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Abstract: Anatase/rutile heterojunctions were prepared using the sol–gel method and modified by
La/Sn single doping and co-doping. Sn doping promoted the transformation from anatase to rutile,
while La doping inhibited the phase transformation. La and Sn co-doping showed an inhibitory effect.
The co-doping of La and Sn did not increase visible-light absorption, but exhibited a synergistic
effect on inhibiting the recombination of photogenerated electrons and holes, which improved the
photocatalytic activity on the basis of single-element modification. The first-order reaction rate
constant of La/Sn co-doped sample was 0.027 min−1, which is 1.8 times higher than that of pure TiO2

(0.015 min−1). Meanwhile, the mechanism of photodegradation of methylene blue (MB) by La/Sn
co-doped anatase/rutile heterojunctions was discussed through electrochemical measurements and
free-radical trapping experiments.

Keywords: anatase/rutile heterojunctions; sol–gel method; La/Sn co-doping; photocatalytic activity

1. Introduction

As a photocatalytic material, TiO2 is favored in the field of photocatalytic degradation
of pollutants due to its advantages of stable chemical properties, nontoxicity, low cost,
availability, and reusability [1–3]. The photogenerated electrons and holes of pure TiO2 are
easily recombined, which limits its practical application. Modifying TiO2 by ion doping
can form lattice defects, change the energy band structure, inhibit the recombination of
photogenerated electrons and holes, and improve the photocatalytic efficiency [4–7]. Due to
the synergistic effect of different elements, the co-doping modification is known to be more
efficient than single doping in enhancing the photocatalytic performances of functional
materials [8–14]. Chen et al. [15] loaded Ce/N co-doped TiO2 on diatomite, and the results
showed that Ce/N co-doped sample had the smallest bandgap width because N doping
made the valence band move up, and Ce doping formed an impurity level in the forbidden
band, which were conducive to narrowing the bandgap width. Furthermore, the Ce/N
co-doped sample showed the smallest grain size and the largest specific surface area. The
activity of the co-doped sample was higher than that of the single-doped samples.

It has been reported that the photocatalytic activity of TiO2 is improved obviously after La
doping [16–19]. Nesic et al. [16] and Peng et al. [17] found that the specific surface area of TiO2
increased after La doping, which was conducive to the photocatalytic activity. The study of Xin
et al. [18] showed that La doping contributed to the increase in anatase content, the formation
of the Ti–O–La bond was conducive to the improvement of adsorption performance, and
the introduced O vacancies effectively inhibited the recombination of carriers, thus showing
higher photocatalytic activity than pure TiO2. On the other hand, Sn-doped TiO2 exhibited
better photocatalytic performance than pure TiO2 [20–23]. Mohamed et al. [20] found that,
after Sn doping, the specific surface area increased, the visible-light absorption significantly
improved, and the recombination of photogenerated electrons and holes was inhibited, which
were advantageous to the photocatalytic activity. Therefore, it is reasonable to speculate that
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the La/Sn co-doping modification of TiO2 can give play to the advantages of each element,
form a synergistic effect, and achieve a better modification effect.

In this work, pure TiO2 with anatase and rutile mixed crystal was prepared using the
sol–gel method and then modified by single doping and co-doping of La and Sn elements,
respectively. Pure TiO2, Sn-doped TiO2, La-doped TiO2, and La/Sn co-doped TiO2 were
labeled as PT, ST, LT, and LST, respectively. The crystal structure, surface morphology,
elemental composition, valence state, and optical properties of samples were analyzed,
and the mechanism of improving the photocatalytic performance of co-doped TiO2 was
systematically discussed.

