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1 Introduction

Proteins represent the tools and appliances of the cell – they assemble into larger
structural elements, catalyze the biochemical reactions of metabolism, transmit signals,
move cargo across membrane boundaries and carry out many other tasks. For most of
these functions proteins cannot act in isolation but require close cooperation with other
proteins to accomplish their task. Often, this collaborative action implies physical
interaction of the proteins involved. Accordingly, experimental detection, in silico
prediction and computational analysis of protein–protein interactions (PPI) have
attracted great attention in the quest for discovering functional links among proteins
and deciphering the complex networks of the cell.

Proteins do not simply clump together – binding between proteins is a highly
specific event involving well defined binding sites. Several criteria can be used to further
classify interactions (Nooren and Thornton 2003). Protein interactions are not
mediated by covalent bonds and, from a chemical perspective, they are always
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reversible. Nevertheless, some PPI are so persistent to be considered irreversible
(obligatory) for all practical purposes. Other interactions are subject to tight regulation
and only occur under characteristic conditions. Depending on their functional role,
some protein interactions remain stable for a long time (e.g. between proteins of the
cytoskeleton) while others last only fractions of a second (e.g. binding of kinases to their
targets). Protein complexes formed by physical binding are not restricted to so called
binary interactions which involve exactly two proteins (dimer) but are often found to
contain three (trimer), four (tetramer), ormore peptide chains. Another distinction can
be made based on the number of distinct proteins in a complex: homo-oligomers
contain multiple copies of the same protein while hetero-oligomers consist of different
protein species. Sophisticated “molecular machines” like the bacterial flagellum consist
of a large number of different proteins linked by protein interactions.

2 Experimental methods

The focus of this chapter is on the computational methods for analyzing and predicting
protein–protein interactions. Nevertheless, some basic knowledge about experimental
techniques for detecting these interactions is highly useful for interpreting results,
estimating potential biases, and judging the quality of the data we use in our work.

Many different types of methods have been developed but the vast majority of
interactions in the literature and public databases come from only two classes of
approaches: co-purification and two-hybridmethods. Co-purificationmethods (Rigaut
et al. 1999) are carried out in vitro and involve three basic steps. First, the protein of
interest is “captured” from a cell lysate – e.g. by attaching it to an immobilematrix. This
may be done with specific antibodies, affinity tags, epitope tags along with a matching
antibody, or by other means. Second, all other proteins in the solution are removed in a
washing step in order to purify the captured protein. Under suitable conditions,
protein–protein interactions are preserved. In the third step, any proteins still attached
to the purified protein are detected by suitable methods (e.g. Western-blot or mass
spectrometry). Hence, the interaction partners are co-purified, as the name of the
method implies.

The two-hybrid technique (Fields and Song 1989) uses a very different approach – it
exploits the fact that transcription factors such as Gal4 consist of two distinct functional
domains. The DNA-binding domain (BD) recognizes the transcription factor (TF)
binding site in the DNA and attaches the protein to it while the activation domain (AD)
triggers transcription of the gene under the control of the factor. When expressed as
separate protein chains, both domains remain fully functional: the BD still binds the
DNA but lacks a way of triggering transcription. The AD could trigger transcription but
has no means of binding to the DNA. For a two-hybrid test, two proteins X and Y are
fused to these domains resulting in two hybrids: X-BD and Y-AD. If X binds to Y, the
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resulting protein complex turns out to be a fully functional transcription factor.
Accordingly, an interaction is revealed by detecting transcription of the reporter gene
under the control of the TF. In contrast to co-purifications, the interaction is tested
in vivo in the two-hybrid system (usually in yeast, but other systems exist).

The above description refers to small-scale experiments testing one pair of proteins
at a time, but both approaches have successfully been extended to large-scale experi-
ments testing thousands of pairs in very short time.While such high-throughput data is
very valuable, especially for computational biologywhich often requires comprehensive
input data, a word of caution is necessary. Evenwith the greatest care and amaximumof
thoughtful controls, high-throughput data usually suffer from a certain degree of
false-positive results as well as false-negatives compared to carefully performed and
highly optimized individual experiments.

The ultimate source of information about protein interactions is provided by
high-resolution three-dimensional structures of interaction complexes, such as the
one shown in Fig. 1. Spatial architectures obtained by X-ray crystallography or NMR
spectroscopy provide atomic-level detail of interaction interfaces and allow for
mechanistic understanding of interaction processes and their functional implications.
Additional kinetic, dynamic and structural aspects of protein interactions can be
elucidated by electron and atomic forcemicroscopy as well as by fluorescence resonance
energy transfer.

Fig. 1 Structural complex between RhoA, a small GTP protein belonging to the Ras superfamily, and the
catalytic GTPase activating domain of RhoGAP (Graham et al. 2002)
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3 Protein interaction databases

A huge number of protein–protein interactions has been experimentally determined
and described in numerous scientific publications. Public protein interaction databases
that provide interaction data in form of structured, machine-readable datasets orga-
nized according to well documented standards have become invaluable resources for
bioinformatics, systems biology and researchers in experimental laboratories. The data
in these databases generally originate from two major sources: large-scale datasets and
manually curated information extracted from the scientific literature. As pointed out
above, the latter is considered substantially more reliable and large bodies of manually
curated PPI data are often used as the gold standard against which predictions and
large-scale experiments are benchmarked. Of course, these reference data are far from
complete and strongly biased.Many factors, including experimental bias, preferences of
the scientific community, and perceived biomedical relevance influence the chance of an
interaction to be studied, discovered and published. In the manual annotation process
it is not enough to simply record the interaction as such. Additional information such as
the type of experimental evidence, citations of the source, experimental conditions,
and more need to be stored in order to convey a faithful picture of the data. Annotation
is a highly labor intensive task carried out by specially trained database curators.

PPI databases can be roughly divided in two classes: specialized databases focusing
on a single organism or a small set of species and general repositories which aim for a
comprehensive representation of current knowledge. While the former are often well
integrated with other information resources for the same organism, the latter strive for
collecting all available interaction data including datasets from specialized resources.
The size of these databases is growing constantly as more andmore protein interactions
are identified. As of writing (November 2007), global repositories are approaching
200,000 pieces of evidence for protein interactions in various species.

All of these databases offer convenient web interfaces that allow for interactively
searching the database. In addition, the full datasets are usually provided for download
in order to enable researchers to use the data in their own computational analyses.
Table 1 gives an overview of some important PPI databases.

