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Abstract: Chronic obstructive pulmonary disease (COPD)
is mainly caused by cigarette smoking (CS), with oxidative
stress being one key component during its pathogenesis.
This study aimed to investigate the effects of quercitrin
(QE) on cigarette smoke extract (CSE)-induced cell apop-
tosis and oxidative stress in human bronchial epithelial
cells (HBECs) and its underlying mechanism. HBECs were
treated with 2% CSE for 24 h to establish in vitro COPD
cellular models. CCK-8 assay and flow cytometry analysis
were performed to evaluate cell viability and apoptosis,
respectively. Western blotting was applied to examine pro-
tein levels and ELISA kits were used to examine contents
of the indicated oxidant/antioxidant markers. The results
demonstrated that CSE promoted apoptosis and suppressed
viability of HBECs and QE reversed these effects. CSE caused
increase in T-AOC, superoxide dismutase, and glutathione
(GSH) peroxidase contents and decrease in MDA, reactive
oxygen species , and GSH contents in HBECs, which were
rescued by QE treatment. The CSE-induced Nrf2 nuclear
translocation and elevation of NAD(P)H: quinone oxido-
reductase 1 (NQO1) and heme oxygenase-1 (HO-1) expression
were also reversed by QE in HBECs. The mitogen-activated
protein kinase (MAPK) signaling was activated by CSE and
further suppressed by QE in HBECs. Collectively, QE exerts a
protective role in HBECs against cell apoptosis and oxidative

damage via inactivation of the Nrf2/HO-1/NQO1 pathway
and the MAPK/ERK pathway.
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citrin, oxidative stress, the Nrf2/HO-1/NQO1 pathway, the
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1 Introduction

It has been estimated that chronic obstructive pulmonary
disease (COPD) ranks third among leading causes of mor-
tality by 2020 [1]. COPD is characterized by chronic
airway inflammation and progressively irreversible air-
flow limitation [2]. Cigarette smoking (CS) is considered
as the predominant factor, accounting for approximately
80–90% of all COPD cases [3]. Oxidative stress is one key
component in COPD pathogenesis [4]. Oxidative stress
refers to the imbalance of oxidation and antioxidation
in the body attacked by harmful stimulating factors [5].
It can directly damage lung tissues and cause gene
expression of proinflammatory mediator, exudation of
inflammatory cells, and oxidative inactivation of pro-
tease, thereby facilitating the development of COPD [6].
Superoxide dismutase (SOD), reactive oxygen species
(ROS), glutathione (GSH), and GSH peroxidase (GSH-Px)
are markers of oxidative stress [7]. Heme oxygenase-1
(HO-1) is a crucial endogenous enzyme that catalyzes
heme decomposition and generates carbonmonoxide, bili-
verdin, and ferrous iron to modulate apoptosis, inflamma-
tion, and oxidative stress [8]. NAD(P)H: quinone oxidore-
ductase 1 (NQO1) is also a significant enzyme related to cell
apoptosis and oxidative stress [9,10]. Therefore, exploring
the mechanism underlying the oxidative stress in COPD is
of great significance for clinical treatment of COPD.

Flavonoids possessing anti-inflammatory and anti-
oxidant activities, easily infiltrate the blood–brain barrier
and provide neuroprotection in a series of animal and
cellular models of neurological diseases [11,12]. Querci-
trin (QE) (2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxo-
4H-chromen-3-yl6-deoxyalpha-L-mannopyranoside) is a
class of natural flavonoids in the leaves, flowers, and
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fruits of numerous plants [13,14]. QE was demonstrated to
have anti-apoptosis, anti-inflammatory, and anti-oxida-
tive effects [15,16]. Previous reports showed that QE mark-
edly attenuated inflammatory response in the livers of
mice as well as reduced acute systemic inflammation
in lipopolysaccharide (LPS)-induced models [17]. QE can
alleviate apoptosis and inflammation in cytokine-induced
models [18]. It has been revealed that QE displays organ
protective properties in the kidney, liver, and pancreas by
elevating the antioxidant status [19]. Therefore, we aimed
to explore the function of QE on apoptosis and oxidative
stress in COPD.

Mitogen-activated protein kinase (MAPK) signaling
pathway plays a key role in regulating lung inflamma-
tion, and can be activated in a cell-stimulus-specific
manner [20]. The activation of MAPK signaling pathway
involving p38 and ERK has been reported in cigarette
smoke extract (CSE)-exposed human bronchial epithelial
cells (HBECs) or in COPD patients [21,22]. We intended to
explore whether this signaling is involved in cell apop-
tosis and oxidative stress during COPD progression.

