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Abstract
Synthetic biology has a natural synergy with deep learning. It can be used to generate large data sets to train models,
for example by using DNA synthesis, and deep learning models can be used to inform design, such as by generating
novel parts or suggesting optimal experiments to conduct. Recently, research at the interface of engineering biology
and deep learning has highlighted this potential through successes including the design of novel biological parts, pro-
tein structure prediction, automated analysis of microscopy data, optimal experimental design, and biomolecular
implementations of artificial neural networks. In this review, we present an overview of synthetic biology-relevant clas-
ses of data and deep learning architectures. We also highlight emerging studies in synthetic biology that capitalize
on deep learning to enable novel understanding and design, and discuss challenges and future opportunities
in this space.

S ynthetic biologists are beginning to take advantage of
deep learning methods, powered by advances in synthe-
sis and sequencing and the promise of automation. As a

field, synthetic biology applies engineering principles to the de-
sign and construction of biological components and systems for
use in a wide variety of industrial, agricultural, pharmaceutical,
and environmental applications.1 For synthetic biology domains
where it is currently possible to generate large high-quality data
sets, emerging results demonstrate the potential of coupling
deep learning with engineering biology. Deep learning is a
class of machine learning methods that commonly uses models
with multiple layers of artificial neurons to ‘‘learn’’ the relationship
between input and output data. Examples include models that
predict the activity of parts such as promoters based on sequence
data or highly accurate protein structure prediction algorithms.2–5

The goal is to develop a model that, when trained on many
representative examples, can generalize to make predictions
about output given an input it has never seen before. A key fea-
ture of deep learning models is that by passing information se-
quentially between layers in an artificial neural network (ANNs),
these models can progressively extract information from the
input data.6 For instance, when analyzing a microscopy image,
early layers in the network may extract low-level features such

as horizontal or vertical edges, whereas later layers synthesize
this information to recognize patterns or shapes of cells within
the image.7,8 In addition, deep learning networks can encode
complex nonlinear relationships between input values. For ex-
ample, a deep learning model that predicts a protein’s function
from its sequence, can learn that certain combinations of amino
acids act synergistically, increasing activity over the levels
expected given the contributions of individual amino acids.9

To drive future progress at the interface of synthetic biology
and deep learning, there are several challenges that need to be
overcome. From a training standpoint, synthetic biologists are
not traditionally taught deep learning methods and it can be dif-
ficult to keep pace with two rapidly advancing fields in parallel.
In addition, synthetic biology data sets have field-specific con-
straints. In some domains there is an abundance of data, as in
the case of natural sequence information, but these data sets
are limited in their diversity, as nonfunctional sequences or
those that result in very high expression are typically underrepre-
sented. In contrast, other applications are severely limited in the
amount of data available due to practical constraints in imple-
mentation and testing of synthetic biology constructs.

Despite these challenges, recent results hint at the excellent
potential of applying deep learning to synthetic biology, and
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the goal of this review is to cover topics in deep learning
through the lens of engineering biology applications. Although
we focus in this review explicitly on deep learning, we note that
only a subset of synthetic biology data currently satisfies the vol-
ume requirements necessary for training these models. Further-
more, not all synthetic biology problems demand hierarchical or
nonlinear models. For an excellent review that covers machine
learning more generally and its application to various aspects
of biology, we direct readers to the recent article by Greener
et al.10 For reviews of machine learning applied to metabolic en-
gineering, we refer the interested reader to Kim et al, Presnell
and Alper, and Lawson et al.11–13 Finally, for the use of machine
learning in microbiome studies, we recommend the recent re-
view by Marcos-Zambrano et al.14

This review aims to support synthetic biologists in under-
standing and utilizing deep learning approaches in their re-
search, both by providing an overview of methods and also
summarizing the state of the art at the intersection of engi-
neering biology and deep learning. We begin by describing
classes of data that are relevant to synthetic biology and ex-
plain how they can be represented mathematically so they
can serve as inputs for a deep learning model. Next, we review
common deep learning network architectures that are relevant
for engineering biology applications. We then present recent
advances that use deep learning to enable synthetic biology,
highlighting examples from parts design, structure-based
learning, imaging, and other domains. We also review recent
works that engineer biomolecular implementations of deep
learning networks. Finally, we discuss synthetic biology-
specific challenges and potential approaches for mitigating
these issues.

Classes of Data Relevant to Synthetic Biology
and Their Representation
A properly trained deep learning network can take an input and
use it to accurately predict an output. Input data are typically
represented as matrices or vectors of numbers. These mathe-
matical representations are essential for converting biological
problems into ones that are amenable to model training. Iden-

tifying the optimal data representation for a particular problem
is critical to the development of high-performing and generaliz-
able models, as the representation codifies which information is
fed into the model, and constrains the set of learning algorithms
which can be applied.