4 Data standards for molecular interactions

Until relatively recently, molecular interaction databases like the ones listed in Table 1
acted largely independently from each other.While they provided an extremely valuable
service to the community in collecting and curating availablemolecular interaction data
from the literature, they did so largely in an uncoordinated manner. Each database had
its own curation policy, feature set, and data formats. In 2002, the Proteomics Standards
Initiative (PSI), a work group of theHuman ProteomeOrganization (HUPO), set out to
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improve this situation, with contributions from a broad range of academic and
commercial organizations, among them BIND, Cellzome, DIP, GlaxoSmithKline,
Hybrigenics SA, IntAct, MINT, MIPS, Serono, and the Universities of Bielefeld,
Bordeaux, and Cambridge. In a first step, a community standard for the representation
of protein–protein interactions was developed, the PSI MI format 1.0 (Hermjakob et al.
2004). Recently, version 2.5 of the PSI MI format has been published (Kerrien et al.
2007b), extending the scope of the format from protein–protein interactions to
molecular interactions in general, allowing to model for example protein-RNA
complexes.

The PSI MI format is a flexible XML format representing the interaction data to
a high level of detail. N-ary interactions (complexes) can be represented as well as
experimental conditions and technologies, quantitative parameters and interacting
domains. The XML format is accompanied by detailed controlled vocabularies in OBO
format (Harris et al. 2004). These vocabularies are essential for standardizing not only
the syntax, but also the semantics of the molecular interaction representation. As an
example, the “yeast two-hybrid technology” described above is referred to in the
literature using many different synonyms, for example Y2H, 2H, “yeast-two-hybrid”,
etc. While all of these terms refer to the same technology, filtering interaction data from
multiple different databases based on this set of terms is not trivial. Thus, the PSI MI
standard provides a set of nowmore than 1000well-defined terms relevant tomolecular
interactions. Figure 2 shows the IntAct advanced search tool with a branch of the
hierarchical PSI MI controlled vocabulary. Figure 3 provides a partial graphical
representation of the annotated XML schema, combined with an example dataset in
PSI MI XML format, reprinted from Kerrien et al. (2007b).

For user-friendly distribution of simplified PSI data to end users, the PSI MI 2.5
standard also defines a simple tabular representation (MITAB), derived from the
BioGrid format (Breitkreutz et al. 2003). While this format necessarily excludes details

Table 1 A selection of protein–protein interaction databases

Name Focus URL Reference

BioGrid global www.thebiogrid.org (Stark et al. 2006)
BIND/BOND global bond.unleashedinformatics.com (Bader et al. 2003)
DIP global dip.doe-mbi.ucla.edu (Salwinski et al. 2004)
IntAct global www.ebi.ac.uk/intact/ (Kerrien et al. 2007a)
MINT global mint.bio.uniroma2.it (Chatr-aryamontri et al.

2007)
HPRD Human www.hprd.org (Mishra et al. 2006)
IM D. melanogaster,

C. jejunii
proteome.wayne.edu/PIMdb.html (Pacifico et al. 2006)

MPact/MIPS S. cerevisiae mips.gsf.de/genre/proj/mpact/ (Guldener et al. 2006)
MPPI Mammals mips.gsf.de/proj/ppi/ (Pagel et al. 2005)
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of interaction data like interacting domains, it provides a means to efficiently access
large numbers of basic binary interaction records.

The PSI MI format is now widely implemented, with data available from BioGrid,
DIP,HPRD, IntAct,MINT, andMIPS, among others. Visualization tools likeCytoscape
(Shannon et al. 2003) can directly read and visualize PSI MI formatted data. Com-
parative and integrative analysis of interaction data from multiple sources has become
easier, as has the development of analysis tools which do not need to provide a plethora
of input parsers any more. The annotated PSI MI XML schema, a list of tools and

Fig. 2 IntAct advanced search
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databases implementing it, as well as further information, are available from http://
www.psidev.info/.

However, the development and implementation of a common data format is only
one step towards the provision of consistent molecular interaction data to the scientific
community. Another key step is the coordination of the data curation process itself
between different molecular interaction databases. Without such synchronization,
independent databases will often work on the same publications and insert the data
into their systems, according to different curation rules, thus doing redundant work on
some publications, while neglecting others. Recognizing this issue, the DIP, IntAct, and
MINT molecular interaction databases are currently synchronizing their curation
efforts in the context of the IMEx consortium (http://imex.sf.net). These databases
are now applying the same curation rules to provide a consistent high level of curation
quality, and are synchronizing their fields of activity, each focusing on literature
curation from a non-overlapping set of scientific journals. For these journals, the
databases aim to insert all published interactions into the database shortly after
publication. Regular data exchange of all newly curated data between IMEs databases
is currently in the implementation phase.

To support the systematic representation and capture of relevant molecular
interaction data supporting scientific publications, the HUPO Proteomics Standards
Initiative has recently published “The minimum information required for reporting a
molecular interaction experiment (MIMIx)” (Orchard et al. 2007b), detailing data items
considered essential for the authors to provide, as well as a practical guide to efficient
deposition of molecular interaction data in IMEx databases (Orchard et al. 2007a).

The IMEx databases are also collaborating with scientific journals and funding
agencies, to increasingly recommend data producers to deposit their data in an IMEx
partner database prior to publication. Database deposition prior to publication not only
ensures public availability of the data at the time of publication, but also provides
important quality control, as database curators often assess the data inmuchmore detail
than reviewers. The PSI journal collaboration efforts are starting to show first results.
Nature Biotechnology, Nature Genetics, and Proteomics are now recommending that
authors deposit molecular interaction data in a relevant public domain database prior
to publication, a key step to a better capture of published molecular interaction data in
public databases, and to overcome the current fragmentation of molecular interaction
data.

