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Simple Summary: Our previous works showed that pleural fluid from lung cancer significantly
induced endothelial proliferation, migration, and angiogenesis. Since endothelial metabolism was
a key step in angiogenesis, we investigated the role of bile acid signaling and FXR expression in
pleural angiogenesis. Elevated bile acid levels in lung-cancer-associated pleural fluid (LCPF) were
characterized with positive FXR staining in pleural microvessels. We then confirmed the inhibitory
effect of an FXR antagonist on LCPF-induced endothelial migration and angiogenesis. Due to the
elevated protein expression in the cholesterol metabolism caused by LCPF, lipid-lowering agents
with the efficacy needed to counteract LCPF-regulated angiogenesis were evaluated. Statin showed
the potent efficacy needed to suppress LCPF-induced endothelial proliferation, migration, and
angiogenesis through FXR inhibition. Following that, Kaplan–Meier analysis showed the survival
benefit of statin exposure in patients with lung adenocarcinoma with LCPF. Our results suggest that
targeting endothelial FXR signaling with statin treatment could ameliorate the angiogenesis activity
of LCPF.

Abstract: Lung cancer-related pleural fluid (LCPF) presents as a common complication with limited
treatment. Beyond its function in lipid digestion, bile acid was identified as a potent carcinogen to
stimulate tumor proliferation. Previous research indicated a correlation between serum bile acid
levels and the risk of developing several gastrointestinal cancers. Our study identified elevated bile
acid levels in LCPF and increased farnesoid X receptor (FXR) expression as bile acid nuclear receptors
in pleural microvessels of lung adenocarcinoma. Additionally, LCPF stimulated the expression of
proteins involved in bile acid synthesis and cholesterol metabolism in HUVECs including CYP7A1,
StAR, HMGCR, and SREBP2. LCPF-induced endothelial motility and angiogenesis were counter-
acted by using β-muricholic acid as an FXR antagonist. Moreover, we investigated the efficacy of
cholesterol-lowering medications, such as cholestyramine, fenofibrate, and atorvastatin, in regulating
LCPF-regulated angiogenesis. Along with suppressing endothelial proliferation and angiogene-
sis, atorvastatin treatment reversed cholesterol accumulation and endothelial junction disruption
caused by LCPF. Statin treatment inhibited LCPF-induced endothelial FXR expression as well as
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the downstream proteins RXR and SHP. Based on the positive findings of suppressing endothelial
angiogenesis, our group further incorporated the effect of statin on clinical patients complicated with
LCPF. A Kaplan–Meier analysis revealed the clinical benefit of statin exposure in patients with lung
adenocarcinoma with LCPF. Conclusively, our study demonstrated the ability of statin to alleviate
LCPF-induced angiogenesis in patients with LCPF via FXR modulation.

Keywords: malignant pleural effusion; non-small cell lung cancer; lung cancer-associated pleural
fluid; endothelium; bile acid; FXR; statin

1. Introduction

Not only do bile acids (BAs) influence cholesterol metabolism via synthesis and
excretion, but they have also recently been identified as signaling molecules in the tumor
microenvironment [1,2]. The first and rate-limiting enzyme in bile acid production was
cholesterol 7-hydroxylase (CYP7A1) [3]. BAs have been implicated in the development
of malignancies in the digestive system and extradigestive organs such as the prostate,
breasts, and lungs [4]. The advancement of research has increased our understanding of
BAs as tumor promoters or suppressors [5,6]. BAs have been shown to operate in cancer
cells through modulating nuclear receptors, most notably the farnesoid X receptor, FXR [7].
FXR acted as a bile acid-activated transcription factor, assisting in the maintenance of
cholesterol homeostasis [8]. To regulate downstream genes, the retinoid X receptor (RXR)
formed a heterodimer with the FXR [9]. Additionally, one of the downstream targets of
FXR activation was a small heterodimer partner (SHP) [10]. Numerous medicines targeting
FXR activation or inhibition in cardiovascular illness, metabolic disorders, and cancer have
been studied [11–13]. However, the role of BAs and FXR expression in non-small cell lung
cancer (NSCLC) patients with malignant pleural effusions remains unknown.

Our research previously demonstrated enhanced angiogenesis in the pleura milieu
of lung adenocarcinoma and the tendency of lung cancer-associated pleural fluid (LCPF)
to be angiogenic [14]. Despite recent advances in targeted therapy and chemotherapy, the
need for MPE treatment remains unfulfilled [15,16]. Tissue arrays have revealed positive
staining on the vasculature of metastatic cancer as well as target tissues of the liver and
intestine for FXR expression [17]. The FXR agonist induced endothelial cell motility and
angiogenesis in vitro [18]. Additionally, the modulation of endothelial nitric oxide synthase
and endothelin-1 by vascular FXR expression has been postulated as a potential target in
cardiovascular disease [19]. Thus, the current study sought to determine the efficacy of an
FXR modulator in inhibiting the endothelial angiogenesis generated by LCPF.