Herein we intended to figure out the specific role of
QE in COPD.We established CSE-stimulated cellular models
of COPD to elucidate the potential mechanisms of QE on
apoptosis and oxidative stress in HBECs, whichmay provide
a potential new direction for COPD treatment.

2 Materials and methods

2.1 CSE preparation

The smoke from 10 cigarettes was bubbled through 25 mL
of media. The suspension was titrated to pH 7.4, filter-
sterilized, and regarded as 100% CSE. The CSE sample
was diluted with phosphate buffer saline (PBS, Invitrogen,
Carlsbad, CA, USA) to gain concentrations of 2%, and CSE
was frozen in aliquots at −80°C.

2.2 Cell culture and treatment

HBECs were obtained from Chinese Academy of Cell
Resource Center (Shanghai, China) and were incubated
in Roswell Park Memorial Institute 1640 (RPMI-1640;
Sigma-Aldrich, St. Louis, MO, USA) medium containing
10% fetal bovine serum (FBS; Invitrogen) in 5% CO2 at
37°C. QE was purchased from Sigma-Aldrich and dissolved
in dimethyl sulfoxide (final concentration 0.05%) for cell
culture. Cells were treatedwith QE at different concentrations

(0 or 22.4 µg/mL) for 24 h. CSE cellular models were divided
into four groups: saline + Con group (0% CSE and 0µg/mL
QE), saline + CSE group (2% CSE and 0µg/mL QE), QE + Con
group (0% CSE and 22.4 µg/mL QE), and QE + CSE group
(2% CSE and 22.4 µg/mL QE).

2.3 CCK-8 assay

The viability of HBECs was measured by CCK-8 assay. In
brief, the cells were dispersed evenly in the medium and
then seeded at a density of 4 × 104 cells/well in 96-well
plates. Next day, after the cells were treated with indi-
cated reagents, 10 µL of CCK-8 solution (Sigma-Aldrich)
was added into each well, followed by 2 h of incubation.
The optical density at 450 nm was determined using a
microplate reader (Thermo Scientific, Rockford, IL, USA).

2.4 Flow cytometry analysis

Flow cytometry was used to evaluate the apoptosis of
HBECs. Cells at a density of 5 × 104 cells/well were seeded
into 6-well plates, and then harvested and washed. After
indicated treatment, cells were resuspended and stained
with 5mL of Annexin V-fluorescein isothiocyanate (FITC)
and 1mL of Propidium Iodide (PI) (Beyotime Biotechnology,
Beijing, China) in the dark at room temperature for 10min.
Cell apoptosis rate was analyzed using a FACScan flow
cytometry (BD Bioscience, San Jose, CA, USA).

2.5 Western blot analysis

Proteins were extracted by RIPA lysis buffer (Beyotime
Biotechnology). A nuclear/cytoplasmic isolation kit (Beyotime
Biotechnology) was used to obtain cytoplasmic and nuclear
extracts. Protein extracts were determined using the BCA assay
kit (Sigma-Aldrich). Samples containing equal amount of pro-
tein were separated in 10% sodium dodecyl sulfate polyacryl-
amide gel electrophoresis and transferred onto a nitrocellulose
membrane.After blockingwith 5%non-fatmilk, themembrane
was incubated with primary antibodies including anti-Bcl-2
(ab32124, 1:1,000, Abcam, Cambridge, UK), anti-Bax
(ab182733, 1:2,000, Abcam), anti-cleaved caspase-3 (ab2302,
1:500, Abcam), anti-HO-1 (ab52947, 1:2,000, Abcam), anti-
NQO1 (ab80588, 1:10,000, Abcam), anti-Nrf2 (ab137550,
1:500, Abcam), anti-ERK (ab32537, 1:1,000, Abcam), anti-
pERK (ab76299, 1:5,000, Abcam), anti-p38 (ab182453, 1:1,000,
Abcam), anti-p-p38 (ab178867, 1:1,000, Abcam), anti-
Lamin A/C (ab133256, 1:10,000, Abcam), and anti-β-actin
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(ab8227, 1:3,000, Abcam) overnight at 4°C. Then, the
membranes were incubated with horseradish peroxidase-
conjugated secondary antibodies for 2 h at room tempera-
ture after being washed with TBST for three times. The
signals of protein bands were observed by a chemilumines-
cence detection system (Thermo Fisher Scientific). Protein
expressionwas normalized to Lamin A/C for nuclear protein
and β-actin for total/cytoplasmic protein. The experiment
was repeated in triplicate independently.