5 The IntAct molecular interaction database

As an example of a molecular interaction database implementing the PSI MI 2.5
standard, we will provide a more detailed description of the IntAct molecular inter-
action database (Kerrien et al. 2007a), accessible at http://www.ebi.ac.uk/intact. IntAct
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is a curated molecular interaction database active since 2002. IntAct follows a full text
curation policy, publications are read in full by the curation team, and all molecular
interactions contained in the publication are inserted into the database, containing basic
facts like the database accession numbers of the proteins participating in an interaction,
but also details like experimental protein modifications, which can have an impact on
assessments of confidence in the presence or absence of interactions. Each database
record is cross-checked by a senior curator for quality control. On release of the record,
the corresponding author of the publication is automatically notified (where an email
address is available), and requested to check the data provided. Any corrections are
usually inserted into the next weekly release. While such a detailed, high quality
approach is slow and limits coverage, the provision of high quality reference datasets
is an essential service both for biological analysis, and for the training and validation of
automatic methods for computational prediction of molecular interactions.

As it is impossible for any single database, or even the collaborating IMEx databases,
to fully cover all published interactions, curation priorities have to be set. Any direct
data depositions supporting manuscripts approaching peer review have highest prior-
ity. Next, for some journals (currently Cell, Cancer Cell, and Proteomics) IntAct curates
all molecular interactions published in the journal. Finally, several special curation
topics are determined in collaboration with external communities or collaborators,
where IntAct provides specialized literature curation and collaborates in the analysis
of experimental datasets, for example around a specific protein of interest (Camargo
et al. 2006).

As of November 2007, IntAct contains 158.000 binary interactions supported by ca.
3,000 publications. The IntAct interface implements a standard “simple search” box,
ideal for search byUniProt protein accession numbers, gene names, species, or PubMed
identifiers. The advanced search tool (Fig. 2) provides field-specific searches as well a
specialized search taking into account the hierarchical structure of controlled vocab-
ularies. A default search for the interaction detection method “2 hybrid” returns
30,251 interactions, while a search for “2 hybrid” with the tickbox “include children”
activated returns more than twice that number, 64,589 interactions. The hierarchical
search automatically includes similarly named methods like “two hybrid pooling
approach”, but also “gal4 vp16 complement”. Search results are initially shown in a
tabular form based on theMITAB format, which can also be directly downloaded. Each
pairwise interaction is only listed once, with all experimental evidence listed in the
appropriate columns. The final column provides access to a detailed description of each
interaction as well as a graphical representation of the interaction in is interaction
neighborhood graph. For interactive, detailed analysis, interaction data can be loaded
into tools like Cytoscape (see below) via the PSI 2.5 XML format.

All IntAct data is freely available via the web interface, for download in PSI MI
tabular or XML format, and computationally accessible via web services. IntAct
software is open source, implemented in Java, with Hibernate (www.hibernate.org/)
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for the object-relationalmapping toOracleTMor Postgres, and freely available under the
Apache License, version 2 from http://www.ebi.ac.uk/intact.

6 Interaction networks

On a global scale, protein–protein interactions participate in the formation of complex
biological networks which, to a large extent, represent the paths of communication and
metabolism of an organism. These networks can be modeled as graphs making them
amenable to a large number of well established techniques of graph theory and social
network analysis. Even though interaction networks do not directly encode cellular
processes nor provide information on dynamics, they do represent a first step towards a
description of cellular processes, which is ultimately dynamic in nature. For instance,
protein-interaction networks may provide useful information on the dynamics of
complex assembly or signaling. In general, investigating the topology of protein
interaction, metabolic, signaling, and transcriptional networks allows researchers to
reveal the fundamental principles of molecular organization of the cell and to interpret
genome data in the context of large-scale experiments. Such analyses have become an
integral part of the genome annotation process: annotating genomes today increasingly
means annotating networks.

A protein–protein interaction network summarizes the existence of both stable and
transient associations between proteins as an (undirected) graph: each protein is
represented as a node (or vertex), an edge between two proteins denotes the existence
of an interaction. Interactions known to occur in the actual cell (Fig. 4a) can thus be
represented as an abstract graph of interaction capabilities (Fig. 4b). As such a graph
is limited by definition to binary interactions, its construction from a database of
molecular interactionsmay involve arbitrary choices. For instance, an n-ary interaction
measured by co-purification can be represented using either the clique (all binary
interactions between the n proteins are retained) or the spoke model (only edges
connecting the “captured” protein to co-purified proteins are retained).

Once a network has been reconstructed from protein interaction data, a variety of
statistics on network topology can be computed, such as the distribution of vertex
degrees, the distribution of the clustering coefficient and other notions of density, the
distribution of shortest path length between vertex pairs, or the distribution of network
motifs occurrences (see (Barabasi andOltvai 2004) for a review). Thesemeasures can be
used to describe networks in a concise manner, to compare, group or contrast different
networks, and to identify properties characteristic of a network or a class of network
under study. Some topological properties may be interpreted as �traces� of underlying
biological mechanisms, shedding light on their dynamics, their evolution, or both and
helping connect structure to function (see the “Network Modules” section below). For
instance, most interaction networks seem to exhibit scale-free topology (Jeong et al.
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2001; Yook et al. 2004), i.e. their degree distribution (the probability that a node has
exactly k links) approximates a power law P(k)� k-g , meaning that most proteins have
few interaction partners but some, the so-called “hubs”, have many.

As an example of derived evolutionary insight, it is easy to show that networks
evolving by growth (addition of new nodes) and preferential attachment (new nodes are
more likely to be connected to nodes with more connections) will exhibit scale-free
topology (degree distribution approximates a power-law) and hubs (highly connected
nodes). A simple model of interaction network evolution by gene duplication, where a
duplicate initially keeps the same interaction partners as the original, generates
preferential attachment, thus providing a candidate explanation for the scale-free
nature and the existence of hubs in these networks (Barabasi and Oltvai 2004).

Fig. 4 Graph representation of interaction networks. (a)Hypothetical protein interactions in the living cell.
Interacting proteins are denoted as P1, P2, etc. (b) A graph representation of the protein interactions shown
in a. Each node represents a protein, and each edge connects proteins that interact. (c) Information on
protein interactions obtained by different methods. (d) Protein interaction network derived from experi-
mental evidence shown in c. As in a, each node is a protein, and edges connect interactors. Edges a colored
according to the source of evidence: red – 3D, green – APMS, brown – Y2H, magenta – PROF, yellow – LIT,
blue – LOC
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A corresponding functional interpretation of hubs and scale-free topology has been
proposed in terms of robustness. Scale-free networks are robust to component failure,
as random failures are likely to affect low degree nodes and only failures affecting hub
nodes will significantly change the number of connected components and the length of
shortest paths between node pairs. Deletion analyses have, perhaps unsurprisingly,
confirmed that highly connected proteins are more likely to be essential (Winzeler et al.
1999; Giaever et al. 2002; Gerdes et al. 2003).

