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a b s t r a c t 

Upon the discovery of RNA interference (RNAi), canonical small interfering RNA (siRNA) has 

been recognized to trigger sequence-specific gene silencing. Despite the benefits of siRNAs 

as potential new drugs, there are obstacles still to be overcome, including off-target effects 

and immune stimulation. More recently, Dicer substrate siRNA (DsiRNA) has been intro- 

duced as an alternative to siRNA. Similarly, it also is proving to be potent and target-specific, 

while rendering less immune stimulation. DsiRNA is 25–30 nucleotides in length, and is fur- 

ther cleaved and processed by the Dicer enzyme. As with siRNA, it is crucial to design and 

develop a stable, safe, and efficient system for the delivery of DsiRNA into the cytoplasm of 

targeted cells. Several polymeric nanoparticle systems have been well established to load 

DsiRNA for in vitro and in vivo delivery, thereby overcoming a major hurdle in the therapeutic 

uses of DsiRNA. The present review focuses on a comparison of siRNA and DsiRNA on the 

basis of their design, mechanism, in vitro and in vivo delivery, and therapeutics. 

© 2019 Shenyang Pharmaceutical University. Published by Elsevier B.V. 
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1. Introduction 

Most novel anticancer drug approvals focus on already known
targets, while relatively few compounds are certified against
novel molecules [1] . Thus, only a small number of molecules
are targeted due to the cost, time, and difficulties associated
with the discovery and validation of novel proteins which
might prove to be vital to the pathogenesis of disease [2] .
Numerous important proteins remain undiscovered, hinder-
ing the development of novel therapies. This scenario can be
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reversed using methods which seek to recognize the main
targets that trigger the pathways related to the development
of disease, such as gene targeting. However, gene targeting
is hampered by low efficiency and excessive cost. By devel-
oping and optimizing genome-wide RNA interference (RNAi)
techniques, the time and cost needed for the identification
and validation of targets with novel mechanism of action can
likely be decreased. 

At the post-transcriptional level, RNAi is a process that
governs gene expression naturally. The complementary mR-
NAs are selected by double-stranded interfering RNAs for
rsity. 
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egradation in eukaryotes, resulting in selective protein si- 
encing. This makes RNAi a useful laboratory research aid,
oth in vitro and in vivo . The development of RNAi library 
rotocols, which use specific reagents to methodically target 
ll genes present in the genome, has facilitated high output 
creening designed to examine phenotypes linked to the loss 
f function of several genes concurrently. By overpowering the 
xpression of a gene and hence, the function of its protein,
NAi, at a certain level, models the pharmacological inhibition 

f the target protein and is thus a potent device for proof-of- 
oncept trials to classify and authenticate the targets of can- 
er drugs [3] . 

siRNA is a double-stranded RNA (dsRNA), consists of 21–25 
ucleotides in length [4] and is able to silence gene expres- 
ion in the somatic tissues of mammals. Since the discovery 
f its ability to silence gene expression, siRNA has offered a 
ovel method to treat genetic-based diseases [5] . siRNA has 
lso been used extensively as an investigational tool for the 
uthentication of useful gene targets. siRNAs are loaded into 
he RNAi-induced silencing complex (RISC) by exploiting the 
ormal RNAi pathway, thus silencing the expression of tar- 
eted gene. The inhibition of disease-related genes by siRNA 

hus renders RNAi a potential mechanism for advanced ther- 
py. Despite the putative benefits of siRNA in new drug ther- 
pies, challenges such as off-target effects and immune re- 
ponses activation have limited its therapeutic application.
ore recently, Dicer substrate siRNA (DsiRNA) has been intro- 

uced as a newer variant of RNAi-based therapeutics which 

lso is proving to be potent, target-specific and generating less 
mmune stimulation. 

In the case of DsiRNA, Dicer endonuclease attaches to 
onger dsRNAs, resulting in the accurate cleavage of dsR- 
As into shorter siRNAs [6] . The resultant siRNAs bind to the 
ISC, targeting homologous mRNA and inducing its degra- 
ation. It has also been proposed that apart from the cleav- 
ge of longer dsRNAs, Dicer endonuclease plays important 
oles in the loading of cleaved dsRNA into the RISC [7 –9] .
his theory has driven the creation of a newer class of siRNA 

alled DsiRNA, an extremely powerful mediator of gene- 
pecific silencing. Therefore, the focus of this review will 
e on the design and delivery of DsiRNA in comparison to 
iRNA. 

. Discovery of RNAi 

NAi, a phenomenon in which molecules of RNA control the 
xpression of genes, was discovered in plants [10] . It was origi- 
ally considered a strange phenomenon, initially termed Post- 
ranscriptional Gene Silencing (PTGS). This phenomenon was 
reviously believed to be limited to certain species [11] . It was 
evealed accidentally by Napoli et al. [10] at The University of 
rizona in the late 1980s during an investigation on transgenic 
etunia flowers that were anticipated to be darker in their pur- 
le color. The flowers became white or lost their color by the 

nsertion of a gene encoding for a pigment-producing enzyme 
alled chalcone synthase [10] . The study of this phenomenon 

as since been expanded to bacterial and differentiated, cul- 
ured mammalian cells, and the term RNAi is now used to de- 
ne this phenomenon in animals. RNAi was initially defined 
n the nematode worm Caenorhabditis elegans ( C. elegans ). It is 
 process that induces gene silencing, caused by the cellular 
nsertion of molecules of dsRNA with sequences complemen- 
ary to those of mRNA. This process can be initiated either 
xperimentally or naturally, via endogenous sources such as 
eplicating viruses, or the deployment of similar genetic ele- 

ents (transposons, etc.) [12,13] . 

. Mechanism of RNAi action 

he activation of RNAi by long dsRNAs (longer than 30 bases) 
as also been observed in Drosophila, though early experi- 
ents in vertebrates proved to be partly ineffective owing to 

he ability of dsRNA to trigger interferon (IFN) response [14] .
ong dsRNAs trigger an immune response via protein kinase 
 (PKR) and IFN pathway [15] . The IFN response results in 

he general degradation of mRNA and inhibition of post tran- 
criptional gene expression [15,16] . Non-vertebrates lack this 
echanism, which allowed for the preliminary activation of 