2. Results and Discussion
2.1. Photocatalyst Characterization

Figure 1 shows the XRD patterns of samples. The diffraction peaks of PT pattern
appeared near 27.3◦, 41.2◦, and 44.3◦, corresponding to the crystal planes of rutile (110),
(111), and (210), respectively (JCPDS NO. 21-1276). The diffraction peaks of anatase (101),
(004), and (200) crystal planes appeared at 25.3◦, 37.8◦, and 48.1◦ (JCPDS NO. 21-1272).
The results show that PT had an anatase/rutile mixed crystalline structure. Most of the
diffraction peaks corresponded to rutile phase in the ST pattern, indicating that Sn doping
promoted the transformation from anatase to rutile. Correspondingly, anatase peaks
could only be found in the pattern of LT, suggesting that the phase transformation was
inhibited by La doping. Due to their similar ionic radius, Sn4+ ions (0.069 nm) could
enter the lattice to replace Ti4+ ions (0.0605 nm), causing lattice defects, weakening the
binding force between atoms, and making the Ti–O bonds easier to crack, which was
conducive to phase transition [5]. Furthermore, since SnO2 and rutile have the same crystal
structure, SnO2 would become the heterogeneous nucleation center of rutile, promoting
the transformation [22]. The radius of La3+ ions (0.103 nm) is much larger than that of Ti4+

ions, hindering their entry into the TiO2 lattice. La elements should be dispersed on the
surface of TiO2 particles in the form of oxide La2O3 [6]. The transformation requires the
rearrangement of atoms and the breaking of bonds. La2O3 dispersed on TiO2 surface will
hinder the migration of Ti and O atoms, and delay the nucleation and growth of rutile,
inhibiting the phase transition [6,19]. It can be seen that the peaks in LST were indexed to
anatase, and only a weak peak at 27.3◦ ascribed to rutile was detected, implying that LST
was composed of mostly anatase and a small amount of rutile, revealing that the inhibition
of phase transformation by La doping was stronger than the promotion of Sn doping.

Figure 1. XRD patterns of samples.
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Figure 2 presents the SEM images of samples. It can be observed that PT was composed
of agglomerates with different shapes, and the size distribution of agglomerates ranged
from tens to hundreds of nanometers. ST, LT, and LST samples were also composed of
agglomerates of different shapes. No obvious change in particle morphology can be found
in SEM images before and after doping.

Figure 2. SEM images of PT (a), ST (b), LT (c), and LST (d).

Figure 3 shows the TEM images of PT (a) and LST (b). It can be observed that PT
particles were seriously agglomerated, and it was difficult to distinguish the size of single
particles. LST particles were also agglomerated, possibly due to the high temperature of
600 ◦C, and the particles grew larger during the process of heating. The HRTEM images of
PT (c) and LST (d) are shown in Figure 3c,d. The crystal lattice stripes were clear, indicating
that the samples had good crystallinity. The spacings of crystal planes marked in Figure 3c
were 0.35 nm and 0.33 nm, corresponding to the anatase (101) crystal plane and the rutile
(110) crystal plane, respectively [24–27], indicating that PT was a mixed crystal composed
of anatase and rutile, consistent with the XRD results. The crystal plane spacing 0.36 nm
marked in Figure 3d was indexed to the anatase (101) crystal plane of LST. The signals of
Ti, O, La, and Sn elements could be found in the STEM mappings of LST (Figure 3e–k),
indicating that La and Sn elements already existed in TiO2 due to doping, and the four
elements were substantially uniformly distributed in the LST sample.

Figure 4 presents the XPS spectra of PT and LST. The appearance of the La 3d peak
and Sn 3d peak in the LST spectra confirms the existence of La and Sn elements in the
co-doped sample. Figure 4b shows the high-resolution spectra of Ti 2p. The Ti 2p of PT was
decomposed into two peaks, located at 458.5 eV and 464.1 eV, corresponding to Ti 2p3/2
and Ti 2p1/2, indicating that the valence state of Ti was +4. The two peaks corresponding to
Ti 2p3/2 and Ti 2p1/2 were located at 458.6 eV and 464.3 eV in LST, indicating that Ti in the
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co-doped sample also had a valence of +4 [15,28,29]. The high-resolution spectra of O 1s are
shown in Figure 4c. The O 1s of PT was decomposed into two peaks corresponding to the
lattice oxygen (OL) and surface hydroxyl (OH), located at 529.9 eV and 531.2 eV, respectively.
The peaks of the lattice oxygen and surface hydroxyl of LST sample were at 530.0 eV and
531.1 eV respectively [30]. It can be observed that the surface hydroxyl peak area of the LST
sample was significantly larger than that of PT, indicating that the co-doping advanced
the surface adsorption performance and introduced more OH− groups on the particle
surface. The percentages of oxygen in the surface hydroxyl group of PT and LST were
12.1% and 22.6%, respectively, indicating that co-doping could enhance the surface hydroxyl
content. This is beneficial to generate more hydroxyl radical and improve photocatalytic
performance during photodegradation [31]. The Sn 3d high-resolution spectrum of LST is
shown in Figure 4d. The two peaks at 486.3 eV and 494.9 eV corresponded to Sn 3d5/2 and
Sn 3d3/2, respectively. The location of these two peaks indicates that the Sn element had a
+4 valence [21,23,32]. The high-resolution spectrum of La 3d is shown in Figure 4e. The
peaks at 834.8 eV and 838.1 eV corresponded to La 3d5/2, and the peaks at 852.2 eV and
855.1 eV corresponded to La 3d3/2, indicating that the La element existed in the form of
La3+ [31,33].

