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SCIENCE FORUM

Is preclinical research in cancer 
biology reproducible enough?
Abstract  The Reproducibility Project: Cancer Biology (RPCB) was established to provide evidence about repro-
ducibility in basic and preclinical cancer research, and to identify the factors that influence reproducibility more 
generally. In this commentary we address some of the scientific, ethical and policy implications of the project. We 
liken the basic and preclinical cancer research enterprise to a vast 'diagnostic machine' that is used to determine 
which clinical hypotheses should be advanced for further development, including clinical trials. The results of the 
RPCB suggest that this diagnostic machine currently recommends advancing many findings that are not reproduc-
ible. While concerning, we believe that more work needs to be done to evaluate the performance of the diagnostic 
machine. Specifically, we believe three questions remain unanswered: how often does the diagnostic machine 
correctly recommend against advancing real effects to clinical testing?; what are the relative costs to society of 
false positive and false negatives?; and how well do scientists and others interpret the outputs of the machine?

PATRICK BODILLY KANE AND JONATHAN KIMMELMAN*

In 2012, reports from two major drug companies 
– Bayer and Amgen – claimed that fewer than 
a quarter of animal experiments submitted in 

support of clinical development could be repro-
duced by in- house researchers at the companies 
(Prinz et  al., 2011; Begley and Ellis, 2012). 
These reports seemed to corroborate concerns 
raised by others around the same time: anti- 
cancer agents showing promise in animal models 
had often failed to deliver in clinical trials (Hay 
et al., 2014; Kola and Landis, 2004); preclinical 
cancer studies used methods that did not protect 
against bias and random variation (Hirst et  al., 
2013; Henderson et  al., 2015); researchers 
reported difficulty replicating experiments 
(Mobley et al., 2013); negative preclinical find-
ings often went unpublished (Henderson et al., 
2015; Sena et al., 2010); and studies used too 
few animals to protect against false positive 
results (Button et  al., 2013). Preclinical cancer 
research seemed to be in the throes of a 'repro-
ducibility crisis'.

Although the Bayer and Amgen articles have 
garnered over 4,000 citations between them, they 
did not formalize a definition of reproducibility, 
or reveal the experiments they tried to repeat, 
or explain how they tried to repeat them. This 
raised the question of whether the two studies 

that questioned the reproducibility of research in 
cancer were themselves reproducible.

The Reproducibility Project: Cancer Biology 
(RPCB) set out to address some of the gaps 
in what we knew about the reproducibility of 
research in cancer biology. Building on a previous 
effort that attempted to replicate 100 studies 
in experimental psychology (Open Science 
Collaboration, 2015), a team of researchers at 
the Center for Open Science used an explicit 
method to sample 50 impactful publications in 
cancer biology (Errington et  al., 2014). Then, 
working with Science Exchange (an organization 
that helps organizations to outsource R&D), they 
formalized their definitions of reproducibility, 
selected individual experiments within each of 
the 50 publications, and pre- specified protocols 
for repeating these experiments. These protocols 
were then peer reviewed by eLife and published 
as Registered Reports (https://www. cos. io/ initia-
tives/ registered- reports). An important part of 
the project was that data collection could not 
start before the Registered Report was accepted 
for publication. In the end, due to a combination 
of technical and budgetary problems, Regis-
tered Reports were published for 29 of the 50 
publications.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/
https://doi.org/10.7554/eLife.67527
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http://creativecommons.org/licenses/by/4.0/
https://elifesciences.org/collections/9b1e83d1/reproducibility-project-cancer-biology
https://www.cos.io/initiatives/registered-reports
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The experiments were then performed, usually 
by contract research laboratories or core facilities 
at universities, as specified by the protocols in 
the relevant Registered Report. The RPCB team 
then wrote a Replication Study that contained: 
(a) the results of these experiments; (b) a discus-
sion of how the results/effects compared with the 
results/effects reported in the original research 
article; and (c) a meta- analysis that combined the 
data from the original experiment and the repli-
cation. This Replication Study was peer- reviewed 
(usually undergoing revision) and then published. 
By the end of the project 17 Replication Studies 
had been published; Replication Studies were 
not published for 12 of Registered Reports due 
to technical and/or budgetary problems, but 
the results from eight partially completed repli-
cations have been published (Errington et  al., 
2021a; Pelech et  al., 2021). The RPCB project 
has also published a paper containing a meta- 
analysis of all the replications (Errington et al., 
2021b) and, separately, a paper that describes 
how the project was carried out and some of 
the challenges encountered during it (Errington 
et  al., 2021c). The meta- analysis covers a total 
of 158 different effects from 50 experiments in 
23 papers.