Most biological interpretations that have been proposed for purely topological
properties of interaction networks have been the subject of heated controversies, some
of which remain unsolved to this day (e.g. (He and Zhang 2006; Yu et al. 2007) on hubs).
One often cited objection to any strong interpretation is the fact that networks
reconstructed fromhigh-throughput interaction data constitute very rough approxima-
tions of the “real” network of interactions taking place within the cell. As illustrated in
Fig. 4c, interaction data used in a reconstruction typically result from several experi-
mental methods, often complemented with prediction schemes. Each specific method
can miss real interactions (false negatives) and incorrectly identify other interactions
(false positives), resulting in biases that are clearly technology-dependent (Gavin et al.
2006; Legrain and Selig 2000). Assessing false-negative and false-positive rates is difficult
since there is no �gold standard� for positive interactions (protein pairs that are known to
interact)or,more importantly, fornegative interactions (proteinpairs thatareknownnot
to interact). Using less-than-ideal benchmark interaction sets, estimates of 30-60% false
positives and 40-80% false negatives have been proposed for yeast-two-hybrid and co-
purification based techniques (Aloy and Russell 2004). In particular, a comparison of
several high-throughput interaction datasets on yeast, showing low overlap, has con-
firmed that each study covers only a small percentage of the underlying interaction
network (von Mering et al. 2002) (see also “Estimates of the number of protein
interactions” below).

Integration of interaction data from heterogeneous sources towards interaction
network reconstruction can help compensate for these limitations. The basic principle is
fairly simple and rests implicitly on a multigraph representation: several interaction
networks to be integrated, each resulting from a specific experimental or predictive
method, are defined over the same set of proteins. Integration is achieved by merging
them into a single network with several types of links – or edge colors– each drawn from
one of the component networks. Some edges in the multigraph may be incorrect, while
some existing interactions may be missing from the multigraph, but interactions
confirmed independently by several methods can be considered reliable. Figure 4d
shows the multigraph that corresponds to the evidence from Fig. 4c and can be used to
reconstruct the actual graph in Fig. 4b.

In practice, integration is not always straightforward: networks are usually
defined over subsets of the entire gene or protein complement of a species, and
meaningful integration requires that the overlap of these subsets be sufficiently large.
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In addition, if differences of reliability between network types are to be taken into
account, an integrated reliability scoring scheme needs to be designed (Jansen et al.
2003; von Mering et al. 2007) with the corresponding pitfalls and level of arbitrari-
ness involved in comparing apples and oranges. Existing methods can significantly
reduce false positive rates on a subset of the network, yielding a subnetwork of high-
reliability interactions.

7 Visualization software for molecular networks

The tremendous amounts of available molecular interaction data raise the important
issue of how to visualize them in a biologically meaningful way. A variety of tools have
been developed to address this problem; two prominent examples are VisANT (Hu et al.
2005) and Cytoscape (Shannon et al. 2003). A recent review of further network
visualization tools is provided by Suderman and Hallett (2007). In this section, we
focus on Cytoscape (http://www.cytoscape.org) and demonstrate its use for the
investigation of protein–protein interaction networks. For a more extensive protocol
on the usage of Cytoscape, see (Cline et al. 2007).

Cytoscape is a stand-alone Java application that is available for all major computer
platforms. This software provides functionalities for (i) generating biological networks,
either manually or by importing interaction data from various sources, (ii) filtering
interactions, (iii) displaying networks using graph layout algorithms, (iv) integrating
and displaying additional information like gene expression data, and (v) performing
analyses on networks, for instance, by calculating topological network properties or by
identifying functional modules.

One advantage of Cytoscape over alternative visualization software applications is
that Cytoscape is released under the open-source Lesser General Public License (LGPL).
This license basically permits all forms of software usage and thus helps to build a large
user and developer community. Third-party Java developers can easily enhance the
functionality of Cytoscape by implementing own plug-ins, which are additional soft-
ware modules that can be readily integrated into the Cytoscape platform. Currently,
there are more than forty plug-ins publicly available, with functionalities ranging from
interaction retrieval and integration across topological network analysis, detection of
network motifs, protein complexes, and domain interactions, to visualization of
subcellular protein localization and bipartite networks. A selection of popular Cytos-
cape plug-ins is listed in Table 2. In the following, we will describe the functionalities of
Cytoscape in greater detail.

The initial step of generating a network can be accomplished in different ways. First,
the user can import interaction data that are stored in various flat file or XML formats
such as BioPax, SBML, or PSI-MI, as described above. Second, the user can directly
retrieve interactions from several public repositories from within Cytoscape. A number

365

Dmitrij Frishman et al.



Table 2 Brief descriptions of popular Cytoscape plug-ins with web links to their project sites

Plug-in Description Project web site

Agilent Literature
Search

Network generation based on text-mining
of scientific publications

http://cytoscape.org/plugins/

APID2NET Network generation and analysis based
on the Agile Protein Interaction
DataAnalyzer (APID)

http://bioinfow.dep.usal.es/apid/
apid2net.html

BiLayout Generation of bipartite network layouts http://bilayout.bioinf.mpi-inf.mpg.de/
BiNGO Determination of overrepresented Gene

Ontology (GO) terms
http://www.psb.ugent.be/cbd/papers/
bingo/

BiNoM Manipulation of networks represented
in standardized formats like SBML
and BioPAX

http://bioinfo-out.curie.fr/projects/
binom/

BubbleRouter Incremental layout generation based on
various attributes

http://www.genmapp.org/
BubbleRouter/manual.htm

CABIN Exploratory analysis and integration of
multiple interaction networks

http://www.sysbio.org/capabilities/
compbio/cabin.stm

Cerebral Layout generation based on subcellular
protein localizations

http://www.pathogenomics.ca/
cerebral/

DomainGraph Decomposition of protein networks into
domain-domain interaction networks

http://domaingraph.bioinf.mpi-inf.
mpg.de

Enhanced Search Sophisticated search functionality within
a network

http://conklinwolf.ucsf.edu/
genmappwiki/Google_Summer_of_
Code_2007/Maital

GenePro Analysis of functional modules and
clusters

http://genepro.ccb.sickkids.ca/

GOlorize Network visualization based on Gene
Ontology (GO) categories (only in
combination with BiNGO plug-in)