Figure 3. Cont.
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Figure 3. Cont.
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Figure 3. TEM and HRTEM images of PT (a,c) and LST (b,d), and the STEM mappings of LST (e–k).

Figure 4. XPS survey of PT and LST (a); high resolution spectra of Ti 2p (b), O 1s (c), Sn 3d (d), and
La 3d (e).
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Figure 5 shows the UV/Vis absorption spectra (a) and the bandgap (b) of the samples.
In the ultraviolet region, all samples had high absorption, whereas, in the visible region,
absorption decreased rapidly. The absorption edge of ST was almost the same as that of
PT, and the absorption edges of LT and LST showed a weak blue shift. The bandgaps of
PT, ST, LT, and LST were 3.02, 3.02, 3.17, and 3.06 eV, respectively. It has been documented
that the absorption edge of TiO2 red-shifts and the bandgap decreases after Sn or La
doping [31,34,35]. However, in this work, the bandgaps of LT and LST increased slightly.
Combined with XRD, it can be seen that the transformation from anatase to rutile was
inhibited by La doping. Due to the bandgap of anatase (3.2 eV) being larger than that of
rutile (3.0 eV), the bandgaps of LT and LST samples increased compared to PT.

Figure 5. UV/Vis absorption spectra (a) and bandgap energy (b) of samples.

The PL spectra of samples are shown in Figure 6. PT and LST showed the same
spectral shape but different intensity. The PL peak intensity decreased after Sn doping,
indicating that the recombination of photogenerated electrons and holes was inhibited.
The main PL peaks of PT and ST appeared at approximately 422 nm, due to the photons
released when the photogenerated electrons returned directly from the conduction band
to the valence band [32]. DRS results show that the bandgap of PT and ST was 3.02 eV,
and the corresponding photon wavelength was 410 nm, which was about 12 nm less than
the corresponding wavelength of 422 nm in the main peak of PL. This deviation could be
attributed to the Stokes shift [36,37]. Compared with PT, the PL main peaks of LT and LST
shifted to a lower wavelength, consistent with the bandgaps of LT and LST being larger
than that of PT. The PL peak intensity of LT was lower than that of PT, indicating that La
doping could also inhibit the recombination of photogenerated carriers. In particular, the
PL peak intensity of LST was the lowest, implying that La/Sn co-doping had a synergistic
effect on retarding the recombination of photogenerated charges, which was beneficial to
the photocatalytic performance.

2.2. Photocatalytic Performance

Figure 7 shows the MB degradation degree curves (a) and kinetics curves (b) of
samples. After 60 min, the degradation degree of PT was 59.3%, and the degradation
degrees of ST, LT, and LST were 67.7%, 66.6%, and 80.6%, respectively. The degradation of
MB on the surface of TiO2 photocatalyst conformed to a first-order reaction, and the reaction
rate constant k was calculated using the formula kt = −ln(C/C0), where C0 and C are the
initial concentration of MB solution and the concentration at time t, respectively. A larger
k value denotes a faster reaction rate and a better photocatalytic activity. The first-order
reaction rate constants of PT, ST, LT, and LST were 0.015, 0.019, 0.018, and 0.027 min−1,
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respectively. The first-order reaction rate constants of ST, LT, and LST are 1.3, 1.2, and
1.8 times higher than that of PT, respectively, indicating that the reaction rate was accelerated
after doping. Table 1 summarizes the degradation degrees of reported photocatalysts.

Figure 6. PL spectra of samples.

Figure 7. Degradation curves (100 mL of MB (10 mg/L) degraded by 0.05 g of sample at pH = 7 and
room temperature of 25 ◦C) (a) and kinetics curves (b) of samples.