For each Replication Study the eLife editors 
handling the study added an assessment of the 
success or otherwise of the replication in the 
form of an Editors' Summary. According to these 
summaries: five of the replications reproduced 
important parts of the original research articles; 
six reproduced parts of the original research arti-
cles but also contained results that could not be 
interpreted or were not consistent with some 
parts of the original research article; two could 
not be interpreted; and four did not reproduce 
the parts of the original research articles that they 
attempted to reproduce.

In what follows, we consider some of the 
scientific, ethical and policy implications of the 
project, and discuss three key questions about 
reproducibility that are left unresolved.

Preclinical studies as diagnostic 
machines
To understand the implications of the RPCB 
it is important to appreciate two ways that the 
meaning of reproducibility in cancer biology 
differs from that in other areas in which large- 
scale reproducibility projects have been carried 
out (that is, psychology [Open Science Collabo-
ration, 2015], experimental economics [Camerer 
et  al., 2016], and the social sciences [Camerer 

et  al., 2018]). First, research in psychology, 
economics and the social sciences is usually 
conducted on humans and the goal is to iden-
tify causal relationships that generalize to other 
humans. In contrast, research in cancer biology 
is conducted in tissue cultures and non- human 
animals, and the goal is to identify causal rela-
tionships that generalize to living humans. This 
means that the claims about causal relationships 
made by cancer biologists are always dependent 
on a more extensive set of assumptions – which 
are fallible – about the relationship between 
experimental systems and real- world settings.

Second, research in psychology and economics 
is generally geared toward generating, validating 
and comparing theories about causal relation-
ships (for example, testing whether the violation 
of social norms leads to more norm violation). 
The purpose of replication in these fields, there-
fore, is to determine how much of what we think 
we know about these causal relationships is true. 
Pre- clinical cancer research, by contrast, is part 
of a broader enterprise tasked with finding treat-
ments for diseases. The primary point of this 
research is to help decide which claims should 
be advanced into treatments, and which novel 
treatments should be advanced to further eval-
uation and rigorous testing in clinical trials. Thus, 
the replication question is a practical one: do 
contemporary research practices efficiently prior-
itize potential strategies for development and 
clinical testing, given the limits of existing model 
systems? (We appreciate that some biomedical 
research is pursued more in the spirit of funda-
mental inquiry rather than application but, never-
theless, we maintain that medical objectives 
dominate the motivations of private and public 
research sponsors).

In clinical testing, as many as 19 of 20 cancer 
drugs put into clinical development never 
demonstrate enough safety, efficacy or commer-
cial promise to achieve licensure (Hay et  al., 
2014). Even those few that run the gauntlet from 
trialing to license often show underwhelming effi-
cacy in trials (Davis et al., 2017). These failures 
exact enormous burdens on both the non- human 
animals that are sacrificed for this effort and the 
many patients who volunteer time, welfare and 
good will in offering their bodies and tissue 
samples for clinical trials. Futile research efforts 
also divert talent, patients and funding from 
more promising ones, often at the expense of 
the taxpayer in the form of drug reimbursement. 
The initial response of many researchers to the 
COVID- 19 pandemic clearly showed how poorly 
planned, executed and reported research efforts 

https://doi.org/10.7554/eLife.67527
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can divert attention and resources from more 
productive endeavors (London and Kimmelman, 
2020).

As one of us (JK) and Alex London have 
argued, many of these failures reflect the intrinsic 
challenges of conducting research at the cutting 
edge of what we understand about disease 
(London and Kimmelman, 2015). The failure of 
numerous drugs inspired by the amyloid cascade 
hypothesis, for example, in part reflects uncer-
tainties about the pathogenesis of Alzheimer’s 
disease. When translation failures are due to theo-
retical uncertainties like this, properly designed 
and analyzed trials provide important feedback 
on experimental models and pathophysiolog-
ical theories (Kimmelman, 2010). These types 
of 'failures' – which are natural and informative 
– are not the type of errors that the RPCB has (or 
should) set out to address.

The RPCB is instead concerned with the extent 
to which clinically interesting causal relationships 
discovered in laboratories are reproducible using 
the same experimental systems. Concluding that 
causal relationships are real when they are not 
represents a potentially 'unforced error' in drug 
development. If a treatment is advanced to clin-
ical research based on such an error, medicine is 
deprived of an opportunity to develop an effec-
tive treatment and, furthermore, the research 
enterprise is deprived of the opportunity to 
learn something about the generalizability of our 
models and theories. These unforced errors are 
a sort of tax or friction that makes the research 
process significantly less efficient than it could 
be. Many of the issues that lead to such errors 
– haste, poor study design, biased reporting – 
are relatively easy and cheap to fix. And given 
the prevalence of preclinical studies that do not 
reproduce according to Amgen and Bayer, the 
gains of reducing such unforced errors could be 
substantial.