NAi in insects and worms. The non-specific immune stim- 
lation dilemma was mitigated by numerous breakthroughs 

nvolving RNAi. An enzyme resembling RNase III called Dicer 
as discovered, which produces a 19–21 nucleotide duplex 

siRNA) with two nucleotide projections at its 3 ́ end via the 
leavage of long dsRNAs [14,17,18] . While the IFN response is 
riggered by longer dsRNAs, siRNAs generally, have a lower 
isk of triggering it [19] . Therefore, the analysis of genes in 

ammalian cells can be conducted using siRNAs. As the Dicer 
nzyme cleaves dsRNA, the produced siRNA attaches to nu- 
erous proteins and forms a nuclease complex recognized 

s the RISC [20] . Argonaute proteins are essential to the as- 
embly of the RISC [18] . Despite the scarcity of information re- 
arding Argonaute proteins, they are recognized as nucleases 
ased on their crystal structure. Functional data analysis re- 
eals that Argonaute2 regulates mRNA cleavage activity [21] .
iRNA binds to these proteins and facilitates the cleavage of 
omplementary mRNA. Dicer produces double-stranded frag- 
ents, but only the antisense strand attaches to Argonaute 

ecause mostly this side contains the 2 base 3-overhang and 

icer only processes this side regardless of whether it is la- 
elled at the 5-end of the sense or antisense strand [22] .
hus, during activation of the RISC, the sense strand is de- 
raded. From the 3 ́ end of the complementary siRNA, the 
RNA is cleaved into 12 nucleotides by the RISC. The deac- 

ivated mRNA releases the RISC and is then itself degraded 

y cellular exonucleases [23] . The translation of mRNA is in- 
ibited due to its inexact match to the target sequence [24] 
 Fig. 1 ). 

Upon discovery that the introduction of long dsRNAs trig- 
ered the formation of siRNAs, efforts were made to stim- 
late the endogenous synthesis of siRNAs. The focus of 
xperiments in which short RNAs were purified from numer- 
us animal species was on the discovery of host genome- 
ncoded short RNAs, and not on the production of proteins.
ore than 200 genomically-encoded, 19–25 nucleotide-long,

ingle-stranded RNAs were discovered in mice, C. elegans , and 

rosophila; these were referred to as micro RNAs (miRNAs) 
25–27] . miRNAs comprise 0.5–1% of all predicted gene mes- 
aging products that have been identified in the eukaryotes 
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Fig. 1 – siRNA-mediated RNAi mechanism: siRNAs are formed from short hairpin RNAs and long dsRNAs after being 
processed by Dicer. (Reproduced with permission from [163] . Copyright 2005 Elsevier B.V.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that have been studied [28] . Viral mRNA is inactivated in
plants using miRNAs [29] . In post-embryonic development,
miRNAs control larval-stage transitions in nematodes [30] .
miRNAs were also found to be involved in fat metabolism
and cell death suppression in Drosophila [31] . miRNA is a 70-
nucleotide long, short hairpin RNA (shRNA) molecule which
folds onto itself owing to its self-complementary nature. Dicer,
which slices siRNA, also cleaves 70-nucleotide long miRNA
into 21–22 nucleotide long molecules subsequent to its in-
corporation into an RNA/protein complex known as the mi-
croRNA ribonucleoprotein complex (miRNP). The complex is
then sent to the 3 ́ terminus of target mRNA [27,32] . This 3 ́-
untranslated region includes a number of binding sites to
which numerous miRNAs can bind to a particular mRNA [24] .
The extent to which transcription is inhibited is associated
with the number of miRNA molecules bound to the 3 ́ ter-
minus of mRNA [33] . It was initially believed that siRNA and
miRNA work inversely, with siRNA causing target RNA cleav-
age, while miRNA does not. Subsequent research has discov-
ered that this hypothesis is incorrect; it has been found in
humans that miRNA also induces target-RNA cleavage lead-
ing to gene silencing [34] . 

4. siRNA 

siRNA is a 21–25 nucleotide long dsRNA [23] . Its potential to
silence expression of target gene in the somatic tissues of
mammals has offered many researchers a new approach to
treat genetic-based diseases [5] . siRNA has also been widely
deployed as an investigational tool in the validation of useful
gene targets. In short, administered siRNAs are incorporated
into the RISC via a normal RNAi pathway, thereby silencing
gene expression. 
4.1. Existing strategies in the design of siRNA 

siRNA-based RNAi has rapidly become a promising technique
in functional genomics research [35] . Delivery of chemically
synthesized siRNA leads to extremely robust and sequence-
specific silencing of gene expression [35] . Initially, Dicer cuts
long dsRNA into 21-nucleotide long dsRNA containing 2-
nucleotide 3 ́-overhangs. siRNA with this conformation has
hence been commonly used [36] . These RNAs do not undergo
additional Dicer processing; they are directly incorporated
into the RISC, facilitating antisense strand selection [37] and
target recognition, hence causing cleavage. This characteris-
tic was initially thought to be helpful in that it bypasses a
step, allowing for a more rapid approach to the critical stage,
from a therapeutic standpoint. The mainstream design of
conventional 21-mers has enabled the development of ratio-
nal design algorithms based on siRNA sequence. To increase
stability, several site-specific alterations to this fundamental
design have been made through chemical changes [38–45] .
These changes are vital for in vivo efficacy but are dependent
on chemical modifications in multiple siRNA designs. The use
of lengthier siRNA, longer than 30 base pairs (bp), was origi-
nally not recommended due to unwanted effects in mammals.
Newer reports, however, propose that this preliminary think-
ing may not be completely true; RNAi effectors (longer than
30 bp) are able to undergo Dicer processing exhibit better ac-
tivity [8,46,47] . 

4.2. Therapeutics of siRNA 

Researchers have found that chemically synthesized siRNA
which is exogenously inserted into cells could mediate the
degradation of RNA with high specificity and efficacy. Genes
involved in various diseases can be controlled using siRNA,
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Table 1 – Strategies of siRNA-mediated therapies for 
cancer. 

No. Strategies Target gene References 

1. Inhibition of angiogenesis VEGF [149–156] 

2. Inhibition of tumor survival and 
inducing apoptosis 

c-REL [157] 
Survivin [158–159] 
Kras [160] 

3. Enhancing radio- or 
chemo-sensitivity by inhibiting 
multi-drug resistance gene 

EZH2 [161] 
MDR1 [162] 
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hereby rendering RNAi a promising candidate for next- 
eneration therapeutics. Many diseases are thought to be 
aused by gene activity, and certain genes respond to RNAi.
hese diseases include viral infections, dominant genetic 
isorders, autoimmune and cardiovascular disorders, and 

ancers. 

.2.1. Cancer treatment 
he use of RNAi in potential therapies could transform 

ancer treatment. The hurdles in the treatment of cancer 
re similar to those confronted by other diseases. Normally,
iRNA-mediated cancer therapies involve strategies to target 
he genes implicated in cancer development or resistance 
 Table 1 ). Additionally, combination of siRNA therapeutics 
nd other strategies ( e.g. chemotherapeutic agents) that 
nhibit different pathways results in pronounced anti-cancer 
ctivity and is therefore, a possible strategy in the treatment 
f various cancers. 