Practitioners must make careful choices about data represen-
tations to ensure that the independent variables pertinent to the
problem are represented, whereas limiting the number of irrele-
vant or confounding variables, which a model would have to
learn to ignore. Furthermore, smart selection of data representa-
tions can allow the practitioner to leverage the structure of these
representations to reduce the problem space and increase data
efficiency. Here, we describe common types of synthetic biology-
relevant data and how they can be represented numerically.

Sequence data
Thanks to the rapid expansion of sequencing capabilities,15 one
area where we have vast quantities of data is in sequence space.
This can include DNA, RNA, or amino acid sequences. These data
are typically represented as matrices using embeddings, or func-
tions that map sequence elements to vectors. The most basic
embedding is one-hot encoding, so-called because in each em-
bedding vector only a single element is ‘‘hot,’’ taking on a value
of one, whereas all the rest are zero. For example, a sequence
given by a string of nucleic acids (e.g., ATTGGTCA) is converted
into a matrix where the rows represent the possible values, such
as A, T, G, or C, and the columns represent the position within
the sequence (Fig. 1A).

Thus, a 50-mer can be represented by a 4 · 50 matrix. Equiv-
alently, protein sequence data can be represented using one-
hot encoding for each amino acid, such that a 300 amino acid
sequence is represented as a 20 · 300 matrix. One-hot encoding
is straightforward, but in certain cases it can limit the represen-
tational power of the model by disregarding the idea that cer-
tain amino acids might behave similarly at a given point in
the sequence, for example, in terms of their hydrophobicity.
Embeddings of amino acids learned from large unlabeled pro-
tein data sets have been shown to outperform one-hot encod-
ings in certain protein engineering tasks.16,17

A B C D

FIG. 1. Classes of synthetic biology-relevant data and their mathematical representation.
(A) One-hot encoding of sequence data.
(B) Graph-structured molecular data encoded as node (atom) features, edge (bond) features, and a node adjacency matrix.
(C) Images represented as matrices for each color channel.
(D) Time-series data. GFP, green fluorescent protein; OD, optical density.
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Sequence representations can be used on their own, or cou-
pled with additional biophysical features. For example, in a pro-
moter calculator model, La Fleur et al18 used a combination of
one-hot encodings of �35 and �10 sites in addition to features
corresponding to the energetic contributions from distinct parts
of the sequence as input to the model.

Molecular structure data
The structure of molecules, at both the small and macromolec-
ular scales, can be described geometrically in several ways,
either in a string-based representation such as SMILES19 or
derivatives,20 or a learned embedding thereof.21 Alternatively,
a molecule can be represented through its structural formula,
and this formula can be encoded as a graph (Fig. 1B) upon
which graph-based learning methods can be directly applied.
Nodes in the graph are the atoms in the molecule, with a set
of node features defining the atomic identity and properties,
such as atomic mass and charge.22 Edges can be defined as
the bonds between atoms in the molecule, optionally with
edge features and edge weights.

For example, edge features might include bond type,22 and
edges might be weighted by bond length.23 This allows the
structural formula of a molecule to be fully defined as a set of
node features, a set of edge features, and an adjacency matrix,
which encodes which nodes are connected to each other. This
approach has the advantage of explicitly including important
concepts such as atomic locality into the learning framework
and imposing the molecular geometry onto the algorithm
throughout, and has led to significant recent progress in the
drug discovery field, summarized nicely by Wieder et al.24

Alternatively, molecules can be treated as objects in three-
dimensional space by giving their constituent atoms explicit
coordinates alongside their existing node features. These coor-
dinates and node features can be used in machine learning
workflows. Note that these concepts can be abstracted to a
higher-level view of molecular structure, for example, by defin-
ing nodes as nucleotides in DNA and RNA structures, and amino
acids in proteins.

Image data
Synthetic biology experiments can also generate image data,
such as microscopy files. In this case, the pixels are represented
in the rows and columns in the matrix, where the numerical
entries in this matrix correspond to grayscale values within
the image (Fig. 1C). If the image contains multiple color chan-
nels, the dimensions expand to include these values. For exam-
ple, a color image that is 400 · 600 pixels is represented by a
400 · 600 · 3 object that has data associated with the red,
green, and blue color channels.

Time-series, -omics, and other data
Time-series data, such as readouts from a plate reader, can also
be fed into deep learning networks. In this case, data points are
represented as a vector of numbers, with each entry in the vec-
tor corresponding to the value at a specific time point (Fig. 1D).
It is also possible to expand this to include multiple types of

data. For example, plate reader data measuring green fluores-
cent protein expression and optical density for 100 time points
can be represented as a 2 · 100 matrix.

More generally, synthetic biology applications can generate a
variety of ‘‘-omics’’ data sets, such as genomic, transcriptomic,
proteomic, or epigenetic data, which can be represented
using categorical encodings, or with numerical values such as
those associated with biochemical properties, of which the
one-hot encoding described earlier is one example.