These unforced errors can come in two 
varieties. False positives occur when research 
communities mistakenly conclude that a clini-
cally promising causal relationship exists when 
it does not. Projects looking into the reproduc-
ibility of research tend to focus on false positives 
because they are mostly interested in how valid 
our knowledge in a given field is. False nega-
tives occur when a real and potentially impactful 
causal relationship is assumed to be too weak 
to be clinically promising, or the relationship is 
not observed in the first place. These tend to be 
ignored in reproducibility projects. However, in 
the context of preclinical cancer research, false 
negatives require serious consideration because 

the cost to society of missing out on impactful 
cancer treatments can be considerable, espe-
cially given that clinical development exists to 
cull false positives but can do little about false 
negatives.

One can think of the basic and preclinical 
research enterprise as a sprawling, multiplex 
diagnostic machine that helps researchers to 
decide if a clinical hypothesis should proceed 
to more rigorous development, such as a clin-
ical trial. Clinical hypotheses are fed into the 
machine, which runs a series of experiments, and 
the results of these experiments are assembled 
into research articles, which are then submitted 
to journals. If the individual experiments within 
a research article converge on the same transla-
tional claim (which may be a claim about a partic-
ular molecule, or a claim about strategy), and if 
the article reports a large effect for a phenom-
enon judged by experts to be relevant to trans-
lation, the article is accepted for publication in 
a high- impact journal. However, if the individual 
experiments point in inconsistent directions, or if 
the effects are small, or if quality control flags a 
study, the article will not be published in a high- 
impact journal. The decision to proceed to a clin-
ical trial (or to intensify research) will typically be 
made based on a small number of research arti-
cles (that is, on a few outputs of the diagnostic 
machine), other forms of evidence (such as safety 
information and trials involving related treatment 
strategies), and other extra- scientific consider-
ations (such as commercial potential).

Some clarifications and provisos are needed 
before we proceed with our analysis. First, we 
acknowledge that analogizing cancer biology 
research as a diagnostic machine does not accom-
modate the spirit and goals of all the publications 
included in the RPCB. Like all models, ours strips 
away complexity to bring essential elements of a 
system to the fore (Borges, 1946). Nevertheless, 
as noted previously, every sponsor funding these 
efforts was probably motivated by the prospects 
of treating or preventing cancer. Even the most 
basic findings of studies in the RPCB have some 
prospect of being advanced in some fashion to 
clinical applications. Second, we recognize that 
positive outputs of the diagnostic machine will 
be used differently. In some cases they might 
be grounds to launch a clinical trial. In other 
cases, they will promote a clinical hypothesis to 
further work on a critical path towards translation 
(Emmerich et al., 2021) – perhaps by supporting 
the development of more pharmacologically 
attractive compounds that target the causal 
process described in a research article.

https://doi.org/10.7554/eLife.67527
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Furthermore, in our analogy, the outputs of 
the diagnostic machine are to be understood not 
as epistemic outputs (that is, positive outputs 
truly signal a hypothesis is promising; negative 
outputs signal the reverse). Instead, they are 
to be understood as sociological outputs, with 
a positive output signaling that various expert 
communities regard a hypothesis as worthy of 
further development. In this way, our analogy 
regards the RPCB as determining whether repe-
tition of key experiments in original research 
articles would have produced results consistent 

with previous ones that generated a 'buzz' in the 
cancer biology community. In a well- functioning 
research system, sociological truths will track 
epistemic truths. However, the former will 
also be informed by non- epistemic variables, 
including views about clinical need. In the next 
sections, we consider what the RPCB results 
tell us about the performance of this diagnostic 
machine; Box 1 provides a primer on the termi-
nology that will be used in our analysis (such as 
Positive Predictive Value and Negative Predic-
tive Value).

Box 1. A primer for assessing the performance of the 
diagnostic machine

At a high level we can think of diagnostic testing in terms of six factors.

1. Base rate: this is the prevalence or 'prior' of true clinical hypotheses among those fed 
into the diagnostic machine. This will vary by field: the base rate is very low in areas like 
Alzheimer’s disease, where we have few well- developed clinical hypotheses. However, the 
base rate is likely higher in, for example, hemophilia, where causal processes of disease 
are well understood.

2. Sensitivity: how frequently the diagnostic machine produces a positive output when it is 
testing a real causal relationship.

3. Specificity: how frequently the diagnostic machine produces a negative output when it 
is testing a null effect.

4. Positive Predictive Value (PPV): the frequency of real causal effects amongst positive 
outputs of the diagnostic machine.