2.3. Photocatalytic Degradation Mechanism

Figure 8 shows the results active species experiments of LST. When benzoquinone (BQ),
isopropanol (IPA), and ammonium oxalate (AO) were added as the radical scavengers, the
degradation degrees of LST decreased from 80.6% to 28.1%, 61.5%, and 78.0%, respectively.
Since BQ, IPA, and AO are capture agents of •O2

−, •OH, and photogenerated holes
(h+) [44,45], the results show that the •O2

− radical was the main active group, whereas h+

and •OH played a subsidiary role in the degradation process toward MB.
Nitro-blue tetrazolium (NBT) and 2,3-dihydroxybenzoic acid (2,3-HBA) experiments

were launched to further verify that the •O2
− and •OH radicals were yielded in the

degradation process, and the results are shown in Figure 9. The presence of •O2
− radicals

can be testified by the reaction of NBT with •O2
− to form a purple precipitate. With the

extension of illumination time, the •O2
− radicals react with NBT to generate more and

more purple precipitates, thus consuming NBT and gradually reducing its absorbance. On
the other hand, salicylic acid (SA) reacts with •OH radicals to form 2,3-HBA which has
a special absorption at 510 nm [44,45]. With the increase in time, the absorbance of NBT
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decreased and the absorbance of 2,3-HBA increased, indicating that •O2
− radicals and

•OH radicals were generated in the system.

Table 1. The summarization of degradation degrees by various photocatalysts.

Ref. Method Photocatalyst Light Source Target Pollutant Decolorization Degree

[29] Sol–gel method Fe–TiO2 UV light (15 W) RB 69 (100 mg/L) 98.0% in 120 min

[31] Sol–gel method La–N–
TiO2/diatomite Xenon lamp (150 W) RhB (10 mg/L) 93.0% in 240 min

[38]
Combustion

synthesis
methodology

Mg2Si(Si)/MgO LED lamp (100 W) MB (50 mg/L) 90.0% in 120 min

[39]
Ball-milling/molten

salt processing
approach

Co3Fe7/CoFe2O4@
carbon LED lamp (100 W) MB (100 mg/L) 100% in 12 min

[40] Acid-treatment
method Mg2Si LED lamp (100 W) MO (50 ppm) 100% in 30 min

[41] Hydrothermal
method SDBS–TiO2 Xenon lamp (500 W) RhB (10 mg/L) 90.0% in 120 min

[42] Hydrothermal
method Ag–TiO2 Xenon lamp (500 W) RhB (20 mg/L) 80.0% in 240 min

[43] Electrospinning
method Fe–ZnO Mercury lamp MB (10 mg/L) 88.0% in 360 min

[44] Solvothermal
method BiOI/Bi2SiO5 Xenon lamp (500 W) MO (10 ppm) 70.0% in 360 min

This work Sol–gel method La–Sn–TiO2 Xenon lamp (250 W) MB (10 mg/L) 80.6% in 60 min

Figure 8. Degradation degrees of LST in the presence of different scavengers.

Figure 9. Absorbance curves of NBT (a) and 2,3-HBA (b) of LST.
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Figure 10 shows the NBT and 2,3-HBA absorbance of LST and PT after illumination
for 20 min. The NBT absorbance of PT was higher than that of LST, indicating that
LST generated more •O2

− radicals. The 2,3-HBA absorbance of PT was lower than that
of LST, proving that LST produced more •OH radicals. During the photodegradation
process, LST generated more free radicals, implying that it had a higher photogenerated
charge separation rate compared to PT, consistent with the results of the PL spectra and
photocatalytic activity experiments.

Figure 10. NBT absorbance (a) and 2,3-HBA (b) absorbance of LST and PT after 20 min.

The separation and transfer of photogenerated charges of PT and LST were further
studied through photoelectrochemical measurements. Figure 11a shows the photocurrent
responses curves (PC) of PT and LST. Generally, a higher photocurrent density denotes a
higher separation efficiency of photogenerated charges [46,47]. Both PT and LST generated
photocurrent under light, and the photocurrent density of LST was higher than that of PT,
indicating that Sn and La co-doping was beneficial to improve the separation efficiency
of carriers. Figure 11b shows the electrochemical impedance spectra (EIS) of PT and LST.
According to Nyquist’s theorem [46,48,49], the arc radius of LST was smaller than that of
PT, indicating that LST had a lower charge motion resistance and a better electron mobility.