Network Architectures and Common Building Blocks
for Deep Learning Models
ANNs are a type of machine learning algorithm inspired by the
way biological neural networks work. In ANNs, an artificial neu-
ron is a mathematical function that is used to simulate the
behavior of a biological neuron. ANN models are used to recog-
nize patterns, classify data, and perform other specific tasks.
Deep learning is a subset of machine learning that uses net-
works with multiple layers of artificial neurons to learn complex
patterns in data. There are a myriad of deep learning architec-
tures, and in this review we introduce some of the more com-
mon representations that have been used in synthetic biology
applications to-date. These include traditional deep learning
networks such as multilayer perceptrons, convolutional neural
networks (CNNs) that are widely used in computer vision and
have also proven useful for sequence analysis, and networks
that take into account the order or importance of information
such as recurrent neural networks (RNNs) and transformers.

For additional information about these topics, Goodfellow
et al6 offer a comprehensive treatment and LeCun et al25 pro-
vide a concise review. We also discuss networks that are well
suited for exploiting the geometry of biochemical structures,
such as graph neural network approaches. We note that this is
not a comprehensive list of modeling approaches–for example,
techniques such as reinforcement learning26 and generative
models27 also have great potential for synthetic biology. In ad-
dition to the network architecture, there are key considerations
about model training, validation, and testing that are critical to
performance. We briefly introduce these ideas in the Supple-
mentary Information S1 and provide citations to more in-
depth content.

Multilayer perceptrons
A traditional ANN architecture uses a set of ‘‘neurons,’’ where
each neuron takes in a series of numerical inputs. These inputs
are multiplied by parameters called weights, and a constant
known as the bias is added. This number is then passed through
a nonlinear function to become the output of the neuron
(Fig. 2A). Historically, researchers used a sigmoid for the nonlin-
ear function, but most modern implementations of deep learn-
ing networks use a rectified linear unit (ReLU) for the neurons
within the hidden layers of the network for reasons of computa-
tional efficiency. Typically, there are many neurons, where the
same inputs are multiplied by different weights for each neuron.
For example, if the inputs correspond to DNA sequence informa-
tion, the weights adjust how each nucleotide factors into
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FIG. 2. Deep learning network architectures.
(A) A single artificial neuron takes in inputs, which are multiplied by weights and added to a bias term. This value is then fed into a nonlinear
function such as the ReLU, shown in the diagram.
(B) A multilayer perceptron network consists of multiple hidden layers, where each neuron is fully connected to the neurons in the layers
around it.
(C) The convolution operation passes a filter over data, such as an image. The values in the filter determine what operation the convolution
implements, such as edge detection. A representative example of a vertical edge detector for light to dark transitions is shown, where
applying this filter to an image region with this light–dark pattern will produce a large value. This could be used in combination with other
filters to detect edges.
(D) CNNs use multiple sequential convolution filters, typically in concert with other operations, where the weights are the values in the filters.
(E) Comparison of information flow in layers of different network architectures. Information flows left to right unless otherwise noted. In fully
connected networks, such as in a multilayer perceptron, each input is connected to each output, with each connection having a learned
weight (weights not shown for simplicity). Convolutional layers only connect outputs to inputs in their local region. Connections share
weights across the set of outputs, acting as filters applied across the entire input. RNNs process each element of the input in turn, passing
information from each iteration to the next. Transformers are fully connected, but have their weights generated from the input data. For each
output, a query is generated from the respective input (red), which is compared with each of the inputs to determine the attention paid to
each input. CNN, convolutional neural networks; ReLU, rectified linear unit; RNN, recurrent neural network.
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determining the ultimate output, such as transcriptional activity.
In cases where the input is a multidimensional array, it can be
unwrapped into a vector (e.g., a 4 · 50 matrix unwrapped into
a 200-dimensional vector).

Multilayer perceptrons stack sets of neurons together in fully
connected networks such that the output of one layer feeds into
the next layer (Fig. 2B). This hierarchical structure allows for
identification of low-level features in early layers and more com-
plex features in later layers. The depth contributed by multiple
sequential layers is where the term ‘‘deep’’ comes from in the
name ‘‘deep learning.’’ In the multilayer perceptron architecture,
each output of a neuron is fully connected to all the nodes in the
next layer downstream. Internal layers in the network are known as
hidden layers, and the final layer is referred to as the output layer.
The output layer is special in that it often collapses to a single value
or a small number of values, in contrast to the earlier layers which
have many outputs. For example, in a network that maps promoter
sequence data to a transcriptional activity, the output could be a
single number quantifying transcriptional activity.

Convolutional neural networks
CNNs can preserve local positional information about how
nearby data are organized in relation to each other. In addition,
they use a parameter sharing structure, where the same model
weights are applied across the entire input. Because of this,
CNNs are especially appropriate for tasks such as image process-
ing, where adjacent pixels contain related information, and
where operations such as edge detection should be performed
uniformly across the image. For each convolutional layer in the
network, the input is convolved with a filter (or filters), and then
passed through a nonlinear activation function. Filters can be
used to detect specific patterns.