5. Negative Predictive Value (NPV): the frequency of null effects amongst negative outputs 
of the diagnostic machine.

6. Likelihood ratio: this is the ratio of the probability the diagnostic machine produces a 
particular result when a real causal effect is being tested to the probability the diag-
nostic machine produces that same result when a null effect is being tested (Goodman, 
1999). When we restrict the diagnostic machine to producing either a 'positive' or 
'negative' result, there is a likelihood ratio corresponding to each. The positive like-
lihood ratio corresponds to the sensitivity divided by one minus the specificity, while 
the negative likelihood ratio is one minus the sensitivity divided by the specificity. A 
positive likelihood ratio of 1.0 indicates that a positive result is just as likely to occur 
when testing a null effect as a real causal effect. The higher the positive likelihood ratio, 
the more likely a positive output from the diagnostic machine indicates a true clinical 
hypothesis.

There are two points worth making about these numbers. First, the base rate, sensitivity 
and specificity determine the PPV and NPV (see Box 2): one can think of the PPV and NPV 
as properties that emerge when a test with a given sensitivity and specificity is applied to a 
population of hypotheses with a particular base rate of real causal effects. Second, although 
there is no mathematical requirement that sensitivity and specificity be linked, in practice 
there is often an inverse relationship between the two. For example, most scientists require 
a p value of less than 0.05 in order to reject a null hypothesis. Using a p value of 0.10 instead 
would make it easier to get a significant finding, thus raising the sensitivity. However, using a p 
value of 0.10 would also increase the number of false positives and lower the specificity.

https://doi.org/10.7554/eLife.67527
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The Positive Predictive Value is low for 
preclinical cancer studies
As specified by their sampling approach (and like 
other large- scale replication studies), the RPCB 
only selected research articles that the diag-
nostic machine had labeled as 'very positive'. All 
the papers selected for the project had received 
high numbers of citations, meaning that they 
had made an impact among cancer researchers: 
moreover, many of them had been published 
in high- profile journals such as Cell, Nature and 
Science, although this was not one of the selec-
tion criteria. Therefore, the principal diagnostic 
property directly assessed by the project was the 
Positive Predictive Value, which is defined as the 
number of outputs that replicated (true positives) 
divided by the total number of outputs tested.

As mentioned previously, only 17 out of the 
50 originally planned Replication Studies were 
completed, with varying degrees of success: 
five reproduced important parts of the original 
research articles; six produced equivocal results; 
two could not be interpreted; and four did not 
reproduce the experiments they attempted to 
reproduce (an additional six replication reports 
were only partially completed). For simplicity we 
assume that 50% of the equivocal results would 
regress on repetition, leading the diagnostic 
machine to recommend advancing with three 
of these studies. Adding these three studies to 
the five studies that reproduced important parts 
of the original research articles, and dividing by 
17 replication attempts, gives us an initial esti-
mate of 47% for the Positive Predictive Value 
of the diagnostic machine. To put this number 
in context, replication rates for articles in three 
leading journals in psychology were (depending 
on how you count) 40% (Open Science Collab-
oration, 2015); the figure for articles in two 
leading journals in economics was 66% (Camerer 
et al., 2016); and for articles in the social sciences 
published in Nature and Science the figure was 
67% (Camerer et al., 2018).

It is more likely than not, however, that an esti-
mate of 47% for the Positive Predictive Value is 
charitable. As mentioned previously, according 
to the Editors' summaries, 2 of the 17 published 
Replication Studies reported findings that could 
not be interpreted (due to unexpected chal-
lenges in repeating the original experiments), 
and 33 studies were abandoned due to cost over-
runs, difficulties in securing research materials, or 
a lack of cooperation from the original authors. 
The RPCB team found that the original authors 
were bimodal in their helpfulness when it came to 

providing feedback and sharing data and mate-
rials: 26% were extremely helpful, but 32% were 
not at all helpful or did not respond (Errington 
et al., 2021c).

It might be tempting to view the 33 aban-
doned efforts as uninformative, but we may be 
able to actually learn from them because it is likely 
that the 17 published studies are biased in favor 
of work that is reproducible. Laboratories that 
were more confident about the reproducibility 
of their original publications, or more fastidious 
with their record keeping, might be more likely to 
cooperate with the RPCB than laboratories that 
were more doubtful or less fastidious (although 
the RPCB team did not observe a relationship 
between material sharing and replication rates; 
Errington et al., 2021b).

