C.

(46)

*HPP, high pressure processing; US, ultrasound; PEF, pulsed electric field; PL, pulsed light treatment.

FIGURE 2 | Schematic diagram of ultrasonic velocity continuous wave

technique [based upon (56)].

for 28µs, and 87 pulse), and found an improvement in the drying
rate by 26% and a reduction of the drying time by more than
14%, leading to reduced energy consumption (44). When used
in conjunction with conventional drying, PEF pre-treatment

resulted in decreased drying time by up to 50%, and drying
temperature did not exceed 60◦C. A reduction of drying time
and/or drying temperature can result in a considerable reduction
in energy consumption (70, 71).

Pulsed light (PL) processing is an energy-saving, waste-
free and environmentally friendly technology. Light pulses are
based on electromagnetic energy, which is accumulated in a
capacitor and then released in the form of light within a very
short time (ns or ms); therefore, this process results in an
amplification of power with a minimum of energy consumption.
Several studies have been conducted to determine microbial
population reduction for several organisms using PL treatments.
For example, E. coli-inoculated apple juice was lowered by 7.29-
log CFU/ml after 3 s of a PL treatment using 88,000 mJ/cm2

(45). Cold pasteurization of milk was treated by PL with a
minimum dose of 12.6 J/cm2 delivered in 56 s (72). In 2009,
Uesugi and Moraru used PL (9.4 J/cm2) to reduce L. innocua
on the surface of sausages, and found a 1.39 log CFU reduction
after PL treatment, and found no growth after 8 days of
storage at 4◦C.
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Membrane Processes
A highly energy intensive unit operation is evaporation; it
is commonly carried out by mechanical vapor recompression
technology. However, a good alternative for energy efficiency
enhancement is membrane filtration, with a potential energy
savings of 30–50% compared to distillation and evaporation
(73). The principle of membrane filtration is based on
forcing liquid food through a membrane whereby, after a
determined processing time, two different streams are obtained,
including permeate (material passing through the membrane)
and retentate (concentrate rejected by the membrane) (8)
(Figure 4). There are four groups of membrane processes
based on membrane pore size, consisting of microfiltration
(MF) (0.2 to 1µm), ultrafiltration (UF) (0.02 to 0.1µm),
nanofiltration (NF) (0.001 to 0.01µm), and reverse osmosis
(RO) [<0.001µm (75, 76)].

Energy consumption of membrane filtration is ∼14–36 kJ/kg
of water removed, compared to evaporation with mechanical
vapor-recompression of 50 kJ/kg of removed water. Processing
hot feed and recovering heat in the hot permeate (via
heat exchangers) is another energy saving method that is
commonly employed with membrane filtration (73). However,
one limitation of this process is reported to be relatively
low dry weight yields (12–20%), hence a hybrid process
consisting of membrane filtration and evaporation is often
utilized specially in the dairy processing industry (77). Another
potential disadvantage is fouling of the membrane as a result
of different compounds, including salts, sugars, proteins, and
fats present in the food material. Fouling leads to higher energy
consumption and reduced processing efficiency; therefore, to
address this challenge, regular cleaning with caustic solutions is
typically required (78).

Membrane technology can be applied alone or in combination
with other unit operations, such as distillation and evaporation,
in order to concentrate various dilute solutions (e.g., grain
milling, vegetable oil extraction, sugar manufacturing, etc.).
By using membrane systems to remove water in corn wet
milling, about 90% energy savings have been reported by Rausch
(79) because of no need to provide heat for phase change.
Considerable energy (electricity) is needed for pumping to
produce high transmembrane pressure and recirculation; thus
the total energy balance should be carefully studied (8). However,
it has been recently reported that there are new operating
conditions that use renewable energy sources coupled with
forward/reverse osmosis to promote water recovery from low-
strength wastewater. In this regard, anaerobic acidification and
forward osmosis (FO)membrane were simultaneously integrated
into an air-cathode MFC (AAFO-MFC) for enhancing bio-
electricity and water recovery from low-strength wastewater
(80). During a long-term operation of ∼40 days, the AAFO-
MFC system achieved continuous and relatively stable power
generation, and the maximum power density reached 4.38
W/m3. The higher bio-electricity production in the AAFO-MFC
system was mainly due to the accumulation of ethanol resulting
from the anaerobic acidification process and the rejection of
FO membrane. In addition, a proper salinity environment
in the system controlled by the addition of MF membrane

FIGURE 3 | Schematics of a PEF processing system for pumpable products

[based upon (66)].