Figure 11. Photocurrent responses curves (a) and electrochemical impedance spectroscopy (b) of PT
and LST.

Figure 12 shows the Schottky curves of PT and LST. The electrode/electrolyte was is
measured according to the Mott–Schottky equation (1) [48,50,51].

1
C2 =

2
NDeε0ε

(
E − EFB − kT

e

)
, (1)

where C is the space charge capacitance in the semiconductor, ND is the electron carrier
density, e is the elemental charge, ε0 is the permittivity of a vacuum, ε is the relative per-
mittivity of the semiconductor, E is the applied potential, EFB is the flat band potential,
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T is the temperature, and k is the Boltzmann constant. The slope of the linear part of
the curve was positive, indicating that LST is an n-type semiconductor [48,49,51]. In
Equation (1), if 1/C2 = 0, the EFB value of the LST flat band potential could be estimated
to be −0.55 V vs. Ag/AgCl. According to the formula ENHE = EAg/AgCl + 0.197 [52–54],
the EFB of LST could be calculated to be about −0.35 V vs. NHE. It is generally be-
lieved that the CB bottom (ECB) is about 0.1 V more negative than the potential of EFB
for n-type semiconductors [55,56]. Therefore, the ECB of LST could be determined to be
−0.45 V vs. NHE. According to the formula EVB = Eg + ECB [49,51], the potential of VB
(EVB) of LST could be calculated to be +2.61 V vs. NHE.

Figure 12. Mott–Schottky plot of LST.

Some studies reported that ion doping brings impurity energy levels below the conduc-
tion band of TiO2, reduces the bandgap width, and increases the absorption of light [20,23].
Conversely, several studies also showed that there is a blue shift after doping [57,58]. In
this work, DRS results show that the bandgap width of PT was 3.02 eV and that of LST was
3.06 eV, without a red shift, which could be ascribed to the fact that co-doping of Sn and
La inhibited the transformation from anatase to rutile, and the forbidden band width of
rutile was lower than that of anatase. Consequently, a weak blue shift occurred after La/Sn
co-doping, implying that the utilization of visible light did not improve via co-doping. It
can be seen from PL spectra that single doping of Sn and La or co-doping could inhibit the
recombination of photogenerated electrons and holes, and LST exhibited the best inhibition
ability. According to the DRS and Mott–Schottky results, the ECB of LST was −0.45 V,
which is higher than E0(O2/•O2

−) (−0.046 V vs. NHE) [59,60]. The potential position of
CB ensured the generation of •O2

− radicals, as also confirmed by NBT experiments. On
the basis of the above results, the mechanism diagram of photodegradation of MB by LST
is shown in Figure 13.

On one hand, as the radius of Sn4+ is close to that of Ti4+, the replacement of Ti4+

by Sn4+ ions would form crystal defects, capture photogenerated charges, and improve
quantum efficiency [61–63]. On the other hand, no peak related to La element was detected
in the XRD pattern. The radius of La3+ ions is much larger than that of Ti4+ ions; thus,
the possibility that La3+ ions entered the TiO2 lattice can be excluded. Instead they were
dispersed on the surface of TiO2 particles in the form of oxide La2O3, which captured
photogenerated charges, improving the separation of carriers [16,33,64]. Therefore, the
co-doping of Sn and La produced a synergistic effect on improving the carrier separation;
as a result, its photocatalytic activity was higher than that of single-element doping in PT.
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Figure 13. Schematic diagram of MB photodegradation by LST.

3. Materials and Methods

Butyl titanate (Analytical Reagent, AR, ≥98.0%), anhydrous ethanol (AR, ≥99.7%),
glacial acetic acid (AR, ≥99.5%), tin tetrachloride pentahydrate (AR, ≥99.0%), lanthanum ni-
trate hexahydrate (AR, ≥99.0%), benzoquinone (AR, ≥98.5%), ammonium oxalate
(AR, ≥99.5%), and isopropanol (AR, ≥99.7%) were purchased from Chengdu Chron Chem-
icals Co., Ltd., (Chengdu, China).