In traditional filter-based analysis tasks the numerical values
in the filter are hand-selected to specify properties that a user
deems likely to be important, for example, edge detection
(Fig. 2C). In contrast, CNNs use filter parameters as the weights
of the model, which are learned by the network (Fig. 2D).
CNNs typically use a series of convolution steps to perform se-
quential analysis operations that can abstract features, such as
patterns or color gradients. Convolution layers are often inter-
spersed between layers that perform other mathematical oper-
ations, such as pooling, which is used to concentrate
information by reducing the dimensionality of the data. CNNs
can also include elements of other network architectures, such
as following convolutional layers by fully connected layers.

Recurrent neural networks
RNNs are a class of models designed for use with sequential data.
They operate by iterating over the data sequence, and recursively
updating the model’s internal state (or memory) based on the
content of the internal state and the next value in the input se-
quence (Fig. 2E). Classically, these networks have been used for
language processing, where the order of words is important for
context and meaning. Similarly, these networks are appropriate
for processing biological time-series data or sequence informa-
tion. For example, when processing DNA sequences, the relative

positioning of start and stop codons is highly significant for deter-
mining protein expression. However, the recursive nature of these
networks presents several limitations. Most importantly, simplistic
RNNs do not learn long-term dependencies between elements
that are far apart in sequence space due to the vanishing gradi-
ents problem,28 and their recursive nature prohibits parallelism
in implementation, limiting their scalability.

A critical improvement to the performance of RNNs came
with the development of long short-term memory (LSTM) net-
works.29 LSTM models were designed with the aim of improving
the limited temporal memory of RNNs by adding a long-term
memory state to the model, where the model must make ex-
plicit decisions to remove or add information to the long-term
memory. For example, if a model is trying to predict whether
a protein will be translated from a given mRNA, the presence
of a stop codon would likely be placed into long-term memory
and kept there until a downstream start codon is identified. Fur-
ther details about LSTM models can be found in the review by
Van Houdt et al30 and an example of their application in syn-
thetic biology is included in Angenent-Mari et al.31 Numerous
variants of the LSTM exist32; of notable mention for the inter-
ested reader is the gated recurrent unit.33

Transformers
The transformer is a more recent model developed for sequen-
tial data, which eliminates the problems of limited memory
encountered with RNN variants, whereas also being more com-
putationally efficient and parallelizable through the elimination
of recurrence. The transformer has demonstrated paradigm-
shifting performance on sequence-based tasks, outperforming
RNNs and LSTMs across the board.34 Transformers have even
demonstrated the ability to outperform CNNs on computer
vision problems,35 although they were not originally designed
for such tasks. This transformative performance is achieved by
avoiding the concept of model memory, and instead allowing
the model to view and generate outputs for every position in
the entire sequence of data at once.

For each output, the model selects which parts of the se-
quence to draw information from. This is achieved through
what is known as an ‘‘attention’’ mechanism, where the model
can learn what information is important at each point in the se-
quence, and focus on passing that information forward (Fig. 2E).
For example, a model predicting the behavior of a small RNA
that might form secondary structures is likely to place a lot of at-
tention on sequences that are complementary to the sequence
of interest (e.g., outputs for ‘‘CGA’’ will include a lot of informa-
tion from another part of the sequence containing ‘‘UCG’’). The
mathematical details of the attention mechanism are beyond
the scope of this review, but the reader is encouraged to read
Vaswani et al34 and Chaudhari et al36 for further details.

Graph neural networks and geometric approaches
Methods for learning on sequence and image data take advan-
tage of the regular Euclidean structure of the data and the nat-
ural concept of spatial locality that it imparts. Other structured
data, such as structural formula graphs of molecules, secondary
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structure graphs of DNA and RNA, or atomic coordinate data for
proteins, do not have these same structural properties. However,
they do have their own symmetries and definitions of locality,
which can be used to construct learning frameworks. Graph
neural networks were designed specifically to generalize the in-
formation flow in Euclidean neural networks to graph structure,
defining a scalable and generalizable approach for passing in-
formation between nodes through the irregular edge connec-
tions between them, which act to encode the structure’s locality.

This allows for the learning of high-quality representations of
structured data, which can be used to perform node labeling or
edge prediction tasks, or pooled together across the structure
and fed into a multilayer perceptron to perform classification or
regression at the molecule scale. Bronstein et al37 present a com-
prehensive and detailed primer for viewing machine learning
from a geometric perspective, and Zhou et al38 provide a break-
down of the specifics of graph neural network development.

Synthetic Biology Applications
In this section, we turn to examples of deep learning as applied
to synthetic biology research (Fig. 3A). We review recent prog-
ress on the design of biological parts, structure-based learning,
imaging applications, optimal experimental design, and biomo-
lecular implementations of neural networks.