Apart from its ability to reduce hyperlipidemia, statins have garnered researchers’
interest for their pleotropic effects, particularly in the prevention and treatment of can-
cer [20,21]. Statins act on transcriptional regulation by interfering with nuclear hormone
receptors such as FXR [22]. The protective effect of atorvastatin in mice on a high-fat diet
was discovered to be due to the drug’s ability to reset FXR signaling [23]. Additionally,
atorvastatin regulates the enterohepatic circulation of BAs by inhibiting FXR mRNA and
protein expression [24]. Moreover, clinical analysis showed long-term statin use with better
survival in NSCLC patients [21]. However, no retrospective investigations have been
conducted to evaluate the effect of statin use in individuals with LCPF. As such, the current
in vitro research explored the efficacy of statin in attenuating LCPF-induced angiogenesis
as well as the putative control of endothelial FXR signaling.

2. Materials and Methods
2.1. Kaplan–Meier Analysis of Lung Adenocarcinoma Patients

Clinical data were acquired from the Taipei Medical University Institutional and
Clinical Database, which comprises medical records for almost 3 million patients who
have visited the Taipei Medical University Hospital, Wan Fang Hospital, and Shuang Ho
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Hospital. The database contains demographic and clinical information, outpatient and
emergency room visits, hospital admissions, laboratory test results, and drug prescriptions;
the information has been collected since 1997. The Institutional Review Board ethics
committee approved the study (TMU-JIRB No. N202203033).

A retrospective clinical-based cohort study was conducted on stage IV NSCLC pa-
tients with and without statin use between January 2010 and December 2019 to validate
the outcome. The primary outcome measures were all-cause mortality. To examine the
robustness of the primary study’s findings, we conducted sensitivity analyses that only
included lung cancer-related mortality. The individuals included met the following criteria,
which are illustrated in Figure 1: (1) age: 30 years or older; (2) clinical stage IV and patho-
logic diagnosis of NSCLC; (3) presentation of malignant pleural effusion; (4) clinical data
availability (i.e., sex, age, height, weight, smoking status, drinking status, lipid profiles,
comorbidities, and the use of cholesterol-lowering drugs).
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Figure 1. Total bile acid level in pleural fluid and endothelial FXR upregulation by LCPF. (A) The 
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munofluorescence staining for FXR (green) and DAPI (blue). (D) Representative images of lung ad-
enocarcinoma (left) and pleural microvessel (right) stained positively for FXR. The magnification is  
200x for Fig. 1C and 100x for Fig. 1D, respectively. Scale bar = 100 μm. The arrow indicates a tumor. 
** p < 0.01 and **** p < 0.0001 compared to the control group. 

Figure 1. Total bile acid level in pleural fluid and endothelial FXR upregulation by LCPF. (A) The
total bile acid level was measured by an ELISA kit. Pleural fluid from heart failure patients is referred
to as HFPF. The bar graph shows the results of HFPF and LCPF, respectively. Next, HUVECs were
incubated with LCPF or a control medium for 24 h. (B) FXR protein expression was examined
by Western blotting. GAPDH was used as an internal control. (C) HUVECs were subjected to
immunofluorescence staining for FXR (green) and DAPI (blue). (D) Representative images of lung
adenocarcinoma (left) and pleural microvessel (right) stained positively for FXR. The magnification
is 200× for (C) and 100× for (D), respectively. Scale bar = 100 µm. The arrow indicates a tumor.
** p < 0.01 and **** p < 0.0001 compared to the control group.

The index date is the date of the initial diagnosis of lung cancer. The medication
prescriptions were extracted from the pharmaceutical data using the World Health Organi-
zation’s Anatomical Therapeutic Chemical (ATC) classification (https://www.whocc.no)
(Accessed on 25 March 2022). Statins were defined as medications prescribed within the
two years preceding the index date (ATC: C10AA, C10B). The Charlson Comorbidity Index

https://www.whocc.no
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(CCI) score was developed to predict patient mortality and is now the most widely used
method in epidemiological studies for adjusting for confounding due to the presence of
comorbidities. The CCI was used in this study to adjust for comorbidities defined by
the CDMF ICD-9 and ICD-10 scoring systems [25]. To improve the diagnostic validity of
the comorbidities included in this study, only those diagnosed at least twice at clinic or
hospital visits more than 30 days apart prior to the two-year index date were included. The
comorbidity burden was accounted for in this study by categorizing patients into one of
three groups based on the CCI (detailed description shown in Table 1) [26].