.2.2. Diseases of viral origin 

NAi technology offers advantages over traditional treatment 
uch as anti-viral drugs, particularly because of high efficiency 
nd specificity when applied to different stages of virus–host 
nteractions [48] . The potential of RNAi technology has been 

xplored in treating hepatitis B infection [49] . In liver hepa- 
ocytes, a 99% reduction in the core antigens of hepatitis B 

irus (HBV) was achieved. Hepatitis C virus (HCV) is a pathogen 

hat causes chronic liver disease, resulting in the development 
f hepatocellular carcinoma and liver cirrhosis. HCV infects 
pproximately 3% of the population globally. The effective- 
ess of siRNA in inhibiting viral replication has been inves- 

igated in several replicon systems [50–54] . Those exhibiting 
he most promising outcomes were siRNA targeted against 
he untranslated regions in viral genome or non-structural 
rotein and internal ribosomal entry sites (IRES) [53] . Like- 
ise, siRNA targeting HCV appears to be active against hu- 
an hepatoma cell lines bearing consistently reproducing 
CV replicons [51] . In mouse hepatocytes, both polymerase III 
romoter-expressed and synthetic anti-HCV siRNAs displayed 

ffective HCV sequence cleavage in HCV-luciferase fusion con- 
tructs [50] . In another study, siRNA was reported to treat ago- 
istic Fas-specific antibody-based fulminant hepatitis in vivo .
fter ten days post anti-Fas siRNA delivery, an 82% survival 

ate was observed in treated mice, while death of untreated 

ontrol mice occurred within three days [52] . 
RNAi can be used to target human immunodeficiency virus 
HIV), owing to a better understanding of its gene expres- 
ion profile and life cycle. Both early and late HIV-encoded 

NAs have been targeted using synthetic and expressed siR- 
As [55] . An example is the trans-activation response (TAR),
n RNA element known to be important in the transactivation 

f the viral promoter and in replication [56,57] . The regulatory 
rotein trans-activating transcriptional (TAT) considerably en- 
ances the efficiency of viral transcription. RNAi has been 

ound to successfully down-regulate cellular cofactors such as 
uclear factor-kappa B [58] and HIV receptor CD4 [59] , leading 
o the inhibition of HIV replication. Furthermore, HIV replica- 
ion inhibition has been accomplished in primary cells con- 
aining T lymphocytes and hematopoietic stem-cell derived 

acrophages, as well as many human cell lines [60–63] . More- 
ver, viruses could develop resistance to antiviral drugs. This 
ould also occur in RNAi-based methods, as a single siRNA 

n the targeted region can inadvertently allow for the escape 
f viruses from the RNAi pathway. This has been observed in 

oliovirus [64,65] , HIV-1 [65–67] , and HCV [68] . Certain tech- 
iques could be applied to avoid this problem, either by us- 

ng pools of siRNA or by targeting the untranslated regions 
f RNA viruses which are vital to viral replication and sensi- 
ive to mutation. A point mutation in this untranslated region 

ay cause cell function loss [65] . Besides that, participation 

f siRNAs in miRNA pathways can mediate off-target effects 
hrough the miRNA translational suppression pathway that 
s directed by 6–7-base matches between a siRNA and non- 
argeted gene [69] . This could also reduce the silencing effect 
f siRNAs as antiviral agents. 

Unlike in viruses, the use of siRNA is not effective to in- 
ibit bacterial infection, as bacteria largely reproduce outside 

he host cells without involving the cellular machinery of the 
ost [70,71] . Yet, it has been described that siRNA could be 
sed as a prospective agent to lessen the adverse effects in- 
uced by host immune responses and host genes involved 

n bacterial invasion, such as by decreasing the expression of 
roinflammatory cytokines [71] . Recently, siRNA was applied 

o combat Pseudomonas aeruginosa (P. aeruginosa) infection by 
ilencing MexB gene from the MexA–MexB–OprM efflux pump 

n the pathogen [72] . Over-expression of the pump increases 
ntibiotic efflux capacities, conferring multidrug resistance.
n this study, siRNAs targeting against pathogenic MexB gene 
nhibited the mRNA expression in vitro . Furthermore, the de- 
igned siRNA effectively reduced the bacterial load in the in 
ivo model of chronic lung infection [72] . Therefore, siRNA also 
romises to be an innovative approach for combating bacte- 
ial infections, particularly resistant strains. 

.2.3. siRNA in clinical trials 
iRNAs are evolving as next-generation biodrugs because of 
heir selective and potent RNAi triggering potential. The ther- 
peutic potential of siRNA has been reported in numerous 
tudies. To date, over 30 clinical trials involving the applica- 
ion of miRNA and siRNA have been reported [73–75] . Earlier 
linical trials have reported their use in treating viral infec- 
ions, cancers, respiratory diseases, and macular degenera- 
ion. For example, different phases of the HIV life cycle were 
eported to be inhibited by the use of viral mRNA-targeted 

iRNA [59] . Liver failure implicated in chronic autoimmune 
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hepatitis was also prevented by Fas-specific siRNA hydrody-
namic injection in an animal model [52] . Furthermore, the
first clinical trials involving the age-related macular degener-
ation (AMD) treatment by targeting the VEGF signaling path-
way have been conducted. AGN211745, a chemically altered
siRNA targeting against VEGF receptor 1 gene, was found to el-
evate clinically improvement in vision, with minimal side ef-
fects, in an appropriate subgroup of patients [76] . In the past
decade, more than 14 programs involving RNAi-based thera-
peutics have entered clinical trials; most of these are for ther-
apies offering localized and topical applications. Further de-
tails regarding clinical trials of siRNA therapeutics is reviewed
by Chakraborty et al. [73] . 

4.3. Challenges of siRNA delivery 

Given its anionic and hydrophilic nature, siRNA is incapable of
entering cells by passive diffusion mechanisms. Due to inef-
fective uptake by tissues, limited penetration across the capil-
lary endothelium, renal elimination, and rapid enzymatic di-
gestion in plasma, in vitro / in vivo delivery of unprotected siRNA
to target sites remains a substantial barrier [77] . To tackle
these issues, the development of effective in vitro and in vivo
delivery systems is indispensable. 

4.3.1. In vitro delivery of siRNA 

The success of RNAi-based therapies depends on the ability
of the delivery systems to deliver loaded compounds to the
cytoplasm, which is the site of action [78] . Delivery of un-
changed and unassisted siRNA in cell cultures usually leads to
ineffective knockdown of the target gene, as mammalian cells
are lacking the operative dsRNA-uptake mechanism which is
present in many other species, including C. elegans [79] . siRNA
cannot readily cross the lipid bilayers of plasma membranes,
as it is a hydrophilic polyanion [80] with a relatively large sur-
face area [81] . In comparison to plasmid DNA (pDNA), siRNA
enters the cells by endocytic pathway and is then transported
into endosomes and/or lysosomes where it is vulnerable to
nuclease degradation [82,83] due to acidic interiors of both
vesicles (pH 5–6.5) [84] . Additionally, lysosomes contain hy-
drolase enzymes, including ribonuclease, deoxyribonuclease,
acid phosphatase, phosphodiesterase, and pyrophosphatase
[85] , which together can degrade siRNA, rendering it incapable
of inducing RNAi [79] . 