http://www.pasteur.fr/recherche/
unites/Biolsys/GOlorize/

GroupTool Combination of nodes and edges into
groups

http://www.rbvi.ucsf.edu/Research/
cytoscape/

jActiveModules Determination of expression activated
subnetworks and modules

http://cytoscape.org/plugins/

MCODE Determination of highly connected
clusters and putative complexes

http://baderlab.org/Software/mcode

MetaNode-Plugin2 Abstraction of nodes into meta nodes
that can be expanded or collapsed

http://www.rbvi.ucsf.edu/Research/
cytoscape/

MiMIplugin Network generation based on the Michigan
Molecular Interaction Database (MiMI)

http://mimi.ncibi.org/cytoscape/

MiSink Network generation based on the
Database of Interacting Proteins (DIP)

http://dip.doe-mbi.ucla.edu/dip/
Software.cgi

NamedSelection Temporary storage of node and edge
selections

http://www.rbvi.ucsf.edu/Research/
cytoscape/

NetworkAnalyzer Computation of topological network
parameters

http://med.bioinf.mpi-inf.mpg.de/
networkanalyzer/

StructureViz Linkage to macromolecular structures
and sequences provided by UCSF
Chimera

http://www.cgi.ucsf.edu/Research/
cytoscape/structureViz/
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of plug-ins exists that facilitate querying certain databases for interactions related to
specific genes/proteins or species (APID2NET, MiMIplugin, MiSink; Table 2). Third,
the user can utilize a text-mining plug-in that builds networks based on associations
found in publication abstracts (Agilent Literature Search; Table 2). While these
associations are not as reliable as experimentally derived interactions, they can be
helpful when the user is investigating species that are not well covered yet in the current
data repositories. Fourth, the user can directly create or manipulate a network by
manually adding or removing nodes (genes, proteins, domains, etc.) and edges
(interactions or relationships). In this way, expert knowledge that is not captured in
the available data sets can be incorporated into the loaded network.

Generated networks can be further refined by applying selections and filters in
Cytoscape. The user can select nodes or edges by simply clicking on them or framing a
selection area. In addition, starting with at least one selected node, the user can
incrementally enlarge the selection to include all direct neighbor nodes. Cytoscape
also provides even sophisticated search and filter functionality for selecting particular
nodes and edges in a network based on different properties; in particular, the Enhanced
Search plug-in (Table 2) improves the built-in search functionality of Cytoscape. Filters
select all network parts thatmatch certain criteria, for instance, all human proteins or all
interactions that have been detected using the yeast two-hybrid system.Once a selection
has been made, all selected parts can be removed from the network or added to another
network.

The main purpose of visualization tools like Cytoscape is the presentation of
biological networks in an appropriate manner. This can usually be accomplished by
applying graph layout algorithms. Sophisticated layouts can assist the user in revealing
specific network characteristics such as hub proteins or functionally related protein
clusters. Cytoscape offers various layout algorithms, which can be categorized as
circular, hierarchical, spring-embedded (or force-directed), and attribute-based layouts
(Fig. 5). Further layouts can be included using the Cytoscape plug-in architecture,
for example, to arrange protein nodes according to their subcellular localization or
to their pathways assignments (BubbleRouter, Cerebral; Table 2).

Some layouts may be more effective than others for representing molecular net-
works of a certain type. The spring-embedded layout, for instance, has the effect of
exposing the inherent network structure, thus identifying hub proteins and clusters of
tightly connected nodes. It is noteworthy that current network visualization techniques
have limitations, for example, when displaying extremely large or dense networks. In
such cases, a simple graphical network representation with one node for each inter-
action partner, as it is initially created by Cytoscape, can obfuscate the actual network
organization due to the sheer number of nodes and edges. One potential solution to this
problem is the introduction of meta-nodes (MetaNode plug-in; Table 2). A meta-node
combines and replaces a group of other nodes. Meta-nodes can be collapsed to increase
clarity of the visualization and expanded to increase the level of detail (Fig. 6).
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An overview of established and novel visualization techniques for biological networks
on different scales is presented in (Hu et al. 2007).

All layouts generated by Cytoscape are zoomable, enabling the user to increase or
decrease the magnification, and they can be further customized by aligning, scaling, or
rotating selected network parts. Additionally, the user can define the graphical network
representation through visual styles. These styles define the colors, sizes, and shapes of
all network parts.

A powerful feature of Cytoscape is its ability of visuallymapping additional attribute
values onto network representations. Both nodes and edges can have arbitrary
attributes, for example, protein function names, the number of interactions (node
degree), expression values, the strength and type of an interaction, or confidence values
for interaction reliability. These attributes can be used to adapt the network illustration
by dynamically changing the visual styles of individual network parts (Fig. 7). For
example, this feature enables highlighting trustworthy interactions by assigning

1
Fig. 5 The Cytoscape desktop. Theworkspace (middle) shows six identical networkswith different layouts.
The toolbar (top) contains basic control buttons for zooming and filtering/searching. The Control Panel (left)
displays the VizMapper that defines the graphical network representation. The Data Panel (bottom) lists
node attributes of the four selected nodes (yellow) in network (b). The different network layouts are: (a) grid,
(b) circular with several circles, (c) spring-embedded or force-directed, (d) circular with one circle, (e)
attribute-based, (f) hierarchical

Fig. 6 Combination of nodes intometa-nodes using the Cytoscape plug-inMetaNode (Table 2). All protein
nodeswith subcellular localizations different fromplasmamembrane are combined intometa-nodes. These
meta-nodes can be collapsed or expanded to increase clarity or detailedness, respectively
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different line styles or sizes to different experiment types (discrete mapping of an edge
attribute), to spot network hubs by changing the size of a node according to its degree
(discrete or continuous mapping of a node attribute), or to identify functional network
patterns by coloring protein nodes with a color gradient according to their expression
level (continuous mapping of a node attribute). Hence, it is possible to simultaneously
visualize different data types by overlaying them with a network model.

In order to generate new biological hypotheses and to gain insights into molecular
mechanisms, it is important to identify relevant network characteristics and patterns.
For this purpose, the straightforward approach is the visual exploration of the network.
Table 2 lists a selection of Cytoscape plug-ins that assist the user in this analysis task, for
instance, by identifying putative complexes (MCODE), by grouping proteins that show
a similar expression profile (jActiveModules), or by identifying overrepresented GO
terms (BiNGO, GOlorize). However, the inclusion of complex data such as time-series
results or diverse Gene Ontology (GO) terms into the network visualization might not
be feasible without further software support. Particularly in case of huge, highly
connected, or dynamic networks, more advanced visualization techniques will be
required in the future.