Table 1. Characteristic of NSCLC stage IV patients with PE (n = 1137).

Variable
NSCLC Stage IV with PE, n (%)

p-ValueStatin (+)
(n = 291)

Statin (−)
(n = 846)

TNM stage
T 0.99

T0-2 64 (22.0) 188 (22.2)
T3 38 (13.1) 112 (13.2)
T4 189 (64.9) 546 (64.5)
N 0.79

N0-1 72 (24.7) 193 (22.8)
N2 73 (25.1) 220 (26.0)
N3 146 (50.2) 433 (51.2)
M 0.10

M1a 174 (59.8) 459 (54.3)
M1b 117 (40.2) 387 (45.7)

Age, years (mean ± SD) 70.9 ± 12.6 67.3 ± 14.0 <0.0001
Gender 0.20

Male 151 (51.9) 476 (56.3)
Female 140 (48.1) 370 (43.7)

BMI, kg/m2 0.0012
≤25 201 (69.1) 664 (78.5)
>25 90 (30.9) 182 (21.5)

Smoking status 0.87
No 187 (64.3) 539 (63.7)

Ever/current 104 (35.7) 307 (36.3)
Alcohol consumption 0.79

No 236 (81.1) 680 (80.4)
Yes 55 (18.9) 166 (19.6)
CCI <0.0001

0 126 (43.3) 603 (71.3)
1–2 67 (23.0) 137 (16.2)
3+ 98 (33.7) 106 (12.5)

Lipid profiles, mg/dL
Total cholesterol, mg/Dl (mean ± SD) 200.1 ± 53.1 179.2 ± 44.2 <0.0001

Normal or low (<200) 107 (36.8) 141 (16.7)
High (≥200) 84 (28.9) 50 (5.9)

LDL-C, mg/dL (mean ± SD) 125.3 ± 37.8 109.5 ± 31.2 0.0002
HDL-C, mg/dL (mean ± SD) 51.0 ± 14.2 49.8 ± 16.6 0.57

Pathological type 0.41
Squamous carcinoma 34 (11.7) 108 (12.8)

Adenocarcinoma 243 (83.5) 711 (84.0)
Others 14 (4.8) 27 (3.2)

Driver genes
EGFR 144 (49.5) 334 (39.5) 0.0029
ALK 5 (1.7) 12 (1.4) 0.72

PE, pleural effusion; ALK, anaplastic lymphoma kinase; BMI, body mass index; CCI, Charlson Comorbidity
Index; EGFR, epidermal growth factor receptor; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density
lipoprotein cholesterol; NSCLC, non-small cell lung cancer; TC, total cholesterol; TG, triglyceride; TNM, tumor-
node-metastasis; SD, standard deviation.
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The checklist for improving the reporting of observational studies in epidemiology
(STROBE) was used to guide the reporting of this clinical observational study (Figure S1).
Age, sex, gender, smoking status, BMI, and laboratory results, including lipid profiles,
pathologic classification, and driver mutation genes, were all potential risk factors for
the outcome.

2.2. Patient Characteristics and Collection of Pleural Fluid Samples

Pleural fluid samples were acquired using sonography-guided thoracentesis from
patients with NSCLC or heart failure who provided written informed consent. Twenty
NSCLC patients and five heart failure patients were recruited. From each patient, the
drained amount of pleural fluid was often more than 500 mL, and we collected, in total,
5 mL of pleural fluid for use in the in vitro experiments that followed. Fresh samples were
immediately centrifuged at 1000× g for 15 min and filtered (0.22 µm; Millipore, Burlington,
MA, USA) to obtain a cell-free specimen. All samples were stored at −80 ◦C and thawed
once before use.

2.3. Hematoxylin and Eosin (HE) Staining and Immunohistochemistry

Pleural tissues were fixed in 10% v/v formalin, embedded in paraffin, and sectioned at
6 µm on a microtome. The paraffin sections were deparaffinized and stained with HE in a
standard manner to assess general tissue morphology. For immunohistochemical staining,
pleural tissues were fixed in phosphate-buffered saline (PBS; 137 mM NaCl, 2.7 mM KCl,
1.5 mM KH2PO4, and 8 mM Na2HPO4 pH 7.4) with 10% v/v formaldehyde, 4% w/v
sucrose, and 0.15 mM CaCl2, incubated with permeabilization buffer (PBS with 0.2% v/v
Triton X-100, or PBST) and blocked with blocking buffer (PBST with 5% w/v nonfat milk).
After antigen retrieval, pleural tissues were incubated with primary antibody against
rabbit FXR (1:200 dilution, Millipore) and secondary goat anti-rabbit antibody (Jackson
ImmunoResearch Laboratories, Inc., West Grove, PA, USA).