Moreover, localization of synthetic siRNA transfected by li-
posomes was restricted to the perinuclear regions where it
could not enter the nucleus even after a prolonged incubation
[86–88] . In contrast, directly introduced siRNA into the cytosol
(by physical methods e.g. direct injection) moved quickly into
the nucleus, another site for siRNA activity apart from cyto-
plasm [89] . Based on this finding, synthetic or intracellularly-
expressed siRNA can be used to administer siRNA into the
mammalian cells [83] . For intracellularly-expressed siRNA,
siRNA is produced after introducing encoded genetic informa-
tion into the cells by pDNA or viral siRNA. Delivery of DNA
encoders is more difficult to achieve as compared to RNA en-
coders because it requires delivery to the nucleus, the site
for encoded DNA construct is transcribed. Effective in-vivo
siRNA delivery is more challenging to achieve when com-
pared to in vitro siRNA delivery, owing to problems with target
selectivity and homeostasis [90] . Generally, endogenous sub-
stances play important roles in maintaining homeostasis of
the body. In case of exogenous drugs, they are not being pro-
vided by the body system with an appropriate biodistribution
profile. Therefore, their pharmacokinetics is not necessarily
optimized to exhibit its pharmacological effects [91] . Further-
more, problems associated with poor circulation stability and
unfavorable pharmacokinetics and biodistribution profiles of
siRNA are partly contributed to the difficulties [92] . Even so,
the cellular membrane is still the main obstacle for efficient
siRNA transport into the target site, even for in vitro delivery. 

Several strategies have been developed for intracellular
siRNA delivery. These include the incorporation of siRNA into
cationic polymers or liposomes; manipulation of viral vectors;
and distortion of cell membrane integrity by physical meth-
ods, including compelling siRNA into the cells (gene gun, mag-
netofection) or weakening the cell membrane barrier (electro-
poration, ultrasound) [90,93] . Nevertheless, the application of
physical methods like electroporation is known to possibly de-
crease the cell viability to less than 60%, even if high uptake in
the cells is achievable [94] . Furthermore, a number of cellular
factors have been demonstrated to affect siRNA transfection
into the mammalian cells, including cell type, confluency, and
passage number. In the case of cationic carriers, their com-
patibility with the growth medium has also been reported to
impact siRNA transfection efficiency besides other known fac-
tors such as toxic effects to the cells and the physical char-
acteristics of their cationic particles [90] . Besides sufficiently
small in particle size, the cationic particles should be designed
to facilitate cellular uptake via endocytosis and endolysoso-
mal escape to the cytosol. 

Recently, smart drug delivery systems have been devel-
oped as efficient siRNA delivery vehicles capable of escap-
ing endolysosomal vesicles. Smart polymers that can respond
to certain stimuli, such as changes in surrounding pH are
currently being used for improving gene silencing efficacy.
Swelling/deswelling and degradation of the polymeric sys-
tems are the various responses that have been reported [95] .
In a previous study by Han and Yin [96] , poly(allylamine
hydrochloride)-citraconic anhydride (PAH 

–Cit) was devel-
oped to induce disassembly of multi-layered nanocomplexes
(MLNs) and facilitate their escape to the cytosol through the
charge reversal of PAH 

–Cit, triggered by the acidity (pH 5.0) of
endolysosomal interiors. 

Furthermore, modified gold nanoparticles (AuNPs) were
also developed as a strategy to overcome problems with
poor siRNA stability and low cellular uptake of siRNA
[80] . In this study, AuNPs were modified using branched
polyethyleneimine (bPEI). The results suggested that the mod-
ified AuNPs enhanced cellular uptake of siRNA via the “pro-
ton sponge” effect of bPEI without significant cytotoxicity. The
use of PAH-cit as a charge reversal polymer for AuNPs was
reported firstly by Guo et al. [97] . Charge reversal functional-
ized AuNPs were prepared by layer-by-layer technique from
polymers, including PAH-cit, PEI and 11-mercaptoundecanoic
acid (MUA). PEI was later deposited onto the functionalized
AuNPs to produce PEI/PAH 

–Cit/PEI/MUA-AuNPs; for improv-
ing intracellular delivery of siRNA. Later, efficient cellular up-
take of siRNA vectorized by similar charge reversal AuNPs was
reported [98] . In this study, AuNPs were reduced and stabi-
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ized by chitosan. The positive surface charge of the resul- 
ant AuNPs allowed PEI/PAH-cit to be deposited onto their 
urface via electrostatic interaction, forming a nanosystem 

PEI/PAH 

–Cit/AuNP-Chitosan) that released siRNA efficiently 
t pH 5.5. 

.3.2. In vivo delivery of siRNA 

n several gene therapy experiments, the type of agents to 
eliver siRNA seems to be the key hurdle for siRNA tech- 
ology to progress to clinical trials. Given this challenge, ef- 

ective RNAi approaches might not require viral vectors be- 
ause RNAi-based molecules could be directly introduced into 

umors or subjects. Liposomes and lipid nanoparticles are 
ommonly employed for in vivo delivery of siRNA [99] . The 
echnology has evolved that many variants have been de- 
eloped so far; ranging from cationic liposomes to form 

ipoplexes to stable nucleic acid lipid particles (SNALPs) and 

he newer generations of SNALPs, including lipid particle us- 
ng dimethylaminopropane (DLinDMA) with improved prop- 
rties for siRNA delivery and highly potent lipid nanoparticles 
or specific tissue targeting such as DLin-KC2-DMA. DLin-KC2- 
MA showed favorable accumulation in antigen-presenting 
ells (APCs) [100] , mainly in liver. However, a major limitation 

f SNALPs is that the systems are accumulated in liver via pas- 
ive targeting; siRNAs are also distributed to non-target cells 
n the liver and results in toxicity effects [101] . As an exam- 
le, uptake and activation of Kupffer cells, the immune cells 
f liver are likely to cause hepatic toxicity and carcinogenesis 