Gene expression level

lowest missing value highest

Interaction type

Protein-protein interaction

Protein-DNA interaction
1 18

Node degree

Fig. 7 Visual representation of a subset of the GAL4 network in yeast. The protein nodes are colored with a
red-to-green gradient according to their expression value; green represents the lowest, red the highest
value, and blue amissing value. The node size indicates the number of interactions (node degree); the larger
a node, the higher is its degree. The colors and styles of the edges represent different interaction types; solid
black lines represent protein-protein, dashed red lines protein-DNA interactions
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In addition to the visual presentation of interaction networks, Cytoscape can also be
used to perform statistical analyses. For instance, the NetworkAnalyzer plug-in
(Assenov et al. 2008) computes a large variety of topology parameters for all types
of networks. The computed simple and complex topology parameters are represented
as single values and distributions, respectively. Examples of simple parameters are the
number of nodes and edges, the average number of neighbors, the network diameter and
radius, the clustering coefficient, and the characteristic path length. Complex param-
eters are distributions of node degrees, neighborhood connectivities, average cluster-
ing coefficients, and shortest path lengths. These computed statistical results can be
exported in textual or graphical form and are additionally stored as node attributes.
The user can then apply the calculated attributes to select certain network parts or to
map them onto the visual representation of the analyzed network as described above
(Fig. 7). It is also possible to fit a power law to the node degree distribution, which can
frequently indicate a so-called scale-free network with few highly connected nodes
(hubs) and many other nodes with a small number of interactions. Scale-free networks
are especially robust against failures of randomly selected nodes, but quite vulnerable to
defects of hubs (Albert 2005).

8 Estimates of the number of protein interactions

How many PPIs exist in a living cell? The yeast genome encodes approximately 6300
gene products which means that the maximal possible number of interacting protein
pairs in this organism is close to 40million, but what part of these potential interactions
are actually realized in nature? For a given experimentalmethod, such as the two-hybrid
essay, the estimate of the total number of interactions in the cell is given by

Nint¼Nmeasured�Rfp�Rfn
�1

where Nmeasured is the number of interactions identified in the experiment, and Rfp and
Rfn are false positive and false negative rates of themethod. Rfn can be roughly estimated
based on the number of interactions known with confidence (e.g., those confirmed by
three-dimensional structures) that are being recovered by the method. Assessing Rfp is
much more difficult because no experimental information on proteins that do not
interact is currently available. Since it is known that proteins belonging to the same
functional class often interact, one very indirect way of calculating Rfn is as the fraction
of functionally related proteins not found to be interacting.

An evenmoremonumental problem is the estimation of the total number of unique
structurally equivalent interaction types existing in nature. An interaction type is
defined as a particular mutual orientation of two specific interacting domains. In some
cases homologous proteins interact in a significantly different fashion while in other
cases proteins lacking sequence similarity engage in interactions of the same type.

371

Dmitrij Frishman et al.



In general, however, interacting protein pairs sharing a high degree of sequence
similarity (30–40% or higher) between their respective components almost always
form structurally similar complexes (Aloy et al. 2003). This observation allows
utilization of available atomic resolution structures of complexes for building useful
models of closely related binary complexes.

The total number of interaction types can then be estimated as follows:

Ntypes ¼Nmeasured�Rfp�Rfn
�1�C�EAll-species

where the interaction similarity multiplier C reflects the clustering of all interactions
of the same type, and EAll-species extrapolates from one biological species to all
organisms. Aloy and Russel (2004) derived an estimate for C by grouping interactions
between proteins that share high sequence similarity, as discussed above. C depends on
the number of paralogous sequences encoded in a given genome. For small prokaryotic
organisms it is close to 1 while for larger and more redundant genomes it adopts
smaller values, typically in the range of 0.75–0.85. The multiplier for all species EAll-
species can be derived by assessing what fraction of known protein families is encoded in a
given genome. Based on the currently available data this factor is close to 10 for bacteria,
which means that a medium size prokaryotic organism contains around one tenth
of all protein families. For eukaryotic organisms EAll-species lies between 2 and 4.
For the comprehensive two-hybrid screen of yeast by (Uetz 2000) in which 936
interactions between 987 proteins were identified, Aloy and Russell (2004) estimated
C, Rfp, andRfn

�1, and EAll-species to be 0.85, 3.92, 0.55, and 3.35 respectively, leading to an
estimated 1715 different interaction types in yeast alone, and 5741 over all species. Based
on the two-hybrid interaction map of the fly (Giot 2003) the number of all interaction
types in nature is estimated to be 9962. It is thus reasonable to expect the total number
of interaction types to be around 10,000, and only 2000 are currently known.

9 Multi-protein complexes

Beyond binary interactions, proteins often form large molecular complexes involving
multiple subunits (Fig. 8). These complexes are much more than a random snapshot of
a group of interacting proteins – they represent large functional entities which remain
stable for long periods of time. Many such protein complexes have been elucidated step
by step over time and recent advances in high-throughput technology have led to large-
scale studies revealing numerous new protein complexes. The preferred technology
for this kind of experiment is initial co-purification of the complexes followed by the
identification of the member proteins by mass spectrometry.

As the bakers yeast S. cerevisiae is one of themost versatile model organisms used in
molecular biology, it is not surprising that the first large-scale complex datasets were
obtained in this species (Gavin et al. 2002; Ho et al. 2002; Gavin et al. 2006; Krogan et al.
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2006). The yeast protein interaction database MPact (Guldener et al. 2006) provides
access to 268 protein complexes based on careful literature annotation composed of
1237 different proteins plus over 1000 complexes from large-scale experiments which
contain more than 2000 distinct proteins. These numbers contain some redundancy
with respect to complexes, due to slightly different complex composition found by
different groups or experiments. Nevertheless, the dataset covers about 40% of the
S.cerevisiae proteome. While many complexes comprise only a small number of
different proteins, the largest of them features an impressive 88 different protein species.