2.6 Measurement of oxidative stress markers

Commercially available ELISA kits (Thermo Scientific)
were used to measure total antioxidant capacity (T-AOC),
malondialdehyde (MDA), ROS, GSH, SOD, and GSH-Px in
HBECs. Results were normalized to protein concentration in
HBECs.

2.7 Statistical analysis

Data are presented as the mean value ± standard devia-
tion (SD) from at least three independent experiments.
Comparisons between two groups or among multiple
groups were analyzed by Student’s t test or one-way ana-
lysis of variance (ANOVA) followed by Tukey’s post hoc
test using software Prism 7.0 (GraphPad). P < 0.05 was
considered statistically significant.

3 Results

3.1 The molecular structure formula of QE

First, we discovered the molecular structure formula of
QE, as shown in Figure 1. QE solubility in polar solvents
and its absorption were improved by the sugar portion
bound to the aglycone portion [23].

3.2 QE rescues the decreased viability and
increased apoptosis of CSE-treated
HBECs

To explore the biological function of QE in COPD, we
mimicked COPD characteristics by establishing CSE-induced
cellular models. HBECs were treated with 2% CSE for 24 h.
First, CCK-8 assay was performed to evaluate cell viability.

The results suggested that CSE treatment attenuated cell
viability and QE stimulation partially restored cell viability
(Figure 2a). Moreover, flow cytometry analysis suggested
that the apoptosis of HBECs was promoted by CES stimula-
tion and rescued by QE treatment (Figure 2b and c). In addi-
tion, western blotting depicted that Bax and cleaved caspase-3
protein levels in HBECs were upregulated by CSE stimulation,
while Bcl-2 protein level was downregulated after CSE treat-
ment. However, the changes in the protein levels of Bax,
Bcl-2, and cleaved caspase-3 caused by CSE stimulation
were reversed by QE treatment (Figure 2d–g). Collectively,
QE can rescue CSE-induced reduction in lung epithelial cell
viability and elevation in cell apoptosis.

3.3 QE rescues the CSE-induced oxidant/
antioxidant imbalance in HBECs

To investigate the anti-oxidative capacity of QE, the con-
tent of oxidative/anti-oxidative markers in HBECs were
evaluated using ELISA kits. Levels of T-AOC, SOD, and
GSH-Px were reduced, while levels of MDA, ROS, and
GSH were elevated by CSE exposure (Figure 3a–f). This
indicated that CSE led to oxidant damage in HBECs. How-
ever, the subsequent QE treatment rescued the elevation of
MDA, ROS, and GSH contents as well as reduction in T-AOC,
SOD, and GSH-Px contents caused by CSE (Figure 3a–f).
Overall, QE alleviates CSE-induced oxidative damage inHBECs.

3.4 QE suppresses CSE-induced activation
of Nrf2 and antioxidant enzymes HO-1
and NQO-1 in HBECs

Subsequently, we explored the influence of QE on enzyme
expression. Through western blotting, we found that CSE

Figure 1: The molecular structure formula of QE.
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treatment markedly upregulated NQO1 and HO-1 protein
expression in HBECs compared to saline + Con group,
while NQO1 and HO-1 protein levels were significantly
decreased in QE + CSE group vs saline + CSE group. QE
alone had no significant effect on NQO1 and HO-1 protein
level (Figure 4a). Next we evaluated the influence of QE on
Nrf2 translocation under CSE treatment since Nrf2 is a key
regulator of cytoprotective genes in response to oxidative
stress [24]. Nrf2 was observed translocating from cyto-
plasmic fractions to nuclear fractions in saline + CSE
group, while the translocation was rescued by QE treat-
ment in HBECs (Figure 4b). The levels of both cytoplasmic
and nuclear Nrf2 showed no significant difference in Saline

+ Con group and QE + Con group, suggesting that QE alone
had no marked effect on CSE-induced Nrf2 translocation.
In summary, QE suppresses CSE-induced activation of Nrf2
and antioxidant enzymes HO-1 and NQO-1 in HBECs,
thereby alleviating CSE-induced oxidative damage.