102] . 
Overcoming the problem regarding hepatocyte targeting 

ould be accomplished by designing a carrier that can re- 
ersibly mask the activity of membrane-active polymer un- 
il it reaches the acidic environment of endosomes and has 
he ability to target this modified polymer and its siRNA 

argo specifically to hepatocytes in vivo . The carrier is known 

s Dynamic PolyConjugates (DPC) [101] ; consists of siRNA,
ndosomolytic polymer, shielding agent polyethylene glycol 
PEG), targeting ligand and masking chemistry (to release 
EG and targeting ligand in endosomes). They demonstrated 

ffective knockdown of two endogenous genes in mouse 
iver; apolipoprotein B (apoB) and peroxisome proliferator- 
ctivated receptor alpha (ppara). Knockdown of apoB resulted 

n clear phenotypic changes, including a significant reduction 

n serum cholesterol and increased fat accumulation in the 
iver, consistent with the known functions of apoB. Knock- 
own of ppara also resulted in a phenotype consistent with its 
nown function, although with less penetrance than observed 

n apoB knockdown mice [101] . Schneider et al. [103] for- 
ulated the Digoxigenin-siRNA into nanoparticles consisting 

f DPCs and the resulting complexes enabled siRNA-specific 
RNA knockdown with IC 50 siRNA values in the low nanomo- 

ar range for a variety of siRNAs, and target cells [103] . 
Besides, the conjugation of lipid nanoparticles with a tar- 

eting ligand, N-acetylgalactosamine (GalNAC) mediates cel- 
ular uptake by the binding with asialoglycoprotein recep- 
or (ASGR1) [99] . Tris-GalNAc binds to the ASGR1 that is 
ighly expressed on hepatocytes, resulting in rapid endocyto- 
is. Enough amounts of siRNAs enter the cytoplasm to induce 
obust and target selective RNAi responses in vivo . Multiple 
alNAc-siRNA conjugates are currently underway for clinical 
rials, including two phase III trials in treating various diseases 
104] . 

In comparison to methods that use antisense molecules,
n vivo RNAi approaches are more advantageous because, un- 
ike single-stranded antisense molecules, duplex siRNAs are 

ore stable so that in vivo RNAi results in better inhibition of 
ene expression than previous antisense techniques. The ef- 
ective expression of a firefly reporter gene was achieved ini- 
ially by using high pressure siRNA as a method of delivery 
105] . Intracaudal administration of siRNA-containing pDNA 

n mice suppressed an HCV gene in the liver by up to 90% [50] .
orrespondingly, by targeting siRNA against the FAS gene, re- 
uced concentration of Fas mRNA and protein were observed 

n the kidney, pancreas, spleen, and lungs [52] . HBV-genome- 
argeting siRNA was found to successfully inhibit protein pro- 
uction and viral replication in mice [49] . Furthermore, by 
denoviral-mediated delivery of siRNA targeting the polyglu- 
amine aggregation in polyglutamine diseases, Xia and col- 
eagues [106] revealed that therapeutic RNAi treatment ben- 
fited patients with neurodegenerative disorders. Similarly,
EGF-targeting cationic lipid-complexed siRNA was investi- 
ated for the inhibition of ocular neovascularization using a 
ouse eye model [107] . Later, VEGF-targeting free siRNA was 

njected intravenously, intraperitoneally and subcutaneously,
n fibrosarcoma-bearing mice, which caused a 70% reduction 

n VEGF level and a 66% decrease in the tumor volume within 

6 days [108] . 
For years, a combination therapy of siRNA and chemother- 

py drugs has attracted interest as an effective anti-cancer 
herapy. For example, doxorubicin was co-loaded into siRNA- 
hospholipids together with cationic lipids and PEG-fused 

oly(DL-lactic-co-glycolic acid) (PLGA) conjugates that were 
eported to halt tumor growth in vivo models [109] . Later, MLNs 
ere shown to serve as effective and safe delivery systems to 

xploit the synergistic effects of chemotherapy drugs (doxoru- 
icin) and therapeutic genes (siRNA) [96] . Briefly, these experi- 
ents illustrate that the in vivo delivery of siRNA exhibits great 

linical potential. 
Over the years, increased numbers of siRNA-based bio- 

rugs are entering clinical trials, mostly by new biopharma- 
eutical companies [73] . Tekmira Pharmaceuticals developed 

NALPs to deliver siRNAs as potential strategies to treat dis- 
ases, including hypercholesterolemia, solid tumors, Ebola 
nd amyloidosis [99] . Tekmira Pharmaceuticals initiated a 
hase 1 clinical trial to evaluate the safety of apoB-specific 
iRNA delivered by SNALPs for potential treatment of hyperc- 
olesterolemia. In some cases, significant activation of innate 

mmune response was observed although extensive preclini- 
al studies showed little evidence of immunostimulatory po- 
ential [99] . 

The development of linear cyclodextrin-containing poly- 
ers (CDPs) for nucleic acid delivery traces back to the 
id-1990s by Dr. Mark Davis. Utilizing a siRNA targeting the 

WS/ Fli1 fusion oncogene and the human transferrin protein 

s a targeting ligand, the first in vivo proof-of-concept exper- 
ments, were performed shortly thereafter in a disseminated 

urine model of Ewing’s sarcoma [110] . The significant an- 
itumor effect demonstrated in this work motivated the cre- 
tion of a company, Calando Pharmaceuticals, to further ad- 
ance this delivery platform (RONDEL) towards therapeutic 
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candidates suitable for clinical evaluation in human cancer
patients. 

The first such candidate, termed CALAA-01, contained a
siRNA targeting the M2 subunit of ribonucleotide reductase
(RRM2), a protein involved in DNA replication which function
is required to complete cell division. Upon identification of the
optimal anti-RRM2 siRNA sequence [111] and evaluation of the
in vivo nanoparticle performance [112] , an Investigational New
Drug (IND) application was submitted to the Food and Drug
Administration (FDA) and Calando received approval to initi-
ate a phase I trial of CALAA-01 in patients with solid tumors
in 2008. 

The first use of synthetic polyplex to deliver siRNA (CALAA-
01) intravenously in human for cancer therapy was also initi-
ated by Calando Pharmaceuticals [113] . CALAA-01 was com-
plexed with cyclodextrin and functionalized with PEG and
transferrin for shielding and specific targeting, respectively.
The formulation was evaluated in patients with solid tumors
that were refractory to standard therapy [113,114] . With en-
couraging interim clinical data in hand, avenues for contin-
ued development and improvement of nanoparticles iden-
tified, and the emergence of alternative siRNA-containing
nanoparticles in the clinic from which all in this field will
learn, the future for siRNA-containing nanoparticles based on
cyclodextrin-containing polycations appears bright. 

5. DsiRNA 

In the RNAi cascade, long dsRNA binds with Dicer endonucle-
ase (a member of the RNase III family), which results in accu-
rate cleavage of longer dsRNAs into short and functional siR-
NAs [115] . These functional siRNAs bind to the RISC, target-
ing any homologous mRNA and leading to its degradation. It
has been proposed that Dicer endonuclease not only cleaves
long dsRNAs but also plays a role in loading the dsRNA into
the RISC [8,9,116] . This theory has driven the development of
a novel class of siRNA called DsiRNA, an extremely powerful
mediator of gene-specific silencing. 