FIGURE 4 | Diagram of a membrane filtration system including cross-flow and

flux enhancement. Dotted lines identify the boundaries for system analysis;

circles with symbols identify the processing control measurements needed for

energy calculations (light gray are optional measurements), the dark gray area

illustrates the treatment chamber and darker shapes the food material.

Additional system components are named individually [based on (74)].

enhanced electricity production. These results substantially
improve the prospects for simultaneous wastewater treatment
and energy recovery. The use of most renewable sources of
energy (e.g., hybrid renewable energy sources and battery
storage) can also be coupled to produce high transmembrane
pressure and recirculation in membrane systems (81). There
are other benefits in membrane application, such as selectivity,
ease of system operation, lower operating, maintenance, and
manufacturing costs compared to heating processes and a better-
quality product due to low processing temperatures (i.e., room
temperature) (82, 83).

During soybean oil extraction with hexane, the raw extract
usually consists of both soybean oil (25–30%) and hexane
(70–75%) (84). In a common industrial practice, distillation
of the remaining hexane consumes most of the energy cost;
however, the application of ultrafiltration or reverse osmosis can
lead to substantially reduced energy consumption for hexane
evaporation and reduced thermal damage as well (85).

In sugar factories, sugar thin juice obtained from filtration is
entered into an evaporation step to concentrate sugar solution.

Frontiers in Nutrition | www.frontiersin.org 6 April 2019 | Volume 6 | Article 20

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Nikmaram and Rosentrater Some Recent Advances in Improving

To reduce thermal energy consumption of sugar dehydration,
Madaeni and Zereshki (86) used a two-stage RO system for
preconcentration of sugar thin juice. They concluded that use of
this system prior to final concentration in evaporators resulted in
a 33% energy savings.

Water Efficiency
Pressure on limited water reserves has led to the efforts of
many governments and water authorities to improve water
use efficiency and to encourage water conservation. There are
considerable differences in water consumption amongst various
food factories. For example, high water users in the food
industry include meat, dairy, and fruit and vegetable processors.
By contrast, bakeries and grain producers, which are mostly
involved in dry processes, can be categorized as relatively
small water users (87). Apart from food processors and their
water consumption, there are always some benefits to higher
water efficiency.

For example, the Australian Government carried out a
survey on manufacturing groups and reported a large savings
on total water usage of up to 25, 30, and 60% through
the use of basic initiatives such as behavioral changes, water
recycling (without conditioning treatment), and water use
monitoring, respectively. Other substantial savings were also
observed by technology changes (36%) and product redesign
(72%), both of which require time and investment (88).
The first action before conducting reconditioning treatments
for wastewater should be water use reduction, because this
approach requires lower training and investment, and the
volume and strength of the wastewater are also directly
altered (5).

Reconditioning treatments for wastewater include various
physical processes, chemical processes, or a combination of
both types of treatments. These are commonly used to decrease
microbial levels and to eliminate hazardous chemicals in
water streams. During chemical treatments, several processing
additives may be applied, including chlorine, chlorine dioxide,
chloramines, ozone, hydrogen peroxide, or peracetic acid (89).
On the other hand, for physical treatments, membrane systems
can be used to recover various valuable by-products from
wastewater streams (e.g., protein or lactose from whey) (5).
Membrane systems for reconditioning wastewater can include
microfiltration (MF), ultrafiltration (UF), nanofiltration (NF),
and reverse osmosis (RO). These are used for specific ranges
of particle sizes. In practice, application of MF for wastewater
can separate microbes; UF can be used to remove microbes and
suspended solids, however RO can separate microbes, suspended
solids, and even some dissolved solids (90).

Water reuse offers great opportunities for lessening
groundwater depletion but it does have challenges, such
as balancing supply with demand, the risk of potential
contamination of stored water with pathogens from wildlife,
potential negative effects on crop yields due to higher salinity,
potential health concerns associated with contaminants,
and public perception of use on food crops (91). Therefore,
other actions should also be taken into consideration, such
as monitoring pathogens and chemicals, optimization of

treatments, assessment of treatment performance, reliability of
treatments, etc.