2.4. Culture of Primary Endothelial Cells

HUVECs were purchased from the Bioresource Collection and Research Center (BCRC,
Taiwan) and cultured in endothelial cell medium (ScienCell Research Laboratories, Carls-
bad, CA, USA).

2.5. Drugs and Reagents

Dimethyl sulfoxide (DMSO), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT), and Coomassie brilliant blue G-250 were purchased from Sigma-Aldrich
(St. Louis, MO, USA). β-Muricholic acid (MCA), GW4064, atorvastatin, fenofibrate, and
cholestyramine were purchased from Sigma.

2.6. Cell Survival Assay

HUVECs were plated at a density of 2× 104 per well in a 96-well plate. Next, HUVECs
were cultured with 30% LCPFF (v/v) or control medium. After 24 h incubation, the cells
were washed with PBS, 0.5 mg/mL MTT was added, and the plates were incubated for
another 4 h. Cells were then lysed with DMSO. The absorbance was measured at 590 nm
for each well.

2.7. Transwell Assays

HUVECs were seeded in the upper chamber of a Transwell® plate (Corning Costar,
Cornyn, NY, USA) at a density of 2 × 104 per well. After incubation with LCPF for 16 h,
those that migrated to the lower chamber were fixed with 10% v/v formalin, washed with
PBS, and stained with Coomassie brilliant blue G-250. Migrated cells in five randomly
selected fields from each membrane were examined from six independent experiments.
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2.8. Tube Formation Assay

Matrigel (50 mL/well) was added to a prechilled 96-well plate and incubated for 1 h
at 37 ◦C. Then, HUVECs (1 × 104) were seeded into each well with either 30% MAPF (v/v)
or control medium. After 12 h of incubation, tube formation was imaged. Then, the cellular
networks of angiogenesis were quantified and analyzed with ImageJ including tube length,
branch point, and tube width.

2.9. Western Blotting

HUVECs were rinsed once with PBS and lysed with 60 mM PIPES (piperazine-N,N′-bis
(2-ethanesulfonic acid)), 25 mM HEPES N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonic
acid), 0.15% Triton X-100, 10 mM ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-
tetraacetic acid, 2 mM magnesium chloride, 1 mM sodium fluoride, 2.5 mM sodium
pyrophosphate, 1 mM phenylmethylsulfonyl fluoride, 1 mM sodium orthovanadate, 1 mM
β-glycerophosphate, 1 µg/mL leupeptin, 1 µg/mL pepstatin A, and 1 µg/mL aprotinin
(pH 6.9). Forty micrograms of each sample was separated by 10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE); then, the proteins were transferred to a
nitrocellulose membrane (Bio-Rad) according to the manufacturer’s instructions. The mem-
branes were incubated overnight at 4 ◦C with primary antibodies in Tris-buffered saline
with Tween (TBST) (50 mM Tris-HCl, 150 mM sodium chloride, and 0.1% v/v Tween-20,
pH 7.4). The primary antibodies were specific for glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH, Cell Signaling Technology, Danvers, MA, USA), Cyp7A1(Santa Cruz, Dallas,
TX, USA), FXR (Santa Cruz, USA), HMGCR (Santa Cruz, USA), PPARγ (Cell Signaling
Technology, USA), RXR (Cell Signaling Technology, USA), SHP (Santa Cruz, USA), SREBP1
(Santa Cruz, USA), SREBP2 (Santa Cruz, USA), and StAR (Santa Cruz, USA). After the
membranes were washed, the strips were incubated with a 1:5000 or 1:10,000 dilution of
horseradish peroxidase-conjugated anti-rabbit IgG from Cell Signaling Technology. Next,
the blots were treated with a chemiluminescent substrate developing solution (Bio-Rad).
Band densities were captured and quantified by densitometry using ImageJ. GAPDH
served as a loading control for immunoblotting analysis. The control sample was set as
100%, and LCPF-cultured samples were normalized to the control.