A novel manually annotated database, CORUM (Ruepp et al. 2008) contains
literature-derived information about 1750 mammalian multi-protein complexes. Over
75%of all complexes contain between three and six subunits, while the largestmolecular
structure, the spliceosome, consists of 145 components (Fig. 9).

10 Network modules

Modularity has emerged as one of the major organizational principles of cellular
processes. Functional modules are defined asmolecular ensembles with an autonomous
function (Hartwell et al. 1999). Proteins or genes can be partitioned into modules based
on shared patterns of regulation or expression, involvement in a common metabolic or
regulatory pathway, or membership in the same protein complex or subcellular
structure. Modular representation and analysis of cellular processes allows for inter-

Fig. 8 Ternary complex between the Cand1 protein (green) and the catalytic core of the ubiquitin ligase
consisting of cullin (red) and Roc1 (blue) (Goldenberg et al. 2004)
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pretation of genome data beyond single gene behavior. In particular, analysis of
modules provides a convenient framework for studying the evolution of living systems
(Snel and Huynen 2004). Multiprotein complexes represent one particular type of
functional modules in which individual components engage in physical interactions to
execute a specific cellular function.

Algorithmically, modular architectures can be defined as densely interconnected
groups of nodes on biological networks (for an excellent review of availablemethods see
(Sharan et al. 2007). Statistically significant functional subnetworks are characterized by
a high degree of local clustering. The density of a cluster can be represented as a function
Q(m,n) = 2m/(n(n� 1)), wherem is the number of interactions between the n nodes of
the cluster (Spirin and Mirny 2003). Q thus takes values between 0 for a set of un-
connected nodes and 1 for a fully connected cluster (clique). The statistical significance
of Q strongly depends on the size of the graph. It is obvious that random clusters with
Q¼ 1 involving just three proteins are very likely while large clusters withQ¼ 1 or even
with values below 0.5 are extremely unlikely. In order to compute the statistical sig-
nificance of a cluster with n nodes and m connections Spirin and Mirny calculate the
expected number of such clusters in a comparable random graph and then estimate the
likelihood of having m or more interactions within a given set of n proteins given
the number of interactions that each of these proteins has. Significant dense clusters
identified by this procedure on a graph of protein interactionswere found to correspond
to functionalmodulesmost of which are involved in transcription regulation, cell-cycle/
cell-fate control, RNA processing, and protein transport. However, not all of them
constitute physical protein complexes and, in general, it is not possible to predict
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whether a given module corresponds to a multiprotein complex or just to a group of
functionally coupled proteins involved in the same cellular process.

The search for significant subgraphs can be further enhanced by considering
evolutionary conservation of protein interactions. With this approach protein com-
plexes are predicted from binary interaction data by network alignment which involves
comparing interaction graphs between several species (Sharan et al. 2005). First,
proteins are grouped by sequence similarity such that each group contains one protein
from each species, and each protein is similar to at least one other protein in the group.
Then a composite interaction network is created by joining with edges those pairs of
groups that are linked by at least one conserved interaction. Again, dense clusters on
such network alignment graph are often indicative of multiprotein complexes.

An alternative computationalmethod for deriving complexes fromnoisy large-scale
interaction data relies on a “socio-affinity” indexwhich essentially reflects the frequency
with which proteins form partnerships detected by co-purification (Gavin et al. 2006).
This index was shown to correlate well with available three-dimensional structure data,
dissociation constants of protein–protein interactions, and binary interactions identi-
fied by the two-hybrid techniques. By applying a clustering procedure to a matrix
containing the values of the socio-affinity index for all yeast protein pairs found to
associate by affinity purification, 491 complexes were predicted, with over a half of them
being novel and previously unknown. However, dependent on the analysis parameters
distinct complex variants (isoforms) are found that differ from in terms of their subunit
composition. Those proteins present in most of the isoforms of a given complex
constitute its core while variable components present only in a small number of
isoforms can be considered “attachments” (Fig. 10). Furthermore, some stable, typically
smaller protein groups can be found in multiple attachments in which case they are

Fig. 10 Definitions of complex cores, attachments, and modules. Redrawn and modified with permission
from (Gavin et al. 2006)
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called “modules”. Stable functional modules can thus be flexibly used in the cell in a
variety of functional contexts. Proteins frequently associatedwith each other in complex
cores and modules are likely to be co-expressed and co-localized.

11 Diseases and protein interaction networks

In this section, we offer a computational perspective on utilizing protein network data
for molecular medical research. The identification of novel therapeutic targets for
diseases and the development of drugs has always been a difficult, time-consuming and
expensive venture (Ruffner et al. 2007). Recent work has charted the current pharma-
cological space using different networks of drugs and their protein targets (Paolini et al.
2006; Keiser et al. 2007; Kuhn et al. 2008; Yildirim et al. 2007) based on biochemical
relationships like ligand binding energy and molecular similarity or on shared disease
association. Above all, sincemany diseases are due to themalfunctioning of proteins, the
systematic determination and exploration of the human interactome and homologous
protein networks of model organisms can provide considerable new insight into
pathophysiological processes (Giallourakis et al. 2005).

Knowledge of protein interactions can frequently improve the understanding of
relevant molecular pathways and the interplay of various proteins in complex diseases
(Fishman and Porter 2005). This approachmay result in the discovery of a considerable
number of novel drug targets for the biopharmaceutical industry, possibly affording
the development of multi-target combination therapeutics. Observed perturbations of
protein networks may also offer a refined molecular description of the etiology and
progression of disease in contrast to phenotypic categorization of patients (Loscalzo
et al. 2007). Molecular network data may help to improve the ability of cataloging
disease unequivocally and to further individualize diagnosis, prognosis, prevention, and
therapy. This will require a network-based approach that does not only include protein
interactions to differentiate pathophenotypes, but also other types of molecular
interactions as found in signaling cascades and metabolic pathways. Furthermore,
environmental factors like pathogens interacting with the human host or the effects of
nutrition need to be taken into account.

After large-scale screens identified enormous amounts of protein interactions in
organisms like yeast, fly, and worm (Goll and Uetz 2007), which also serve as model
systems for studying many human disease mechanisms (Giallourakis et al. 2005),
experimental techniques and computational prediction methods have recently been
applied to generate sizable networks of human proteins (Cusick et al. 2005; Stelzl and
Wanker 2006; Assenov et al. 2008; Ram�ırez et al. 2007). In addition, comprehensive
maps of protein interactions inside pathogens and between pathogens and the human
host have been compiled for bacteria like E. coli, H. pylori, C. jejuni, and other species
(Noirot and Noirot-Gros 2004), for many viruses such as herpes viruses, the Epstein-
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Barr virus, the SARS coronavirus, HIV-1, the hepatitis C virus, and others (Uetz et al.
2004), and for the malaria parasite P. falciparum (Table 3). Those extensive network
maps can now be explored to identify potential drug targets and to block or manipulate
important protein–protein interactions.