Numerous experiments have revealed that 25–30 nu-
cleotide dsRNAs are more potent effectors of silencing in
particular genes when compared to 21-mers. In a compari-
son study designed to target the same sequence, 25- to 30-
mers were found to be approximately 100-fold more effective
than siRNAs of 21-mers [46] . This higher potency seems to
rely on Dicer, which processes the longer dsRNAs and cuts
them to yield 21-mers. A similar decrease in potency of siRNA
was observed when siRNAs of 27-mers were labelled with 6-
carboxyfluorescein (6-FAM) to interfere with the cleavage by
Dicer [117] . 

The precise cleavage of 27-mers by Dicer into 21-mers is
not the only factor that enhances the effectiveness of the
27-mers. Various 21-mer siRNAs with 2-nucleotide 3 ́-
overhangs were designed and produced to match all probable
yields of Dicer that could possibly obtain from a longer dsRNA.
These 21-mers did not yield similar levels of gene silencing
compared to those obtained with the 27-mer siRNAs at low
concentrations [46] . To be precise, the enhanced cleavage
afforded by Dicer does not alone explain the increased gene
silencing efficiency. It has been proposed that providing a
substrate along with Dicer during the cleavage of 27-mers
augments the efficacy of the siRNAs’ entry into the RISC and
is also accountable for improving gene silencing [8] . 

5.1. DsiRNA design 

Increased efficiency in longer-than-standard RNAi effectors
(25–30 nt size range) has been reported [46] . The IFN induc-
tion by in vitro transcribed siRNAs 25- to 27-nucleotides long
by bacteriophage T7 polymerase (T7 siRNA) exhibited better
efficacy in inhibiting Herpes simplex virus (HSV) at the cel-
lular level than that of synthetic 21-nt siRNAs [118] . Further
investigation revealed that the T7 siRNA was a more potent
RNAi and IFN inducer than the synthetic 21-nt siRNA. In this
circumstance, immune stimulation by siRNA while maintain-
ing its gene silencing efficacy is beneficial in combating viral
infections [99] . Similar findings were observed for small RNA
hairpins, which can also act as a small synthetic RNA hair-
pin with a 2-bp 3 ́-overhang and 29-bp stem. These molecules
were more powerful RNAi inducers than their smaller hairpins
[47] . Studies also illustrated that in vitro Dicer undergoes direc-
tional processing, starting mainly from the open end of the
stem and producing a cleavage products mixture (21- and 22-
nt). In the above-mentioned scenario, improved efficacy could
be accredited to the effect of Dicer processing, which is be-
lieved to enhance effective assimilation into the RISC by the
physical bond of Dicer with the Argonaute proteins, known ef-
fectors of RNAi. This explanation has been reinforced by bio-
chemical validation in Drosophila melanogaster , signifying the
role of Dicer at the initial stages of the RISC assembly [119] . In
human cells, the processing of miRNA precursors mediated by
Dicer increases silencing of targeted genes when combined to
a specific RISC assembly of miRNA [120,121] . Dicer products of
27-nt unchanged duplexes are mostly erratic, often leading to
the generation of siRNAs with poor activity, i.e., lower than that
of an ideal 21-mer. Therefore, there is no assurance that an
asymmetrically designed 27-mer will be more effective than
the 21-mers. The problem of attaining predictable DsiRNA
processing would appear to have been solved by generating
coherent designs based on the availability of strategic algo-
rithms. This novel optimization strategy offers directional re-
actions and exclusivity of processing in the Dicer cleavage step
by imitating important characteristics of pre-miRNAs. These
pre-miRNAs are natural substrates for Dicer with expanded
stem-loop structures with 2-nucleotide 3 ́-extensions. Accord-
ing to more recent reports, the projections on the exposed side
of the stem were bound by Dicer and controlled the process-
ing direction [47] . In a naturally occurring substrate of Dicer,
the duplex is closed by a loop at the other end to inhibit Dicer
from binding to the end. This characteristic can be mimicked
in DsiRNA by reducing the length of the resultant duplex end
and presenting two DNA nucleotides in the blunt and sense
strand of the duplex. The introduction of a 3 ́-overhang at one
end begins a partiality to commence from that end, whereas
in the opposite blunt end the DNA nucleotides impose this ir-
regularity and inhibit processing events concerning two phos-
phodiester linkages at the terminal. This leads to the expected
formation of a single or main 21-nt processing moiety begin-
ning from the overhang terminal. Sometimes this moiety is
supplemented with a minor 22-nt product, which results from
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Fig. 2 – Mechanism of DsiRNA processing in mammalian 

systems. (Reproduced with permission from [135] . 
Copyright 2005 Elsevier B.V.). 
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rocessing at the same end [35,47] . Such descriptions of Dicer 
rocessing may suggest a certain level of sequence priority 
ear the presumed cleavage site. The above DsiRNA config- 
ration, having a single 2-base, 3 ′ -overhang on the antisense 
trand and is blunt on the other end provides Dicer with a sin- 
le favorable binding sites and selective loading of antisense 
trand into RISC which enhance the potency [99] . Moreover,
t was suggested that optimizing the design features of 3 ́- 
verhangs by merely altering the 3 ′ -end of the overhang while 
aintaining the same duplex sequence would allow rational 

esigning of DsiRNA with high potency [122] . 

.2. DsiRNA mechanism of action 

he silencing of target gene through the activation of RNAi 
athway depends on dsRNA as an activator. In this cascade,

onger dsRNAs bind to Dicer endonucleases, which cleave the 
sRNA into shorter siRNAs and facilitate loading into the RISC.
symmetric 27-mer dsRNA are loaded into the RNAi process- 

ng apparatus ( Fig. 2 ), one step before the conventional siRNA.
his irregular structure, with a two-base 3 ′ -overhang on the 
ntisense strand and DNA bases on the opposite blunt end,
rovides a substrate for Dicer to slice in an expected way. The 
leaved small dsRNA is then loaded into the RISC and one 
f the two strands is selected as a guide or antisense strand,
epending on the 3 ′ -overhang [122] and chemical modifica- 
ion of dsRNA [123] . In the RISC assembly, the sense strand of 
iRNA, also known as the passenger strand, is cut and liber- 
ted, while the guide strand is combined into the Argonaute2 
rotein, which is part of the RISC. The guide strand directs 
he RISC complex to its respective target mRNA and finally 
s cleaved by the endonucleolytical role of the Argonaute2 
rotein. 