Design and modeling of biological parts
Researchers have made significant recent progress in using deep
learning to predict the function of biological ‘‘parts,’’ such as pro-
moters, ribosome binding sites (RBSs), and 5¢ and 3¢ untranslated
regions (UTRs).2,31,39–46 Because these parts are often constrained
in length—for example, *50 nucleotides for a 5¢ UTR sequence
or *300 for a promoter—it is possible to use DNA synthesis to
generate large randomized or semirandomized libraries, where
function can be measured with massively parallelized reporter as-
says coupled with next-generation sequencing. The ability to syn-
thesize large libraries represents an ideal example of how
synthetic biology approaches can generate the training sets re-
quired for data-hungry models.

For example, Sample et al41 developed a deep learning
model, Optimus 5-Prime, which accurately predicts how the 5¢
UTR sequence controls ribosomal loading. Although data sets
from endogenous human 5¢ UTRs do exist that relate sequence
to translation efficiency,47,48 these natural data sets are not ideal
for model training because sequences with deleterious effects
are likely to be underrepresented in natural examples, and en-
dogenous transcript data are not sufficiently diverse to capture
a broad range of expression levels.

To circumvent these issues, Sample et al synthesized and an-
alyzed data from a 280,000-member library consisting of ran-
dom 50-nucleotide 5¢ UTR sequences upstream of the coding

FIG. 3. Synthetic biology applications enabled by deep learning.
(A) Examples of relevant inputs to deep learning networks and their associated output predictions. Many models are implemented
computationally; however, biomolecular implementations also exist.
(B) Deep learning can be used to make predictions given a new input. Models can also be used in reverse to generate novel designs given
a desired output.
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sequence for green fluorescent protein. Data from transfected
HEK293T cells were used to train the Optimus 5-Prime model,
where the inputs to the model were one-hot encoding repre-
sentations of the 5¢ UTR sequence and the output was the
mean ribosome load values. The researchers used a CNN and
the model had excellent performance, explaining up to 93%
of the mean ribosome loading values in the test set.

Similar approaches, which combine DNA synthesis, massively
parallel reporter assays, and deep learning, have been used for
promoter designs. Synthetic biologists have traditionally used a
relatively small number of native promoters in their construct
designs. Although artificial promoter libraries exist,49–51 they
are often derivatives of existing sequences, such as those
achieved through mutagenesis, which limits diversity. Further-
more, there is a dearth of very strong promoters, as they are un-
derrepresented in natural contexts. Using massively parallel
reporter assays, Kotopka and Smolke2 characterized a library
of promoter variants. The design preserved conserved se-
quences within the promoter and randomized the remainder
(*80% of the sequences).

This highlights a potential approach for accessing larger
sequence spaces, by using a combination of rational and
randomized designs. The researchers used a combination of
fluorescence-activated cell sorting and high-throughput DNA
sequencing (FACS-seq) to bin cells by expression levels and
then sequenced the promoter regions within each bin. These
data were used to train a CNN, where the model accepts DNA
sequence as input and outputs an activity prediction. Overall,
the model predictions generalized well to test data, achieving
R2 values >0.79 for all libraries, representing a significant
achievement given these complex sequences. This approach
of using massively parallel reporter assays is widely generaliz-
able. For example, Jores et al52 built synthetic promoters for
plant species, including Arabidopsis, maize, and sorghum, and
trained a CNN to predict promoter strength.

Massively parallel reporter assays are not the only way to gen-
erate large data sets, and other approaches may be less prone to
biases that can be introduced in processing. For example, Holl-
erer et al used genetic reporters to create a large data set that
directly links sequence to function, applying it to develop a
deep learning model that predicts translation activity of an
RBS with high accuracy.42 The researchers built a library of
300,000 bacterial RBSs and placed them upstream of a site-
specific recombinase that flips a particular DNA sequence lo-
cated in a region adjacent to the recombinase.

By sequencing the region containing both the RBS and the
recombinase sites, the researchers could assess function by
measuring what proportion of constructs had undergone re-
combination for each RBS sequence. They used this data set
to train a ResNet53 (a CNN variant), ultimately yielding a model
that predicted RBS function with high accuracies (R2 = 0.927). It
is worth noting that the general approach used to create a phys-
ical DNA-recorded link between gene regulatory element func-
tion and DNA sequence is not restricted to RBS optimization,
and could be employed for a variety of other tasks including
transcriptional or translational biosensor design or the optimiza-
tion of promoter sequences. Despite the excellent potential of

using synthetic sequences to generate diverse libraries, there
are some limitations to this approach. Studies using deep learn-
ing to generate novel synthetic parts have frequently encoun-
tered the issue that using purely randomized sequences
results in many parts that do not work. The flip side of natural
elements being biased in their representation is that purely ran-
dom parts are also likely to have low rates of success.