2.10. Immunofluorescence Staining

HUVECs were seeded on coverslips and incubated in the presence of LCPF for 8 h.
Cells were then rinsed with PBS and fixed with 10% v/v formalin in PBS (pH 7.4). A
blocking solution (5% milk in 0.1% v/v Triton X-100) was applied to prevent nonspecific
binding. Primary antibody against VE-cadherin (Cell Signaling Technology, USA) in
blocking buffer was incubated with the HUVECs at 4 ◦C overnight. After the antibody
was washed, the slides were incubated with fluorescein isothiocyanate-conjugated goat
anti-mouse and anti-rabbit IgG (Sigma-Aldrich) for 1 h. Finally, coverslips were mounted
with a mounting medium (Gel Mount Aqueous, Sigma) and photographed with a Nikon
D1X digital camera (Carl Zeiss, Oberkochen, Germany). For filipin cholesterol staining,
HUVECs were fixed with 4% (w/v) paraformaldehyde in PBS for 30 min and stained with
50 µg/mL filipin in PBS at room temperature for 2 h. Cells were then washed with PBS
three times and mounted.

2.11. Statistical Analysis

Data are expressed as the averages of at least six samples and are presented as the
mean ± standard error of the mean (SEM). Analysis was performed using a Student’s t-test,
with a p-value of <0.05 chosen to indicate statistical significance. In the databased section,
the chi-squared test and Student’s t-test were utilized to compare subject characteristics.
The Kaplan–Meier method was used to estimate the survival probability for the two groups,
which were compared with the log-rank test. The Cox proportional hazards regression
model was used to assess the impact of multiple risk factors on all-cause mortality and
lung cancer-related mortality of NSCLC patients. All analyses were performed using SAS
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9.3 software (SAS Institute Inc., Cary, NC, USA). All tests were two-tailed; the alpha level
of significance was set to p < 0.05.

3. Results
3.1. Bile Acid Abundance in LCPF and Upregulation of Bile Acid Nuclear Receptor FXR Signaling
in Endothelial Cells by LCPF

In pleural fluid analyses, LCPF had a 10-fold rise in bile acid levels compared to
heart failure samples (Figure 1A). FXR was identified as a bile acid nuclear receptor, and
LCPF-cultured HUVECs increased FXR expression (Figure 1B). LCPF caused positive
FXR staining in endothelial cells’ nuclei and cytoplasm (Figure 1C). The HUVEC results
revealed the ability of LCPF to upregulate endothelial FXR expression. Correspondingly,
immunohistochemistry sections of lung adenocarcinoma had positive FXR staining in both
tumor cells and endothelial cells (Figure 1D). The above results revealed the abundance of
bile acid in LCPF and endothelial FXR expression induced by LCPF.

The steroidogenic acute regulatory protein (StAR) and CYP7A1 enzymes were im-
portant in the synthesis of bile acids. RXR and SHP worked along with FXR to modulate
bile acid signaling. Following FXR activation, LCPF increased protein expression of StAR,
CYP7A1, RXR, and SHP in HUVECs, implying that FXR signaling was active (Figure 2A).
FXR signaling and cholesterol metabolism were linked in a complicated way. We also
looked at the protein levels of sterol regulatory element binding protein 1 (SREBP1),
SREBP2, peroxisome proliferator-activated receptor gamma (PPAR-γ), and HMG-CoA
reductase (HMGCR). The SREBP2, PPAR-γ, and HMGCR levels were found to be elevated
in HUVECs grown with LCPF (Figure 2B). Our findings not only identified substantial
bile acid in LCPF, but also demonstrated LCPF’s ability to stimulate FXR signaling and
cholesterol metabolism in HUVECs.
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Figure 2. Upregulation of bile acid synthesis and cholesterol metabolism protein by LCPF stimulation.
HUVECs were incubated with LCPF or control medium for 24 h. (A) Proteins regulating bile acid
synthesis, such as steroidogenic acute regulatory protein (StAR), RXR, SHP, and CYP7A1, were
examined by Western blotting. GAPDH was used as an internal control. (B) Proteins responsible
for cholesterol metabolism were analyzed including sterol regulatory element binding protein 1
(SREBP1), SREBP2, peroxisome proliferator-activated receptor gamma (PPAR-γ), and HMG-CoA
reductase (HMGCR). GAPDH was used as an internal control. * p < 0.05; ** p < 0.01; *** p < 0.001,
compared to the control group. Original blots are shown in Figure S3.