.3. DsiRNA delivery 

he carrier or transport device is the main constituent in all 
n vitro and in vivo DsiRNA experiments. The selection of car- 
ier for an active ingredient is important and must also be 
ell-thought-out. Viral vectors are frequently linked with im- 
unogenicity and safety concerns [124] . Researchers are tak- 

ng more interest in non-viral systems of transfection, which 

re proving to be more attractive because they provide opti- 
um control over the concentration of the active agent and 

ore predictable patterns of toxicity [125] . Other than these 
dvantages, a transfection agent should protect and deliver 
siRNA to the tissues. Similar to siRNA, nanotechnology of- 

ers solutions for the delivery of DsiRNA to the cell cytoplasm.

.3.1. In vitro delivery of DsiRNA 

he actual strength of the administered component is deter- 
ined by the efficacy of the carrier along with the inherent 

trength of DsiRNA. Large amount of administered dsRNA in- 
reases the possibility of inducing an immune response, par- 
icularly when used in conjunction with cationic lipids. The 
igh strength formulations will reduce the number and dose 
f injections needed to attain functional decrease in the gene 
xpression and protein levels, and thus, reduce possible side 
ffects. 

One of the preferred methods of administering DsiRNA 

herapeutics is via local delivery, which offers direct contact 
ith the macrophages. Nanoparticulate carrier systems such 

s PLGA nanoparticles have been investigated to efficiently 
eliver DsiRNA across the plasma membrane of macrophages 
nd into the cytosol. The major drawback of using PLGA 

anoparticles as carriers is the immune response stimulation.
n a different approach, RNA HIV glycoprotein 120 aptamers 
ere used for delivering and targeting DsiRNA into HIV in- 

ected cells [126] . Furthermore, liposomes have been shown to 
oad DsiRNA effectively, for instance, in the targeting of Kupf- 
er cells with DsiRNA-loaded liposomes [127] . 

Chitosan has also been used effectively to load DsiRNA 

128,129] . In a study of an in vitro solid tumor model by Raja
t al. [129] , DsiRNA loaded into chitosan nanoparticles via 
n ionic gelation method was shown to significantly knock- 
own VEGF expression at mRNA and protein levels as a result 
f uniform penetration and distribution of DsiRNA-chitosan 

anoparticles throughout multicellular layers (MCLs) of hu- 
an colorectal cancer cells (DLD-1). The findings proved that 

hitosan nanoparticles could effectively deliver DsiRNA to 
he cytosol and knockdown the targeted gene, thereby point- 
ng to a potential treatment for human colorectal carcinoma 
129] . Pluronic F-127 (PF-127) has also been used as a tempera- 
ure sensitive gel to carry chitosan nanoparticles loaded with 

siRNA to enable their permeation through the skin in the 
reatment of skin cancer [109] . TAT peptides have also been 

sed to load and deliver DsiRNA into cells [130] . DsiRNA was 
omplexed to TAT via simple complexation to produce small 
omplexes below 200 nm. TAT was also reported to bind siRNA 
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strongly, but the resulting complexes were larger than those
formed with DsiRNA [131] . 

Recently, linoleic and caprylic acids-substituted PEI has
been developed as a delivery system for DsiRNA to tar-
get breast cancer cells [132] . Significant knockdown of
hypoxanthine-guanine phosphoribosyltransferase (HGPRT),
interleukin-8 (IL8), and cystic fibrosis transmembrane conduc-
tance regulator (CFTR) expression at the mRNA and protein
levels was also achieved by in vitro delivery of DsiRNA using
lipid transfection reagents [133] . In a different study, integrin-
targeted nanoparticles were developed to deliver DsiRNA to
tumor cells [78] . The αv β3 integrins are upregulated in tumor
cells as compared to healthy cells and represent attractive tar-
gets for the development of specific DsiRNA delivery to cancer
cells. PEG chitosan was used to enhance the polymer solubility
and their respective nanoparticles, while PEI was added to en-
hance transfection efficiency. The arginine-glycine-aspartate
(RGD) peptide, or an RGD peptidomimetic (RGDp) that mim-
ics the RGD motif was conjugated to the distal ends of
the PEG chains for targeting integrin receptor specifically.
The results obtained suggested that the internalization of
these nanoparticles was influenced by the concentration, as
a minimum ligand concentration is needed to induce αv β3
integrin-mediated uptake. In contrast, non-targeted nanopar-
ticles were unable to mediate gene silencing effectively [78] . 

5.3.2. In vivo delivery of DsiRNA 

There are few early reports describing in vivo delivery of
DsiRNA [38,134] . The advantage of 27-mer long DsiRNAs in
vivo was first revealed in an experiment that used intraperi-
toneal (IT) injections of cationic lipids formulation to target a
peritoneal macrophage-specific TNF- α gene [38] . In a different
study, DsiRNAs effectively cured hepatitis C in an in vivo model
system in which an intravenous hydrodynamic injection was
administered to the liver [134] . The in vivo systemic delivery
of siRNAs to tumors and other organs has been performed in
a number of methods. However, siRNAs do not permeate the
blood-brain barrier (BBB); gene silencing targets in the central
nervous system therefore require either the use of a carrier
for BBB permeability or direct injection into the cerebrospinal
fluid or brain parenchyma. 

The efficiency of 27-mer DsiRNAs in decreasing the gene
expression of a certain G protein-coupled receptor (GPCR) in
the spinal cords of rats was reported previously [135] . In this
study, a commercial transfection agent, i-Fect kit containing
a low-concentration DsiRNA formulation was administered
via IT injection; it continuously reduced the mRNA and pro-
tein levels of neurotensin receptor-2 (NTS2) GPCR for three to
four days. The decrease in NTS2 resulted in the anticipated
behavioral variations in nociception. No apparent toxicity or
non-specific adverse effects were noted during the course of
the study, and the results generally highlighted the practical-
ity of DsiRNA application in pain management [135] . 

In the study of viral infections, in vivo delivery of DsiRNA
via a chemically synthesized aptamer strongly inhibited HIV-
1 replication [22] . The synthesized aptamer was used to com-
plex three different DsiRNAs, achieving effective in vivo de-
livery; the combination of the three DsiRNAs resulted in in-
hibition of HIV-1 replication [22] . For non-viral delivery sys-
tems, liposomal DsiRNA complexes targeting tumor necrosis
factor alpha (TNF- α) were developed to protect against TNF- α
dependent liver toxicity [136] . TNF α is a proinflammatory cy-
tokine that involves in numerous inflammatory diseases in-
cluding viral encephalitis [136] . DsiRNA has also been used
as a prophylactic alternative in a murine model and has been
proven effective at partially inhibiting viral replication of hu-
man metapneumovirus [137] . 