Waste Reduction
By-product Applications
A great quantity of food waste and by-products are generated in
many food processing sectors; a few examples include seafood
processing (e.g., skin, bones), dairy processing (e.g., whey,
curd), vegetable processing (e.g., seeds, skins, shells) and alcohol
processing [e.g., brewers’ spent grain (BSG), distillers’ grains,
pomace]. Many of these wastes contain valuable nutrients, such
as polysaccharides, vitamins, minerals, fibers, and bioactive
compounds such as flavonoids, lycopene, and other carotenoids,
which are functional compounds (25) (Figure 5).

Effective utilization of wastes and by-product materials from
the meat and poultry industries are of special interest due to high
protein and amino acid levels, and high sales prices for these
coproducts. High contents of proteins and iron within the blood
and other coproducts makes them important edible by-products,
which can be used to produce blood sausages, blood pudding,
biscuits, and bread in Europe and other regions, as well as blood
curd, blood cake, and blood pudding in parts of Asia. Other non-
food applications are fertilizer, feedstuff ingredients (e.g., blood
meal, meat, and bonemeal) and binders. Due to the high foaming
capacity of blood plasma, it can be utilized as an alternative
for egg whites in baked products (92). Gelatin obtained from
animal skins and hides is commonly used in different food
and pharmaceutical products, such as meat products (as an
emulsifier), ice cream, and other frozen foods (as stabilizers),
medicated tablets and pastilles (as binding and compounding
agents), and coverings of capsules (25).

Whey is an important by-product of the dairy industry,
and contains several valuable constituents, such as proteins
(e.g., α-lactalbumin, β-lactoglobulin, and immunoglobulin). In
dry form, whey is commonly used in confectionery products,
bakery products, and health and sport supplements due to high
nutritional (including high amount of essential amino acids) and
functional properties (e.g., gelation, foaming, and emulsifying
properties) (93). Curd obtained from coagulating milk during
curdling processes can be used in probiotic functional foods (25).

Bran is a major by-product of the grain industry, is a
significant source of dietary fiber, and is added to various food
materials, such as bread, cakes, noodles, pasta, and ice creams.
Rice bran has been shown to improve functional and textural
properties without altering flavor (94). Wheat bran is commonly
used as animal feed. Wheat germ is also a grain byproduct, and
can be used in various foods and other products, such as insect
biological control agents, pharmaceuticals, and cosmetics (95).

Brewers’ spent grain (BSG) is the main by-product of
the beer brewing industry and is a source of cellulose and
other polysaccharides, in addition to proteins. There are
several applications for BSG, such as animal feeds (96),
value-added chemicals (e.g., xylitol and lactic acid) (97–
99), cultivation of microorganisms such as Bifidobacterium
adolescentis, Lactobacillus sp. (100), and metal adsorption and
immobilization materials for Cu ions (101).
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FIGURE 5 | Multiple pathways exist for utilizing waste streams as sources of energy or byproduct applications.

Due to various fruits and vegetables and the broad range
of processes, there is a wide range of wastes obtained from
fruit and vegetable processing (102). Moreover, depending on
plant species, variety, and tissues, several nutritious compounds
could be used in different products. Fruit and vegetable by-
products offer great potential as a source of additives including
antioxidants (e.g., vitamin C), antimicrobials (e.g., phenolic
extract), colorants (e.g., anthocyanins), flavorings (e.g., essential
oils such as terpenes), and thickening agents (103). Agro-
industrial by-products are also reported to be a source of dietary
fibers, which are used in the food, cosmetic and pharmaceutical
industries (104). Additionally, several fruit by-products such
as pineapple waste, grape pomace, and citrus waste could be
used to generate ethanol (26), which will be explained in the
following section.

Energy Generation From Food Waste
In recent years, food waste has become considered to be an
untapped resource with much potential for the production of
bio-based energy. Energy generation from food waste can be
an option to pursue since this approach results not only in
lowering the environmental burden of waste disposal, but also
in providing energy to the plant, or it can be sold back to the
energy grid. The two primary ways for converting food waste to
energy include a biological approach (i.e., anaerobic digestion or
fermentation) and a thermochemical approach (e.g., gasification,
pyrolysis) (26).