Cancers 2022, 14, 2765 8 of 16

3.2. Efficacy of FXR Antagonist and Cholesterol-Lowering Drugs in Attenuating LCPF-Induced
Endothelial Angiogenesis

We examined β-muricholic acid (MCA) as an FXR antagonist in LCPF-regulated an-
giogenesis because of LCPF-induced FXR overexpression in HUVECs. GW-4064 was used
as an FXR agonist. MCA treatment had little effect on the viability of LCPF-upregulated
HUVECs (Figure 3A). GW4064, on the other hand, boosted endothelial cell viability in the
LCPF-treated group (Figure 3B). Cotreatment with E- or Z-guggulsterone had a synergistic
effect on HUVEC viability when combined with LCPF (Figure S1). The findings above
demonstrate the importance of FXR activation in LCPF-regulated angiogenesis. The experi-
ments that followed looked at the efficacy of MCA as an FXR antagonist on endothelial
motility and angiogenesis. MCA treatment inhibited LCPF-induced HUVEC migration
and angiogenesis in Transwell and tube formation assays (Figure 3C,D). We established
the justification for FXR blockage to suppress LCPF-induced angiogenesis based on the
findings above.

The link between FXR signaling and cholesterol metabolism had previously been
proposed [8,27]. Following that, we looked at the effects of cholesterol-lowering drugs,
such cholestyramine, fenofibrate, and atorvastatin, on LCPF-regulated angiogenesis [28].
Only statin treatment significantly reduced LCPF-upregulated endothelial proliferation
in the MTT experiment (Figure 4A). Three cholesterol-lowering medications inhibited
LCPF-induced HUVEC angiogenesis in a tube formation assay (Figure 4B). Our findings
showed that FXR antagonists and statins inhibited LCPF-induced angiogenesis.
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Figure 3. β-Muricholic acid as an FXR antagonist alleviated LCPF-induced endothelial motility and
angiogenesis. β-Muricholic acid (MCA) and GW4064 were applied as the FXR antagonist and agonist,
respectively. HUVECs were treated with MCA (10 µM) or GW4064 (10 µM) in a LCPF-containing
medium for 24 h. (A,B) Cell viability was analyzed by MTT assay after treatment. (C) Representative
images and statistical analysis of a Transwell assay at 18 h after LCPF culture with or without 10 µM
MCA. (D) Micrographs and statistical analysis of tube width at 12 h after LCPF culture with or
without 10 µM MCA. Scale bar = 200 µm. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001, compared
to the control group. # p < 0.05; #### p < 0.0001, compared to the LCPF group.
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Figure 4. Effect of lipid-lowering medications on LCPF-induced endothelial viability and angio-
genesis. HUVECs were treated with cholestyramine (20 µM), fenofibrate (25 µM), or atorvastatin
(20 µM) in a LCPF-containing medium. (A) Cell viability was analyzed by MTT assay after 24 h
of treatment. (B) Representative images and analysis of tube formation after HUVECs cultured in
the above conditions for 12 h are shown. Scale bar = 200 µm. * p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001, compared to the control group. # p < 0.05; ## p <0.01; ### p < 0.001, compared to the
LCPF group.

3.3. Statin Effects to Compensate LCPF-Induced Endothelial Cholesterol Accumulation,
Cell Junction Disruption

The involvement of cholesterol metabolism and junction integrity in endothelial
angiogenesis manipulation seemed critical. According to immunofluorescence labeling,
LCPF enhanced the cholesterol content in HUVECs considerably (Figure 5A). Statins
alleviated the aforementioned phenomenon. The basic junctional protein VE-cadherin was
responsible for the maintenance of the endothelial cell–cell barrier. There was a loss of VE-
cadherin localization in the endothelium periphery after 24 h of LCPF therapy (Figure 5B).
Statin treatment shifted the distribution of VE-cadherin back to cell–cell interaction. The
retinoid X receptor (RXR) and its small heterodimer partner (SHP) worked in tandem
with the FXR to modulate bile acid signaling. In HUVECs, LCPF increased the protein
expression of FXR, RXR, and SHP, but statin cotreatment reduced the aforementioned
trends (Figure 5C). Furthermore, statin inhibited the expression of LCPF-induced integrins
β1 and β3 and VEGFR1 and -2 in endothelial cells (Figure S2). Our findings show that
statins control LCPF-induced angiogenesis and junction disruption via FXR inhibition.
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Figure 5. Effect of statin on cellular cholesterol, endothelium junction, and FXR signaling. HUVECs
were treated with or without 20 µM atorvastatin (statin) in the presence of LAPF for 24 h. (A,B)
HUVECs were processed for immunofluorescence staining of cholesterol (blue) and VE-cadherin
(red), respectively. Nuclei are visualized with DAPI. The arrowheads indicate the distribution of
VE-cadherin. The magnification is 400×. Scale bar = 100 µm. (C) Proteins in FXR signaling, including
FXR, RXR, and SHP, were examined by Western blotting. GAPDH was used as an internal control.
** p < 0.01; *** p < 0.001; **** p < 0.0001, compared to the control group. # p < 0.05 and ## p < 0.01,
compared to the LCPF group. Original blots are shown in Figure S3.