For treating cancers using RNAi as a therapy, both in vitro
and in vivo small animal studies have shown promise. An
important consideration is that any drug delivered must be
able to reach the target site with sufficient amount and du-
ration of exposure and does not cause significant toxicity
[138] . Khairuddin et al. [138] studied the effectiveness of lo-
cal versus systemic delivery of immune-stimulating DsiRNAs
(IS-DsiRNAs) in a human papillomavirus (HPV)-driven tumor
model. Local intratumoral injection of DsiRNA resulted in in-
creased tumor uptake compared to systemic intravenous (IV)
delivery and potently activated innate immune responses. De-
spite increased cellular uptake, intratumoral injection was not
as effective as IV in reducing tumor growth. 

SNALPs have been shown to be effective delivery systems
for siRNAs in vivo [139] . In a study by Dicerna Pharmaceuti-
cals, the cationic lipid and PEG-lipid components of Dicerna’s
unique EnCore lipid nanoparticle platform was demonstrated
to modulate and improve delivery of DsiRNA to orthotopic and
spontaneous liver tumors, as well as xenograft tumors of di-
verse non-hepatic tissue origin [140] . 

5.4. Off-target effects 

Despite the benefits of siRNAs as potential novel drugs, there
are difficulties that must be addressed going forward. One of
these challenges is the risk of off-target effects, which lead to
the inhibition of genes that should not be targeted. This could
occur if a gene shares fractional homology with the siRNA. The
silencing of non-target genes may cause complications such
as toxicity and difficulty in data interpretation [141] . The se-
lection and design of siRNAs should be performed cautiously
to avoid this phenomenon. 

Immune stimulation is another challenge with siRNA ther-
apy, a condition wherein the siRNA duplex is recognized by
the host’s innate immunity [77] . Introduction of excessive
amounts of siRNA is reported to cause non-specific interac-
tions due to the triggering of innate immunity. Given that the
dsRNA sensor PKR activates the immune system, it is neces-
sary to design siRNA which can be used at the lowest possi-
ble concentration to eliminate off-target effects. Furthermore,
some reports propose that the RNAi mechanism can become
saturated and subsequently inhibit the appropriate process-
ing of miRNA precursors [142] , possibly resulting in toxicity.
Non-specific toxicity and other deleterious properties can be
mitigated by keeping siRNA at the lowest concentration as
possible. For instance, complete activation of the IFN path-
way can be avoided by using low concentrations of siRNAs of
less than 30 nucleotides in length [35] . It has been reported
that higher concentrations of siRNA can trigger proinflamma-
tory responses [143] while several cytoplasmic localized recep-
tors such as PKR recognize longer siRNAs ( > 30 nt) that subse-
quently trigger innate immunity [99] . The longer the length of
dsRNA, the stronger is the effect on the host cells [144] . 
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Despite shorter siRNAs ( < 30 nt) was considered non- 
mmunogenic initially, induction of partial cytokine and type- 
 IFN response via toll like receptors (TLRs) was reported as 
ell, including TLR7 and TLR8 on endosomes [15,145] . More- 

ver, the off-target effects can be a result of nucleic acids me- 
iated immunostimulation, mainly through TLR3 that binds 
sRNA [145] . Delivery strategies involving internalization via 
ndocytosis and localization in the endosomal compartment 
re more prone to cause immune stimulation through TLR7/8 
or example, siRNA complexed with cationic lipids or poly- 

ers. Contrarily, shRNAs endogenously synthesized by plas- 
id and viral vectors are less likely to trigger immune re- 

ponses [15] . 
Different strategies are available to minimize the risk of 

ide effects caused by non-specific immune response acti- 
ated by synthetic siRNA. Chemical modification such as 2 ′ - 
-methyl (2 ′ OMe) RNA has been employed because it is nat- 
rally occurring RNA variant in mammalian cells; avoiding 
ecognition by endosomal TLRs [99] and showing improved 

tability against nucleases without loss of potency if the 
 

′ -end of the guide strand is modified with 2 ′ OMe [146] . Other
 

′ -modifications include 2 ′ Fluoro (2 ′ F) and locked nucleic acid 

LNA), developed to escape immune detection. The use of 
symmetric and shorter sequence siRNAs such as DsiRNA 

ill also minimize the risk in addition to chemical modifica- 
ion [99] . Detailed discussion on strategies to overcome siRNA- 

ediated innate immune responses could be obtained in an 

rticle reviewed by Judge and MacLachlan [147] . 
In order to further decrease the risk of activating immune 

esponses, DsiRNAs can be developed to avoid initiation of the 
KR pathway and proinflammatory cytokines (IFN- α and IFN- 
) [148] . In an attempt to validate this, cells were introduced 

ith 27-mer DsiRNA, 21-mer siRNA, or tripolyphosphate- 
ontaining single-stranded RNA (ssRNA). The ssRNA acted as 
 positive control because of its tendency to initiate IFN- α and 

FN- β when introduced into cells. As compared to the cells in- 
roduced with ssRNA, assays of cell lysates from cells trans- 
ected with 27-mer dsRNA or 21-mer siRNA exhibited no mea- 
urable levels of IFN- α and IFN- β initiation, and no indication 

f PKR activation. 
Although the risk of other off-target effects still persists,

t can be alleviated by applying substances that allow for the 
se of low nanomolar concentrations of siRNA [143] . Another 
dvantage of DsiRNA is permanence of silencing which can 

educe the risk of off-target effects by using low amount of 
dministered DsiRNA or at a lesser frequency besides reduc- 
ng the potential off-target effects from the passenger strand 

hrough selective loading of guide strand in RISC [8] . When 

ouse embryonic fibroblast (NIH 3T3) cells, which steadily ex- 
ress higher levels of Green Fluorescent Protein (eGFP), were 
ransfected with 27-mers or 21-mers to target the eGFP gene,
he resulting suppression of eGFP by the 21-mer persisted for 
our days, and for up to ten days by the 27-mer [134] . These
esults are similar with the findings of another study [143] . 

. Closing remarks 

NAi-based therapeutics that can permit long-lasting and 

teadily powerful silencing at low concentrations are desirable 
n improving efficacy of silencing with low risk of off-target 
ffects. Though there are fewer direct comparisons amongst 
NAi-based therapeutics to date, DsiRNAs, designed for pro- 
essing by Dicer to maximize RNAi efficiency will open wider 
pportunities for safer and better treatments clinically. Fur- 
hermore, the exploitation of an effective delivery system per- 

its these DsiRNAs to be applied at the lowest concentration 

ossible, thus reducing the risk of adverse effects. Solid dis- 
ersion is one of the most efficient techniques to improve the 
issolution rate of poorly water-soluble drugs, leading to an 

mprovement in the relative bioavailability of their formula- 
ions. At present, the solvent method and the melting method 

re widely used in the preparation of solid dispersions. In gen- 
ral, subsequent grinding, sieving, mixing and granulation are 
ecessary to produce the different desired formulations. 
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