The RPCB also selected experiments that did 
not rely on unusual samples or techniques, which 
probably increased the chances of successful 
replication: experiments that require unusual 
samples or techniques are, it seems to us, more 
likely to require more attempts to get them 'to 
work', and therefore more likely to be prone to 
the problem of 'researcher degrees of freedom' 
(Simmons et al., 2011).

The problems the RPCB team experienced 
in terms of important information not being 
included in the original research articles, or the 
original authors not sharing data and/or reagents 
(Errington et al., 2021c), also points to a diag-
nostic machine whose workings are often opaque 
and that leaves a very patchy audit trail for its 
outputs.

In medicine, the number of people dropping 
out of a clinical trial (a process called attrition) is 
often regarded as a useful piece of information 
and is used when evaluating the results of the 
trial in 'intention to treat' analyses. Based on what 
has been reported thus far by the RPCB, eight 
replication studies produced results consistent 
with original research articles. The remaining 42 
replication studies did not, thus providing a lower 
bound on the Positive Predictive Value of 16% – 
an estimate that is not far off from the proportion 
of studies Amgen reported reproducing years 
ago (Begley and Ellis, 2012).

As mentioned previously, the meta- analysis 
covered a total of 158 different effects. Most of 
the original effects were positive effects (136), and 
for these the RPCB team found that the median 
effect size in the replications was 85% smaller 
than the median effect size in the original exper-
iments; moreover, in 92% of cases the effect size 
in the replication was smaller than in the original. 
If the original publications represented unbiased 

https://doi.org/10.7554/eLife.67527
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estimates of real effects, one would expect the 
replications to regress towards smaller effect 
sizes as often as they drifted towards larger effect 
sizes. Similar regression has been seen in other 
large- scale replication projects and noted by 
other commentators (Colquhoun, 2014).

The poor reproducibility of the individual 
experiments should influence our interpretation 
of the overall study results. According to our esti-
mates, the abstracts of 13 of the 17 Replication 
Studies (that is, 76% of the studies) noted at least 
one experimental claim that did not reproduce 
the original effect (meaning that, had replication 
studies been submitted as original publications, 
their ’stories' would have been less coherent, 
putting them at higher risk of rejection by a 
journal).

Against despair, part I: Negative 
Predictive Value
So far, things are not looking good for our cancer 
biology diagnostic machine, but there is more to 
diagnosis than the Positive Predictive Value. The 
Negative Predictive Value is also important, given 
that any positive output will be further tested in 
clinical trials, but negative outputs will be turfed. 
Unfortunately the RPCB (and similar projects) 
only tried to reproduce papers asserting positive 
causal relationships, thus providing no informa-
tion about how often the diagnostic machine 
falsely labels submissions as ‘negative’. (Although 
the 158 effects analyzed included 22 null effects, 
these were embedded in papers that contained 
mostly positive results, so they are unlikely to 
be representative of the broader population of 
negative results.) Given this limited information, 
it may be that the low PPV is balanced out by a 
high NPV, suggesting that at the very least we are 
not missing out on many potential valuable clin-
ical hypotheses. On the other hand, the NPV may 
be as bad or worse than the PPV. Without further 
study of negative outputs from the diagnostic 
machine, we simply cannot know how reproduc-
ible they are.

Our diagnostic machine might return a falsely 
negative output for a number of reasons: an indi-
vidual experiment might not be implemented 
using proper technique; a key individual experi-
ment might be underpowered; a closely related 
rival clinical hypothesis might be accepted instead 
because of a biased individual experiment; or a 
journal might reject an article reporting a valid 
clinical hypothesis. To our knowledge there have 
been no attempts to assess the NPV of a field of 
research, possibly because many negative outputs 

are never written up, never mind submitted to a 
journal; indeed, according to one estimate, only 
58% of animal studies are eventually published 
(Wieschowski et al., 2019). It might be possible 
to avoid this problem by asking a number of 
laboratories to blindly repeat a series of original 
research articles that support clinical hypotheses 
that have since been confirmed: the propor-
tion of replication attempts that 'fail' would 
provide some insight into the NPV. However, this 
approach would require significant resources, 
and perhaps there are better ways to probe the 
NPV of preclinical research in cancer biology and 
give us a more complete understanding of the 
systems we currently rely on to prioritize clinical 
hypotheses for further development.

Against despair, part II: Decision 
rules
A second argument against despair concerns 
what are sometimes called 'decision rules'. In 
diagnosis, not all errors have the same practical or 
moral significance. The statistician Jerzy Neyman, 
writing in the 1950 s, offers the example of X- ray 
screening of healthy persons for tuberculosis. 
A false positive might cause anxiety while that 
individual waits for the results of further tests. 
However, a false negative means the person is 
denied an opportunity to undergo treatment early 
in a disease course (where management is more 
effective) and is likely to unwittingly spread the 
disease (Neyman, 1950). Decision rules illustrate 
one of the important ways that moral and social 
propositions are embedded within concepts and 
interpretations of reproducibility. Indeed, a richer 
criterion for 'reproducibility' would be whether a 
given experiment (or set of experiments), when 
repeated, provides similar levels of support for 
decisions that an original experiment (or set of 
experiments) aimed at informing.