3.4. Clinical Effect of Statin Use on NSCLC Patients with Malignant Pleural Effusion

In addition to statin’s anti-angiogenesis effect in vitro, we investigated statin’s po-
tential benefit in NSCLC cancer patients. After excluding patients with other tumors,
those without cancer-related pleural effusion and those with incomplete demographic and
clinical data, 1137 NSCLC patients with LCPF were identified (Figure 6). The demographics
of those who enrolled are detailed in Table 1. A Kaplan–Meier plot of all-cause mortality
in LCPF patients exposed with and without stain over a 24 month period is shown in
Figure 7. Patients who received statins had a median overall survival (OS) of 14.7 months,
compared to 11.1 months for those who did not receive statins. We then used the Cox
proportional-hazards model to calculate all-cause and lung cancer-related mortality in
Table 2. The crude model had no adjustments, whereas the adjusted model was adjusted for
age, gender, BMI, CCI, TC, LDL-C, and EGFR to minimize confounder effects. The control
group consisted of NSCLC stage IV patients who had cancer-related pleural effusion but
did not take statins (risk of 1). The adjusted all-cause mortality hazard ratio for statin
users was 0.69 when compared to the control group (95% CI, 0.51–0.92). The adjusted
lung cancer mortality rate in patients taking statins was 0.63. (95% CI, 0.46–0.86). We also
provided statement checklist of STROBE (Table S1). Patients who did not take statins had a
higher risk of not only all-cause mortality but also lung cancer-related mortality than those
who did.
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Table 2. Cox proportional-hazards model of all-cause mortality and lung cancer-related mortality
among NSCLC stage IV patients with cancer-related pleural effusion with and without statin use.

No. Events (%) Crude HR (95% CI) p-Value Adjusted HR (95% CI) p-Value

All-cause mortality

Statin (−) 846 619 (73.2%) 1.0 (Ref.) 1.0 (Ref.)
Statin (+) 291 194 (66.7%) 0.84 (0.73–0.97) 0.0172 0.69 (0.51–0.92) 0.0131

Lung cancer-related mortality
Statin (−) 846 593 (70.1%) 1.0 (Ref.) 1.0 (Ref.)
Statin (+) 291 187 (64.3%) 0.86 (0.74–0.99) 0.0373 0.63 (0.46–0.86) 0.0038

Adjusted for age, gender, BMI, CCI, TC, LDL-C, and EGFR. BMI, body mass index; CCI, Charlson Comorbidity
Index; CI, confidence interval; EGFR, epidermal growth factor receptor; HR, hazard ratio; LDL-C, low-density
lipoprotein cholesterol; NSCLC, non-small cell lung cancer; TC, total cholesterol.

4. Discussion

Beyond its role as a digestive surfactant, bile acid has been implicated in cancer cell
proliferation, metastasis, and tumor angiogenesis [2]. Elevated serum bile acid levels have
been identified as a significant risk factor for gastrointestinal cancers [4,25]. However, the
role of circulating bile acid in NSCLC, particularly in pleural fluid, had not been reported.
Our findings established the presence of bile acid in LCPF, indicating that it may be a
druggable target in the pleural microenvironment. Compared with HFPF, the bile acid
level of LCPF was significantly higher. However, the composition between exudative
and transudative pleural fluid was different including the content of albumin, lactate
dehydrogenase (LDH), and cholesterol [29]. The above variables might contribute to the
difference in bile acid levels between HFPF and LCPF. Future study of bile acid should also
quantify other exudative pleural effusion such as inflammatory etiology. FXR expression
was significantly increased in NSCLC as a nuclear bile acid receptor, and FXR knockdown
inhibited lung cancer growth both in vitro and in vivo [30]. A previous study revealed
FXR as a functional protein in the vasculature of metastatic cancers [17]; moreover, FXR
modulated endothelial cell motility via FAK and MMP9 suppression [18]. In pancreatic
cancer, FXR downregulation resulted in decreased VEGFA mRNA transcription through
impaired DNA-binding activity of NF-κB [31]. Our results demonstrate that FXR may
play a role in pleural angiogenesis with the regulation of FAK and VEGFA. Additionally,
LCPF incubation was capable of inducing bile acid synthesis and cholesterol metabolism
protein expression in HUVEC. RXR, StAR, SREBP2, and HMGCR expression in endothe-
lial cells contributed to dysregulated lipid metabolism and exacerbated atherosclerosis
progression [32–34]. Our study demonstrated the emergence of bile acid and cholesterol
homeostasis during lung cancer pleural angiogenesis.