3.5 QE inactivates the MAPK/ERK signaling
pathway in HBECs

We further investigated the underlying mechanism of
oxidative stress and apoptosis in HBECs. Previous report
has demonstrated that several signaling pathways regulate

Figure 2: Effects of QE on the viability and apoptosis of CSE-treated HBECs. (a) CCK-8 assay was applied to measure lung epithelial cell
viability in saline + Con group, saline + CSE group, QE + Con group, and QE + CSE group. (b and c) Flow cytometry analysis was used to
evaluate lung epithelial cell apoptosis in each group. (d–g) Western blotting was performed to detect protein levels of Bax, Bcl-2, and
cleaved caspase-3 in HBECs in each group. *p < 0.05, **p < 0.01, and ***p < 0.001.
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CSE-induced oxidative stress, involving theMAPK signaling
pathway [25]. Western blotting illustrated that the increased
phosphorylation of p38 and ERK in HBECs was observed
under CSE stimulation in saline + CSE group, which was
reversed by QE treatment in QE + CSE group (Figure 5a).
Therefore, QE inhibits CSE-induced activation of the
MAPK/ERK signaling pathway in HBECs.

4 Discussion

In the present study, we demonstrated the protective
influence of QE on CSE-induced apoptosis and oxidative
stress in HBECs via Nrf2 and MAPK pathways. In our report,
we found that CSE promoted apoptosis and induced oxi-
dant/antioxidant imbalance in HBECs, which were rescued
by QE treatment. These findings suggested that QE protects
HBECs from CSE-induced apoptosis and oxidative damage.

The oxidatant/antioxidant balance depends on the
regulation of the endogenous antioxidant defense system
[26]. Herein we found that T-AOC, an indicator of total
antioxidant status that reflects the degree of oxidative
damage in cells [27], was significantly downregulated in

CSE-treated HBECs, while antagonized by QE administra-
tion. The content of MDA often reflects the degree of lipid
peroxidation in tissues and indirectly shows the degree of
cell damage [28]. In our report, we discovered a signifi-
cant increase in MDA content in HBECs under CSE treat-
ment. Nevertheless, as expected, our results indicated
that MDA accumulation in HBECs due to CSE was reduced
by QE stimulation. Previous reports demonstrated that
excessive production of ROS or inadequate anti-oxidative
capacity may change the cellular redox balance, thus
causing oxidative stress [29]. ROS emitted by cigarette
smoke and produced from the structural or inflammatory
cells results in direct or indirect damage of lipids, pro-
teins, and nucleic acids, and participate in the patho-
genesis of many diseases [30–32]. Consistent with this
notion, we found that the ROS content in the CSE-treated
HBECs was increased; however, the increased ROS was
reversed by QE application. In mammalian cells, GSH
serves as a main antioxidant that directly or indirectly
scavenges free radicals and other reactive nitrogen spe-
cies via enzymatic reaction [33]. This report revealed that
CSE exposure caused a significant increase in GSH con-
centration, and QE reversed this effect in HBECs. Addi-
tionally, SOD enzymes prevent the production of toxic

Figure 3: Effects of QE on the contents of oxidative/anti-oxidative markers in CSE-treated HBECs. (a–f) ELISA was used to measure the
concentrations of T-AOC, MDA, ROS, GSH, SOD, and GSH-Px in HBECs in saline + Con group, saline + CSE group, QE + Con group, and
QE + CSE group. *p < 0.05 and **p < 0.01.
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Figure 4: Effects of QE on CSE-induced HO-1, NQO1 enzyme expression, and the Nrf2 translocation in HBECs. (a)Western blotting was used
to examine protein levels of NQO1 and HO-1 in HBECs in saline + Con group, saline + CSE group, QE + Con group, and QE + CSE group.
(b) Western blotting was used to detect cytoplasmic and nuclear Nrf2 protein expression in HBECs under indicated treatment. *p < 0.05,
**p < 0.01, and ***p < 0.001.