Researchers have circumvented this problem by employing
semi-rational methods, such as interspersing regulatory ele-
ments known to yield functional promoters with randomized se-
quences2 and using model predictions to select libraries that are
enriched for elements with intermediate or strong function.42 In
addition, the length of the sequence will ultimately place limits
on the diversity of the library. The ability to synthesize and se-
quence longer regions may lead to decreased coverage and
data quality that is biased in the case of longer sequences. In ad-
dition, researchers must make trade-offs between the length of
sequencing reads, library size, and sequencing depth.

The benefits of focusing on specific sequence regions as
‘‘parts’’ needs to be balanced with the fact that gene regulation
is complex. For example, Zrimec et al54 showed that interactions
between coding and noncoding regions are important for deter-
mining gene expression levels. Although they demonstrated
that DNA sequences can be used to predict mRNA abundance
directly with some accuracy (R2 = 0.6 on average across a
broad range of model organisms, including Saccharomyces cer-
evisiae, Arabidopsis thaliana, Homo sapiens, and others), what
was notable from their deep learning results was that it was
the interaction between regulatory motifs and not necessarily
the motifs themselves that determined mRNA abundance.
These results serve as a critical reminder that biological parts
do not exist in isolation.

Generative approaches for new synthetic parts
For synthetic biology applications it is often desirable for a model
to be not just predictive (e.g., from sequence to predicted perfor-
mance), but also generative (e.g., from desired performance to se-
quence, Fig. 3B). Non-deep learning examples have proved very
valuable to the engineering biology community. For example,
the RBS calculator55 can generate novel designs based on a ther-
modynamic model, and synthetic 5¢ UTR sequences have been
successfully made based on genetic algorithms.41

Mechanistic modeling approaches are very powerful; however,
they require expert knowledge of which features contribute to
performance. Generative approaches based on deep learning
models are an exciting area for development, as these tools are
moving toward the ability to work backward, such as from spec-
ifications about translation efficiency to candidate sequence de-
signs. For example, in their study on yeast promoters, Kotopka
and Smolke2 used a CNN model to implement sequence-design
strategies, ultimately showing that the best algorithms yielded
strong synthetic constitutive and inducible promoters.

However, traditional approaches to design optimization can
be prone to practical pitfalls, including computational ineffi-
ciency and a propensity to get stuck at local optimization min-
ima. Furthermore, these algorithms have no constraints on
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sequence diversity, which can be problematic in cases where
many distinct library variants need to be generated. Deep gen-
erative models have the potential to address these gaps, and in-
clude models such as variational autoencoders, autoregressive
models, and generative adversarial networks.56,57 In an example
of this approach, Linder et al58 developed a deep exploration
network framework. Their approach optimized fitness for the
desired function, whereas also explicitly maximizing sequence
diversity by using a similarity metric that penalizes sequence
similarities that exceed a threshold.

Generative models have also begun to see success in the field
of peptide engineering for simple problems dealing with short-
chain peptides, including the design of antimicrobial pep-
tides.59,60 We point the interested reader toward the recent re-
view by Wan et al61 for further details.

Structure-based applications
Rapid progress in the field of geometric deep learning has
facilitated an explosion of research into structure-to-function
learning in biotechnology. Perhaps the most high-profile case
is that of DeepMind’s AlphaFold 2 protein structure prediction
model,3,62 which boasts protein structure prediction accuracy
high enough to be usable as a replacement for costly and
time-consuming protein crystallography. The model takes the
protein sequence and multiple sequence alignments to similar
proteins as inputs, and performs learning on three different
data structures: a sequence-level representation, a pairwise nu-
cleotide interaction representation, and the atom-level 3D struc-
ture of the protein generated by the model.

The 3D structure is represented by a cloud of unconnected
nodes corresponding to the backbone elements of each of
the nucleotides, each with their corresponding amino acid
side chains. A geometrically equivariant attention mechanism
is used to take advantage of the rotational and translational
symmetries inherent in the geometry of 3D space. Other appli-
cations of interest in the protein space are protein engineering
and sequence-function mapping.9,63–67 For example, Gelman
et al9 demonstrated that deep networks, such as convolutional
networks, can accurately make predictions about function for
new uncharacterized sequence variants when trained on data
from deep mutational scanning assays.

The problem of predicting 3D RNA structure is made more dif-
ficult by the lack of existing structural data as compared with the
protein folding problem. Although >100,000 protein structures
have been characterized, high-fidelity structures only exist for
a handful of RNA structures. One interesting technique for over-
coming this limitation has been deployed by Townshend et al,68

where they reframe the problem not as one of predicting the
RNA structure end-to-end with a deep learning model, but in-
stead using deep learning to score the structural predictions
generated by the FARFAR2 algorithm. This facilitated a massive
amplification of the available data set, which consists of only 18
RNA structures. It is trivial to generate thousands of candidate
structures for each of the RNA molecules in the training data
set, and instead learn to predict the similarity between candi-
date structures and the ground truth. The structural scoring

function learned, dubbed the Atomic Rotationally Equivariant
Scorer (ARES), achieves significantly improved accuracy com-
pared with existing non-machine learning techniques.