Numerous malignancies, including lung cancer, have been studied using FXR block-
ade [35]. In addition, MCA was identified as a naturally occurring FXR antagonist produced
by the gut microbiota [36]. The purpose of this study was to examine the efficacy of MCA
as an FXR antagonist in alleviating LCPF-regulated endothelial motility and angiogenesis.
These findings not only established the role of FXR in pleural angiogenesis but also sup-
ported the future use of FXR antagonists in the treatment of MPE. Moreover, cholesterol
metabolic reprogramming has been extensively studied in the context of cancer promo-
tion [37]. Lipid-lowering medications were therefore repurposed for cancer treatment [38].
Atorvastatin, fenofibrate, and cholestyramine all inhibited LCPF-induced angiogenesis in a
tube formation assay, implying the possibility of combining lipid-lowering drugs to treat
MPE. Additional clinical trials of antihyperlipidemic agents are required to determine the
outcome of NSCLC patients with MPE.

Endothelial cholesterol metabolism has previously been linked to aberrant angiogene-
sis [39]. In HUVECs, LCPF increased cholesterol loading, and statin treatment abolished
LCPF-induced angiogenesis. Previous research regarded the cholesterol loading in vascular
endothelium as part of the pathogenesis during atherosclerosis [40]. However, cholesterol
supplementation could promote VEGFR2-induced angiogenesis through regulating lipid
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rafts formation where VEGFR2 are anchored [41]. Serum samples of coronary artery dis-
ease patients showed decreased VEGF levels in an atorvastatin-treated group [42]. The
above results further provide a possible mechanism of LCPF-induced angiogenesis through
cholesterol and FXR signaling. Along with multiple growth factors, bile acid abundance
may contribute to LCPF-mediated angiogenesis and serve as a therapeutic target. In
colon carcinogenesis, cholesterol metabolism and bile acid signaling were closely coor-
dinated [43,44]. As an inhibitor of HMG-CoA reductase, statin also influenced the bile
acid pool via FXR modulation [23,45]. In the aspect of angiogenesis, statin was found to
induce endothelial apoptosis and angiostatic effect through geranylated proteins. These
observations could interpret the local effect of statin in pleural angiogenesis. Our findings
suggest that statin has the potential to inhibit LCPF-regulated angiogenesis by suppressing
FXR and downstream signaling. The role of statins in the prevention and treatment of
NSCLC has been extensively discussed but not in the survival of MPE patients [46]. From
observational studies of NSCLC, statin treatment was correlated with decreased risk of
mortality and the improvement of patient survival but not overall response rate [47]. More
specifically, a nationwide population-based study revealed statins had the potential to
amplify the treatment response of lung cancer patients receiving EGFR-TKI therapy [21].
For NSCL patients treated with nivolumab, statin use could increase the response rate
and prolong time-to-treatment failure [48]. In addition to the positive results of statin in
terms of suppressing LCPF, our analysis of MPE patients treated with and without stain
revealed a survival benefit. Along with the beneficial effects of statin on LCPF suppression,
our analysis of MPE patients exposed to stain treatment revealed a survival benefit. The
current study established the therapeutic use of statins in MPE patients through bench and
clinical data.

5. Conclusions

Our study is the first to establish the presence of bile acid in pleural fluid and the
upregulation of the bile acid receptor FXR in pleural microvessels. Furthermore, LCPF
treatment increased bile acid synthesis and cholesterol metabolism protein expression in
endothelial cells including CYP7A1, StAR, HMGCR, and SREBP2. FXR inhibition was
shown to be effective at suppressing LCPF-regulated endothelial angiogenesis. Along
with ameliorating the angiogenesis induced by LCPF, statin treatment reversed cholesterol
accumulation and the endothelial barrier disruption caused by LCPF. Additionally, the
analysis of NSCLC patients indicated that statin use was beneficial in the MPE subgroup.
However, the effects of statins on survival benefit have some limitations. The underlying
dyslipidemia is the primary cause for the patient’s statin exposure. Even after adjusting
the LDL level in the subsequent analysis, we still discovered a survival advantage in the
group that was exposed to stains. This was the result of a retrospective cohort observation.
To confirm the survival benefit of statins in advanced NSCLC with pleural effusion, more
clinical trials are required. The current study established the role of bile acid signaling in
pleural angiogenesis and demonstrated the usefulness of statin as an FXR antagonist in
suppressing LCPF in vitro and in vivo.
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guggulsterone (GS) on LCPF-regulated endothelial proliferation; Figure S2: Changes in integrin β1
and -3 and in VEGFR1 and -2 protein levels when HUVECs were cotreated with LCPF and statin.
Figure S3: Original bolts. Table S1: STROBE statement checklist.
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