What sort of decision rule is appropriate for 
weighting up false positives and false negatives 
from the diagnostic machine? As discussed 
above, preclinical research forms an intermediate 
step between theory and clinical trials. So long as 
we have mechanisms for intercepting false posi-
tives elsewhere in the research enterprise (ideally, 
before clinical trials begin), damage will be 
limited. Moreover, some of the costs associated 
with redesigning the diagnostic machine so that 
it produces fewer false positives are likely to be 
significant: for example, replacing our religious 
devotion to a p- value of 0.05 with an even more 
demanding value, such as 0.005 (Benjamin et al., 
2018), would require researchers to use much 

https://doi.org/10.7554/eLife.67527
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larger sample sizes in their experiments. This 
might be fine for experiments in psychology and 
other areas that can use something like Amazon’s 
Mechanical Turk to recruit participants. In medi-
cine, however, the total volume of human talent, 
tissue samples and non- human animals available 
to researchers is limited, so larger sample sizes 
would mean testing fewer clinical hypotheses, 
thus limiting our ability to scan the vast landscape 
of plausible hypotheses.

On the other hand, false negatives mean that 
populations are deprived of access to a poten-
tially curative therapy, at least until errors are 
corrected. False negatives might take longer to 
correct because scientists have less motivation 
to repeat negative experiments. False negatives 
will be especially costly in underfunded research 
areas like neglected diseases and pediatric 
cancers, since errors will not be quickly corrected 
by competing labs conducting research in 
parallel. In well- funded areas where there are 
many research teams (such as, say, lung cancer), 
these costs may be small, as competing labora-
tories pick up on hypotheses rejected by other 
laboratories. So our decision rule – and the level 
of reproducibility we should demand for cancer 
preclinical research – depends on a set of moral 
and sociological conditions that are outside the 
scope of the RPCB.

Against despair, part III: Beliefs
Finally, diagnostic machines are simply tools to 
inform expert beliefs. Ultimately their utility can 
only be judged on how experts use them. For all 
50 research articles identified by the RPCB, the 
diagnostic machine had originally recommended 
further development. Many outputs from the 
diagnostic machine appear, in retrospect, to have 
been biased in favor of accepting novel clinical 
hypotheses. This bias is undesirable from an 
ethical standpoint because non- human animals 
and scientific effort have been wasted on spurious 
hypotheses, but what matters most from the 
standpoint of science is that experts interpreted 
positive outputs from the diagnostic machine – 
that is, articles in high- impact journals – correctly 
and applied these outputs appropriately.

There are many reasons why experts contem-
plating studies like those in the RPCB might have 
interpreted and acted on the original research 
articles differently. The prior probability of a clin-
ical hypothesis in one of the original research 
articles being true is likely to have depended 
on previous knowledge in that area of cancer 
biology. In cases where prior probabilities were 

higher (in diagnostics, the equivalent of having 
characteristic symptoms or a higher disease 
prevalence), a positive output may be sufficient 
to launch a clinical trial, whereas in cases where 
prior probabilities were lower, further evidence 
would be required. Experts might also interpret 
and act on positive outputs differently because 
of the methods used. Just as a positive PCR test 
on a patient might be viewed more skeptically 
if samples have not been fastidiously protected 
from contamination, an expert might ask for 
more evidence if the positive results in a research 
article were obtained with a method that is known 
to be temperamental or fallible. On this view, the 
decision of Amgen and Bayer to replicate preclin-
ical work in house suggests that companies are 
well aware of the unreliability of many preclinical 
reports in the published literature.

The RPCB, like most other empirical studies of 
reproducibility, focused on the 'material' dimen-
sions of reproducibility: the adequacy of the 
reagents and methods used and the complete-
ness of the reporting in the original research 
articles, and the ability of independent scientists 
to implement the protocols described in these 
articles and obtain statistically similar results. Yet 
reproducibility has a cognitive dimension as well, 
namely the ability of experts to use evidence 
from various sources to predict if, how and to 
what extent experimental results will generalize. 
Little is understood about this aspect of repro-
ducibility – and it may matter as much or more 
than the material dimensions. How well are 
competent experts able to read the methodology 
section of an article, and correctly infer that they 
can implement the exact same protocol in their 
own lab? How well can experts assess whether, 
if they implement the exact same protocol, they 
can obtain results that are statistically consistent 
with the original research article? How well can 
experts anticipate the extent to which variations 
in experimental conditions will extinguish previ-
ously detected cause and effect relationships? 
And how well can experts judge the extent 
to which phenomena detected under closely- 
controlled laboratory conditions will be recapit-
ulated in the wilds of a clinical trial?