Structural learning on small molecule graphs has expanded
rapidly in recent years in the fields of drug discovery69,70 and
drug repurposing.71 For example, Stokes et al72 employed
graph neural networks to predict antibiotic behavior in small
molecules in combination with screening assays, identifying a
novel drug called halicin as an effective antibiotic in mouse
models. Other fields, such as those concerning the simulation
of molecular dynamics, have seen similar growth and interested
readers are pointed to Noé et al73 for further details.

Imaging and computer vision applications
Computer vision is an area where deep learning has enabled
exceptional progress.74 In the context of synthetic biology, im-
aging applications can include automated detection of proper-
ties within an image, such as colony formation on a plate or
analysis of microscopy data. Two examples of image analysis
tasks include classification (e.g., identify if a colony exists or
not) and segmentation (e.g., identify the sets of pixels corre-
sponding to each cell in an image). Classification is the simpler
of these tasks and classic CNN algorithms from computer
vision were developed for this type of task, such as LeNet-5,75

AlexNet,7 and ResNets.53 These classic algorithms traditionally
involved deep neural networks with many parameters (e.g.,
AlexNet uses *60 million parameters). More compact versions,
such as MobileNetv276 (*3 million parameters) have emerged
to reduce this complexity, offering a practical alternative.

Segmentation, or identifying the exact location of an object
within an image, is a more complex task but is particularly helpful
for quantification. For example, segmentation is useful for detect-
ing the location of cells within a microscopy image so that fluo-
rescence values can be extracted. The field experienced a major
breakthrough with the introduction of the U-Net algorithm,77

a CNN that performs exceptionally well on biomedical data.
Examples of notable deep learning algorithms that are relevant
for single-cell resolution data include DeepCell,78 DeLTA,79,80

YeaZ,81 MiSiC,82 and CellPose.83 Image analysis algorithms are
also capable of handling more advanced analysis tasks, such as
tracking cells from frame-to-frame within time-lapse images
and working with 3D image data. For more comprehensive cov-
erage of algorithms for image analysis we point readers to re-
views by Jeckel and Drescher84 and Moen et al.85

Optimal experimental design
Data labeling for synthetic biology problems is often very ex-
pensive compared with other fields, requiring specialist knowl-
edge of the problem and sometimes full laboratory-based
data collection pipelines. This cost is a particular problem for
deep learning models, which require significant training data.
This motivates interest in ensuring that practitioners do not
waste time and resources labeling data that do not provide
much additional information to a model. The selection of spe-
cific data to label, or experiments to perform, is a form of opti-
mal experimental design referred to in the machine learning
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community as active learning. Taking such an approach with
deep learning problems can significantly reduce the cost of
data set creation.86,87 We provide an introduction to key ideas
in optimal experimental design and active learning in the Sup-
plementary Information S1.

Deep learning methods for optimal experimental design are
not yet widely used in engineering biology; however, the poten-
tial of laboratory automation and preliminary results based on
simulation suggests that this is a fertile area for future research.
Treloar et al88 used deep reinforcement learning to control a sim-
ulated chemostat model of a microbial coculture growing in a
continuous bioreactor. The authors demonstrated that a satisfac-
tory control policy can be learned in a single 24 h experiment by
running five bioreactors in parallel and that deep reinforcement
learning can be used to decide on the best sequence of inputs
and control actions to apply to a continuous chemostat so as to
maximize the product output of a microbial coculture bioprocess.

This constitutes a computational example of deep learning-
driven optimal experimental design where reinforcement learn-
ing is used to infer near-optimal sequences of inputs to a biore-
actor to control a complex system. Future efforts in optimal
experimental design can build upon existing approaches from
machine learning, such as those that have been deployed for
metabolic engineering applications.13,89–93

Biomolecular implementations
of deep learning networks
Although deep learning models are typically implemented using
computers, several recent studies have demonstrated that ANN
mimics can be constructed using biomolecular components.
These designs engineer biochemical systems and living cells
that can perform computations and ‘‘learn’’ to solve simple
benchmark optimization problems. One of the key reasons
why this is possible comes from the fact that inducible gene re-
sponses to chemical inducers typically resemble a sigmoidal
function of the concentration of the inducers, and can thus
serve as the nonlinear function in the neuron model.

Based on this, Moorman et al94 presented the theoretical archi-
tecture of a biomolecular neural network, that is, a dynamical
chemical reaction network that faithfully implements ANN com-
putations, and demonstrated its use for classification tasks. The au-
thors emphasized the usefulness of molecular sequestration for
achieving negative weight values and of the sigmoidal activation
function in its elemental unit called a biomolecular perceptron.
Following up on this, Samaniego et al95 theoretically demon-
strated that interconnected phosphorylation/dephosphorylation
cycles can operate as multilayer biomolecular neural networks.