Figure 5: Effects of QE on the MAPK/ERK signaling pathway in CSE-treated HBECs. (a) Western blotting was performed to assess protein
levels of ERK, p-ERK, p38, and p-p38 in HBECs in saline + Con group, saline + CSE group, QE + Con group, and QE + CSE group. **p < 0.01
and ***p < 0.001.
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hydroxyl radical via scavenging superoxide anion into
hydrogen peroxide and molecular oxygen [34]. In our
report, SOD content was reduced by CSE and rescued
by QE in HBECs. Furthermore, it has been revealed that
GSH-Px is the most abundant and appears to have a
major role in ROS defense based on in vitro studies [35].
Herein we found that GSH-Px showed decrease under
CSE stimulation and further showed reversal under QE
treatment in HBECs. These findings suggested that QE
alleviates CSE-induced oxidative stress injury in HBECs.

Nrf2 is one of the main cellular defense lines against
oxidative stress [36]. Nrf2, as a key transcription factor
regulating antioxidant stress, plays an important role in
inducing the body’s antioxidant response [37]. Under
steady state conditions, unactivated Nrf2 exists in the cyto-
plasm and is linked to the cytoplasmic protein Keap1 [38].
Keap1 inhibits Nrf2 by retaining Nrf2 in the cytoplasm and
enhancing its proteasome degradation through ubiquiti-
nation [38]. Under oxidative stress, Nrf2 will be released
from the Keap1/Nrf2 complex and transferred to the nucleus,
thereby activating Nrf2 and its downstream-regulated genes
in the nucleus, including HO-1 and NQO1 [39]. HO-1 is a
crucial antioxidative enzyme, which catalyzes the decompo-
sition of heme and generates biliverdin and carbon mon-
oxide, eliminating ROS and maintaining the intracellular
redox homeostasis [40]. NQO1 is a quinone oxidoreductase
that prevents the production of semiquinone radicals, which
are important sources of ROS [41,42]. In animals, Nrf2
activation has been found to attenuate CSE-induced emphy-
sema and airway inflammation in mice [30]. QE was
demonstrated to mediate the expression of Nrf2 and the
activity of antioxidant response element (ARE)-reporter
gene, thus regulating Nrf2/ARE-mediated antioxidant defense
mechanism [43]. Previously, in LPS-induced lung injury in
mice, the protein level of Cytosol Nrf2 was reduced after
LPS treatment, while it was partially restored after GRh2 treat-
ment, which indicated that GRh2 showed antioxidant effects
by inhibiting Nrf2 nuclear translocation [44]. In the present
study, we discovered that Cytosol Nrf2 was reduced, while
Nucleus Nfr2 was elevated after CSE treatment, which sug-
gested that CSE induced oxidative stress and the subsequent
Nrf2 nuclear translocation. Nevertheless, QE reversed the
effects of CSE on Nrf2. Additionally, the elevation in HO-1
and NQO1 levels caused by CSE was restored by QE treat-
ment. Therefore, QE suppressed CSE-induced oxidative
stress, thereby restraining Nrf2 nuclear translocation and
activation antioxidant enzymes HO-1 and NQO-1. Further-
more, the MAPK pathway is one of the signaling pathway
in lung diseases and is closely associated with oxidative
stress [45,46]. QE has been reported to suppress the phos-
phorylation of p38 MAPK and ERK, and downregulate

MAPK signaling pathways before [47,48]. In our research,
the protein level of p-ERK and p-p38 was elevated by CSE
and attenuated by QE, which indicated the suppressive
function of QE on activation of the MAPK pathway. These
findings suggested that QE exerts a protective role against
oxidative damage and apoptosis in HBECs through the
inactivation of the Nrf2 and MAPK pathways.

There also exist some limitations in this study. First,
the function of QE on cell apoptosis and oxidative stress
in COPD was evaluated only by treating HBECs with CSE
to establish in vitro cellular model. The conduction of
in vivo experiments using animal models of COPD will
make our results more convincing. Second, chronic
inflammation is also a crucial factor attributing to the
pathogenesis of COPD. QE extracted from Houttuynia cor-
data used for treating inflammation-related disorders was
reported to markedly repress lung inflammatory response
in the mouse model of LPS-induced acute lung injury [49].
However, our study only investigated and proved that QE
can inhibit CSE-induced cell apoptosis and oxidative stress
in HBECs. Therefore, whether QE protects HBECs from
CSE-induced inflammation required further exploration
in future studies.

In conclusion, our research innovatively put forward
and confirmed that QE can reverse CSE-induced oxidative
stress and apoptosis in HBECs by inactivating the Nrf2
and MAPK signaling pathways. This report suggested
that QE has the potential to be developed as an effective
agent for improving clinical treatment of COPD.
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