The little we know about this aspect of repro-
ducibility provides mixed signals. On the one 
hand, forecast studies carried out by one of us 
(JK) and colleagues have found that: (i) preclin-
ical researchers are unable to predict whether 
replication studies will reproduce experiments 
(Benjamin et  al., 2017); (ii) cancer experts 
perform worse than chance in predicting which 
treatments tested in randomized trials will show 

https://doi.org/10.7554/eLife.67527
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efficacy (Benjamin et al., 2021); (iii) the predic-
tions of cancer experts about trial outcomes are 
also heavily influenced by the format in which 
evidence is presented to them (Yu et al., 2021). 
However, these studies all have limitations and 
findings from other teams are more sanguine. 
For example, some studies suggest that expert 
communities are – in the aggregate – able to 
pick out which studies replicate in psychology 
(Dreber et  al., 2015) and the social sciences 
(Camerer et  al., 2018), and experts appropri-
ately update their beliefs about an experimental 
phenomenon on seeing new and more powerful 
evidence (Ernst et al., 2018).

Future studies of reproducibility in the clin-
ical translation process will need to use qualita-
tive research and methods from decision science 
to characterize how decisions are made about 
starting clinical development, what experts 
believe about the prospects of successful transla-
tion, what sorts of evidence they rely on to form 
these beliefs, and how these beliefs are aggre-
gated to arrive at the institutional decision of the 
sponsor.

Conclusions and next steps
For the sake of simplicity, let us assume that, 
across the field of cancer research, the base 
rate is 10%: that is, the prior for credible cancer 
research hypotheses being sufficiently true is 
10%. Here the phrase ’sufficiently true' means 
that a hypothesis is close enough to being true 
that any adjustments that need to be made to the 
hypothesis can be made during clinical develop-
ment. Let us also assume that 99% of negatives 
are true negatives, so the NPV is 99%. What then 
are the sensitivity and specificity of the diagnostic 
machine?

If we assume that the PPV is the higher of the 
two estimates we derived earlier, 47%, then the 
sensitivity of the diagnostic machine is 92% and 
the specificity is 88% (see Box 2 for the relevant 
formulae). This translates to a likelihood ratio for 
all positive preclinical studies of 8: that is, the 
diagnostic machine is eight times more likely to 
recommend clinical testing for real causal effects 
than for null effects. However, if we use the 
'intention to treat' principle and adopt the lower 

Box 2. Calculating sensitivity and specificity

We can write the Positive Predictive Value (PPV) and the Negative Predictive Value (NPV) in 
terms of the sensitivity, specificity and base rate (BR) as follows:

 
PPV = BRxSensitivity

BRxSensitivity+
(

1−BR
)

x
(

1−Specificity
)
  

and

 
NPV =

(
1−BR

)
xSpecificity(

1−BR
)

xSpecificity+BRx
(

1−Sensitivity
) .

  

We can re- arrange these two equations to obtain the following expressions for the sensitivity 
and specificity:

 
Sensitivity = PPVx

(
1−BR

)
x
(

1−Specificity
)

(
1−PPV

)
xBR .

  

and

 
Specificity = NPVxBRx

(
1−Sensitivity

)
(

1−NPV
)

x
(

1−BR
) .

  

We can then plug the expression for the specificity into the expression for sensitivity to obtain 
the following expression:

 
Sensitivity = PPVx

(
1−NPV

)
x
(

1−BR
)
−PPVxNPVxBR

BRx
(

1−PPV
)

x
(

1−NPV
)
−PPVxNPVxBR .

  

It is also possible obtain a similar expression for the specificity. The sensitivity and specificity 
can then be converted to likelihood ratios using the definition in Box 1.

https://doi.org/10.7554/eLife.67527


     Feature article  

Kane and Kimmelman. eLife 2021;10:e67527. DOI: https:// doi. org/ 10. 7554/ eLife. 67527  9 of 12

Science Forum | Is preclinical research in cancer biology reproducible enough?

estimate of the two estimates for PPV, 16%, the 
positive likelihood ratio drops to 1.7, driven by a 
sharp fall in the specificity.