As an application, they designed signaling networks that theo-
retically behave as linear and nonlinear classifiers. In a study by Sar-
kar et al,96 a single-layer ANN was experimentally implemented in
Escherichia coli cells, demonstrating the use of engineered bacteria
as ANN-enabled wetware that can perform complex computing
functions such as multiplexing, de-multiplexing, encoding, decod-
ing, majority functions, or Feynman and Fredkin gates. In Li et al,97

ANNs were implemented in consortia of bacteria communicating
through quorum-sensing molecules.

These engineered consortia were then used to recognize 3 · 3
binary patterns. Prakash et al98 developed memregulons, a new
class of genetic switches acting as both memory systems and
logic gates, and engineered them in E. coli cells to implement
a reinforcement learning algorithm that allows engineered bac-
teria to play the tic-tac-toe game. Learning was achieved by per-
sistently modifying the relative expression of memregulons
through the application of external chemicals after each training
game was won or lost. Bacteria learn by playing against other
players or other bacteria in an unsupervised manner.

In the study by Sarkar et al,99 simple genetic circuits distributed
among various bacterial populations were used to solve chemically
generated 2 · 2 maze problems by selectively expressing four dif-
ferent fluorescent proteins, demonstrating the possibility of using
engineered bacteria to perform distributed cellular computations
and optimizations. In van der Linden et al,100 the authors geneti-
cally implemented a perceptron capable of binary classification.
This was achieved through the use of toehold switch riboregula-
tors to construct a synthetic in vitro transcription and translation-
based weighted sum operation circuit coupled to a thresholding
function. This synthetic genetic circuit was then used for binary
classification, that is, the expression of a single output protein
only when the desired minimum number of inputs is exceeded.

Using metabolic components, Pandi et al101 presented an ap-
proach for biological computation through metabolic circuits
implemented in both whole-cell and cell-free systems. The
implementation relies on metabolic transducers used to build
metabolic perceptrons, which are analog adders that implement
a linear combination of the concentrations of multiple input me-
tabolites with adjustable weights. Based on this, the authors
built two four-input metabolic perceptrons that were used for
binary classification of metabolite combinations, thereby laying
the groundwork for rapid and scalable multiplex sensing
through metabolic perceptron networks.

Following up on this, Faure et al102 recently showed that artificial
metabolic networks can be used to implement RNNs that can be
trained to predict growth rates or the consensual metabolic behav-
ior of an organism in response to its environment. As the proposed
artificial metabolic networks can optimize various objective func-
tions, they could be used to obtain optimal solutions in various in-
dustrial applications, such as searching for the optimum media for
the bioproduction of compounds of interest or to engineer
microorganism-based decision-making devices for the multiplexed
detection of metabolic biomarker or environmental pollutants.

Such biological manifestations of ANNs and machine learning
paradigms implemented at the biomolecular level open ave-
nues for new research into the engineering of living cells for
solving complex computing, decision-making, and optimization
problems.

Opportunities for Reducing Experimental
Data Set Requirements
Deep learning models can be notoriously data-hungry, which
poses a major challenge for domains of synthetic biology
where it is challenging to generate large data sets. However,
there are several potential paths around this through methods
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such as transfer learning or with the use of simulated data, data
augmentation strategies, or approaches that incorporate con-
straints based on physical models. We introduce these ideas
and discuss their potential role in synthetic biology applications
in the Supplementary Information S1.

Conclusions
Research at the intersection of synthetic biology and deep learn-
ing holds great promise for the design of novel sequences and
constructs, the automation of data analysis, optimal experimen-
tal design, and many other applications. Although we have fo-
cused this review on deep learning methods, it is worth
noting that simpler models can have distinct advantages.
Deep learning models can effectively be black boxes due to
the number or parameters and complexity of the architectures
involved, reducing the interpretability of the model.

Before turning to deep learning models, it is often advisable
to try more straightforward machine learning approaches to un-
derstand their performance first. For example, Sample et al41

tested a linear regression model on their 5¢ UTR data set,
which served as a useful point of comparison with their CNN-
based results. It will also be helpful to understand the trade-
offs between performance and complexity for specific applica-
tions, and studies aimed at exploring this are likely to be valu-
able. For instance, Nikolados et al103 compared models of
increasing complexity to compare their ability to predict protein
expression from DNA sequence. Finally, the amount of data
available also places important constraints on whether deep
learning approaches are appropriate, as deep models require
large training sets.

Overall, deep learning methods have already had a substan-
tial impact on the field of synthetic biology and we anticipate
significant advances in this area moving forward. In this review,
we have aimed to provide an overview of approaches and appli-
cations for deep learning in synthetic biology. We have also
highlighted challenges and opportunities that exist for working
with biological data sets, with the goal of helping researchers in
engineering biology incorporate deep learning methods and in-
sights into their toolset.
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