3.1. Sample Preparation

Butyl titanate and anhydrous ethanol were added into the beaker at a volume ratio
of 1:2 to form solution A. Deionized water, glacial acetic acid and anhydrous ethanol
were mixed in a volume ratio of 2:3:7.5 to form solution B. After being evenly stirred,
solution B was dropped into solution A, which was continuously stirred to form sol and
then aged. After the aging, the gel was dried in the oven, and finally heat-treated at
600 ◦C. After grinding, pure TiO2 powder was obtained, labeled as PT. Certain amounts of
SnCl4·5H2O and La(NO3)3·6H2O were added to solution B, and the other steps were the
same to prepare the doped sample with a Sn/Ti molar ratio of 3% and a La/Ti molar ratio of
0.5%. Sn/La co-doped TiO2 could be prepared by adding SnCl4·5H2O and La(NO3)3·6H2O
into solution B, where the molar ratio of Sn/Ti was 3% and the molar ratio of La/Ti was
0.5%. Sn-doped TiO2, La-doped TiO2, and La/Sn co-doped TiO2 were labeled as ST, LT,
and LST, respectively.

3.2. Sample Characterization

The crystal structure of the samples was analyzed using a DX-2700 X-ray diffractometer
(Dandong Haoyuan Instrument Co. Ltd., Dandong, China, XRD). An FEI-Inspect F50
scanning electron microscope (FEI Company, Hillsboro, OR, USA, SEM) and an FEI-Tecnai
G2 F20 transmission electron microscope (FEI Company, Hillsboro, OR, USA, TEM and
HRTEM) were used to observe the morphology. An XSAM800 multifunctional surface
analysis system was used to analyze the element composition and valence state of samples
(Kratos Ltd., Manchester, UK, XPS). A UV-3600 ultraviolet/visible-light spectrophotometer
was used to study the optical absorption performance (Shimadzu Group Company, Kyoto,
Japan, DRS). Detection of the recombination of photogenerated electrons and holes was
investigated using an F-4600 fluorescence spectrometer (Shimadzu Group Company, Kyoto,
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Japan, PL). The photocurrent response curves, electrochemical impedance spectroscopy,
and Mott–Schottky plots were measured using a DH-7000 electrochemical workstation
(Jiangsu Donghua Analytical Instrument Co., Ltd., China, PC, EIS and MS).

3.3. Photocatalysis Experiment

The photocatalytic activity of the sample was evaluated with MB solution as the target
pollutant. Briefly, 100 mL of MB (10 mg/L) solution and 0.05 g of sample powder were
mixed at room temperature (25 ◦C) and kept neutral. After stirring for 30 min in the dark,
the mixture was irradiated using a 250 W xenon lamp (300–800 nm). Samples were taken
every 20 min. The absorbance of the supernatant was tested at 664 nm. The MB degradation
degree was calculated using the formula (A0 − At)/A0 × 100%, where A0 and At are the
initial and time t absorbances of MB.

On the basis of the MB degradation system, 2 mL (0.1 mol/L) of benzoquinone
(BQ, •O2

− trapping agent), isopropanol (IPA, •OH trapping agent), and ammonium oxalate
(AO, h+ trapping agent) were added to investigate the active species.

4. Conclusions

Pure TiO2 was prepared using the sol–gel method and modified by La/Sn single dop-
ing and co-doping. PT had an anatase/rutile mixed crystalline structure, Sn promoted the
transformation from anatase to rutile, and La inhibited the transformation. The inhibition
of La was stronger than that of Sn, and the phase transformation from anatase to rutile was
inhibited by co-doping. La/Sn co-doping did not produce an obvious red shift; however,
the content of hydroxyl on the surface of TiO2 particles increased, and a synergistic effect
was produced on inhibiting the recombination of photogenerated electrons and holes. The
results of electrochemical experiments also showed that the separation and transfer of
photogenerated charges were faster after La/Sn co-doping, and the quantum efficiency
was improved. Therefore, the photocatalytic activity of LST was superior to that of ST, LT,
and PT. The first-order reaction rate constant of PT was 0.015 min−1, and the first-order
reaction rate constants of ST, LT, and LST were 1.3, 1.2, and 1.8 times higher than that of PT,
respectively. The active species experiments of LST showed that •O2

− radicals were the
main active groups during the photodegradation process.
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