Likewise, the likelihood ratios would be very 
different if we were to make different assump-
tions about the base rate and the NPV (see 
Figure 1). For example, if we were to assume the 
base rate of true hypotheses is 30% and the PPV 
is 47%, then the positive likelihood ratio drops 
to 2, which constitutes extremely weak evidence. 
Even with the most generous set of numbers, 
preclinical studies of the type sampled in the 
RPCB (that is, studies that receive high numbers 
of citations) provide only moderate evidence that 
a clinical hypothesis is true.

Several practical points about clinical trans-
lation follow from this analysis. First and most 
obviously, preclinical studies should never be 
interpreted in isolation from other theory and 
evidence. Instead, decision- makers should 
actively seek corroboratory and disconfirmatory 
evidence and interpret any claim in a preclinical 
study against what was known previously.

Second, as a general rule, positive preclin-
ical publications should be understood in light 
of their role as providing exploratory evidence 

for future clinical work. This means we should 
understand the importance of both winnowing 
the field of potential hypotheses while also not 
removing any plausible hypotheses from consid-
eration. Societies committed to improving 
patient outcomes and using healthcare resources 
wisely need to maintain strong mechanisms 
for subjecting clinical hypotheses to a re- test 
before they are advanced into clinical practice. 
Emmerich and co- authors offer a pathway for 
assessing new strategies for clinical development 
that is informed by 'validity threats' in preclinical 
research (Emmerich et  al., 2021). There have 
also been call for researchers to label preclin-
ical studies as exploratory, and for findings and 
hypotheses to be subject to confirmatory testing 
using principles of pre- specification (along the 
lines of registered reports) before they are 
advanced into clinical development (particularly 
if a hypothesis is likely to entail risk and burden 
[Mogil and Macleod, 2017; Dirnagl, 2019; 
Drude et al., 2021]).

Regulators, sponsors and ethics commit-
tees should expect that key preclinical studies 
be replicated in confirmatory studies where 
hypotheses and protocols are pre- specified and 

Figure 1. The positive likelihood ratio as a function of the Positive Predictive Value (PPV) and the base rate. The 
positive likelihood ratio (y- axis) increases with the PPV (x- axis) for a given value of the base rate (see color code). 
However, for a given value of the PPV, the positive likelihood ratio decreases as the base rate increases. The 
vertical dashed lines represent the two estimates of the PPV (16% and 47%) we derived for the RPCB. Typically, a 
positive likelihood ratio between 1 and 2 is considered weak evidence, while ratios between 2 and 10 constitute 
moderate evidence, and ratios higher than 10 constitute strong evidence. A ratio of less than one indicates that a 
test is actively uninformative.

https://doi.org/10.7554/eLife.67527
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pre- registered (Kimmelman and Anderson, 
2012) and proper statistical and experimental 
methods (such as randomization) are used. 
Governments should maintain strong pre- 
license drug regulatory standards, which provide 
powerful incentives for companies to confirm 
clinical hypotheses. Many recommendations in 
clinical practice guidelines are based on mecha-
nistic evidence and expert judgment. Moreover, 
the journey from bench to bedside is becoming 
shorter with the emergence of precision medi-
cine, techniques such as patient- derived xeno-
grafting (Kimmelman and Tannock, 2018; Yu 
et  al., 2021; Byrne et  al., 2017), and a weak-
ening of drug regulation. RPCB findings, and our 
own studies of medical scientist expert predic-
tion (Benjamin et  al., 2017), provide grounds 
for believing that many such medical practices 
may sometimes result in costly and needlessly 
burdensome clinical practices.

Third, a complete understanding of the 
previous point requires accessing more informa-
tion on the NPV and base rate of true hypotheses 
under consideration. Without this information 
we can only guess at whether the diagnostic 
machine is optimally tuned to maximize societal 
gains against the non- human animals, patients, 
and human capital we invest in operating it. 
Creativity and a great deal of cooperation from 
labs will likely be necessary for estimating these 
numbers.

Finally, we need to expand our inquiry into 
reproducibility by studying its non- material 
dimensions in greater detail. As we have tried to 
emphasize, defining and understanding repro-
ducibility requires grappling not merely with 
what is done with pipettes and Eppendorf tubes, 
but also with the psychology of expert inference 
and decision- making, and how these judgments 
coalesce within research communities. It will 
require more thinking about ethical and pragmatic 
judgments embedded within decision rules. It 
will also require evidence and analysis concerning 
the efficiency of existing research systems, and 
the moral trade- offs between false positivity and 
false negativity. Though the RPCB has brought us 
much closer to knowing the extent to which we 
can trust conclusions in cancer preclinical studies, 
many evaluative judgments regarding the cancer 
biology research enterprise will have to await 
further scientific, sociological and moral inquiry.
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