Biogas is generated during anaerobic digestion (AD) of
organic wastes, and consists mainly of CH4 and CO2, with trace
amounts of other gases [e.g., nitrogen (N2), oxygen (O2), and

hydrogen sulfide (H2S)] (105). Murphy et al. (106) demonstrated
that 1 m3 of biogas from AD is equivalent to ∼21 MJ of
energy, which can produce∼2 kW h of electricity, assuming 35%
conversion efficiency. Key challenges to AD include long process
times required formicrobial action (∼20–40 days), as well as high
free ammonia (NH3) content (released from the degradation of
nitrogen-rich protein compounds), as well as high capital and
operations costs (107, 108).

Ethanol production by fermentation of food waste is the
other biological approach for converting food waste to energy.
The most common microorganism used for this process is
S. cerevisiae; however, other microorganisms have also been
studied, such as Zymomonas mobilis and Pichia rhodanensis (109,
110). The drawback of S. cerevisiae is that it can only use hexose
sugars/glucose as a substrate (111), but the other microorganisms
can utilize pentose sugars (26). It has also been suggested that
waste materials containing high amounts of carbon (e.g., brewery
wastes, bran, potato chip waste, etc.) can be good substrates for
ethanol production (112).

In terms of conversion of food waste to energy via thermal or
thermochemical approaches, there are several methods, such as
incineration, pyrolysis, gasification, and hydrothermal oxidation.
During incineration, combustion results in heat and energy
production from the food waste, which can then be used for
operating steam turbines for energy generation, or in heat
exchangers for heating up liquid process streams (113, 114).
Although incineration can decrease solid waste volume by up
to 80–85%, this method is not completely accepted by some
countries, and it may even be banned in some countries due to
air pollution and toxic air emissions (115).
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Pyrolysis is carried out in the absence of oxygen at the
temperatures between 250 and 750◦C, which then generates bio-
oil, syngas (CO + H2), and biochar (i.e., residual devolatilized
solid waste). Gasification is related to pyrolysis, and it also
produces a combustible gas mixture (containing CO, CH4,
N2, H2, and CO2); but instead of a complete lack of oxygen,
the process uses a low content of oxygen, and thus partially
oxidizes the food waste at high temperatures (800–900◦C).
The gas that is produced can be used in engines, and further
processing can result in various chemicals (e.g., methanol)
(26, 116). Ahmed and Gupta (117) conducted an investigation
to compare the performance of pyrolysis to gasification
for different properties such as syngas flow rate, output
power, and total energy yield; they concluded that gasification
was more efficient based on the evaluated criteria, however
the gasification process required a longer processing time
compared to pyrolysis.

Another thermal conversion technology is hydrothermal
carbonization, in which food waste is converted to an energy-
rich resource under autogenous pressures, and temperatures
ranged from 180 to 350◦C. This is a wet process, and offers
several advantages, such as lower energy consumption, high
waste utilization rates, no odors, relatively short process times
(only a few hours), and microorganism destruction due to high
processing temperatures (118, 119). Various food waste materials
have been examined as substances, including fish meat (120),
BSG (121), sweet corn (122), olive pomace (123), peanut shell
(124), and grape seed (125).

CONCLUDING REMARKS AND
FUTURE DIRECTIONS

The food processing industry consumes large quantities of
energy and water. Due to increasing pressure to become more
efficient, reduce costs, and reduce environmental impacts, many
food processors are implementing technologies to achieve these
aims. Energy efficiency has been proven to be greatly improved
by replacing current energy- and water-intensive processes
with novel, more efficient techniques, such as non-thermal
processing. There are many approaches for more efficient water
use, including various recycling and reconditioning treatments.
Additionally, developing new applications for by-products as
well as producing energy from various food wastes can reduce
waste and pollution issues. Basic initiatives greatly improve the
water efficiency (e.g., install a condensate re-use system, raising
staff awareness about proper maintenance and water usage).
These trends will continue for the foreseeable future, but their
implementation will ultimately be driven by the economics of
designing, building, and operating these new unit operations.
For additional perspectives, opportunities, and information, the
reader is referred to other papers that have been published in this
Research Topic.
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