Furthermore, different experimental methods are also used to expand the known
interaction networks around pathway-centric proteins like epidermal growth factor
receptors (EGFRs) (Tewari et al. 2004; Oda et al. 2005; Jones et al. 2006), Smad and
transforming growth factor–b (TGFb) (Colland and Daviet 2004; Tewari et al. 2004;
Barrios-Rodiles et al. 2005), and tumor necrosis factor-a (TNFa) and the transcription
factor NF-kB (Bouwmeester et al. 2004). All of these proteins are involved in
sophisticated signal transduction cascades implicated in various important disease
indications ranging from cancer to inflammation. The immune system and Toll-like
receptor (TLR) pathways were the subject of other detailed studies (Oda and Kitano
2006). Apart from that, protein networks for longevity were assembled to research
ageing-related effects (Xue et al. 2007).

High-throughput screens are also conducted for specific disease proteins causative
of closely related clinical and pathological phenotypes to unveil molecular interconnec-
tions between the diseases. For example, similar neurodegenerative disease phenotypes
are caused by polyglutamine proteins like huntingtin and over twenty ataxins. Although
they that are not evolutionarily related and their expression is not restricted to the brain,
they are responsible for inherited neurotoxicity and age-dependent dementia only in
specific neuron populations (Ralser et al. 2005). Yeast two-hybrid screens revealed an
unexpectedly dense interaction network of those disease proteins forming intercon-
nected subnetworks (Fig. 11), which suggests common pathways affected in disease
(Goehler et al. 2004; Lim et al. 2006). Some of the protein–protein interactions may be

Table 3 Selection of pathogenic organisms for which comprehensive protein interactionmaps are available

Organism References

Bacteria
Escherichia coli (Butland et al. 2005)
Helicobacter pylori (Colland et al. 2001)
Campylobacter jejuni (Parrish et al. 2007)

Viruses
Herpesvirus family (Uetz et al. 2006)
Epstein-Barr virus (Calderwood et al. 2007)
SARS coronavirus (von Brunn et al. 2007)
HIV-1 (Wheeler et al. 2007)
Hepatitis C virus (Flajolet et al. 2000)

Parasite
Plasmodium falciparum (LaCount et al. 2005)
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involved inmediating neurodegeneration and thusmay be tractable for drug inhibition,
and several interaction partners of ataxins could additionally be shown to be potential
disease modifiers in a fly model (Kaltenbach et al. 2007).

A number of methodological approaches concentrate on deriving correlations
between common topological properties and biological function from subnetworks
around proteins that are associated with a particular disease phenotype like cancer.
Recent studies report that human disease-associated proteins with similar clinical and
pathological features tend to bemore highly connected among each other thanwith other
proteins and to have more similar transcription profiles (Gandhi et al. 2006; Xu and
Li 2006; Goh et al. 2007). This observation points to the existence of disease-associated
functional modules. Interestingly, in contrast to disease genes, essential genes whose
defect may be lethal early on in life are frequently found to be hubs central to the network.

Further work focused on specific disease-relevant networks. For instance, to analyze
experimental asthma, differentially expressed genes were mapped onto a protein

Fig. 11 Part of the protein interaction network around the four yellow-colored ataxins causative of
neurodegenerative diseases
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interaction network (Lu et al. 2007). Here, highly connected nodes tended to have
smaller expression changes than peripheral nodes. This agrees with the general notion
that disease-causing genes are typically not central in the network. Similarly, a
comprehensive protein network analysis of systemic inflammation in human subjects
investigated blood leukocyte gene expression patterns when receiving an inflammatory
stimulus, a bacterial endotoxin, to identify functional modules perturbed in response to
this stimulus (Calvano et al. 2005). Topological criteria and gene expression data were
also used to search protein networks for functional modules that are relevant to type 2
diabetes mellitus (Liu et al. 2007) or to different types of cancer (Jonsson and Bates
2006; Cui et al. 2007; Lin et al. 2007; Pujana et al. 2007). Moreover, it was recently
demonstrated that the integration of gene expression profiles with subnetworks of
interacting proteins can lead to improved prognosticmarkers for breast cancer outcome
that are more reproducible between patient cohorts than sets of individual genes
selected without network information (Chuang et al. 2007).

In drug discovery, protein networks can help to design selective inhibitors of
protein–protein interactions which target specific interactions of a protein, but do not
affect others (Wells andMcClendon2007). For example, a highly connectedprotein (hub)
may be a suitable target for an antibiotic whereas a more peripheral protein with few
interaction partners may be more appropriate for a highly specific drug that needs to
avoid side effects. Thus, topological network criteria are not only useful for characterizing
diseaseproteins, but also forfindingdrug targets.Thediversity of interactionsof a targeted
protein could also help in predicting potential side effects of a drug. Apart from that, it
is remarkable that some potential drugs have been found to be less effective than expected
due to the intrinsic robustness of living systems against perturbations of molecular
interactions (Kitano2007). Furthermore,mutations inproteins cause genetic diseases, but
it is not always easy to distinguish protein interactions impaired bymutated binding sites
from other disease causes like structural instability induced by amino acid mutations.

Nowadays many genome-wide association and linkage studies for human diseases
suggest genomic loci and linkage intervals that contain candidate genes encoding SNPs
and mutations of potential disease proteins (Kann 2007). Since the resultant list of
candidates frequently contain dozens or even hundreds of genes, computational
approaches have been developed to prioritize them for further analyses and experi-
ments. In the following, we will demonstrate the variety of available prioritization
approaches by explicating three recent methods that utilize protein interaction data in
addition to the inclusion of other sequence and function information. All methods
capitalize on the above described observation that closely interacting gene products
often underlie polygenic diseases and similar pathophenotypes (Oti and Brunner 2007).

Using protein–protein interaction data annotated with reliability values, Lage et al.
(2007) first predict human protein complexes for each candidate protein. They then
score the pairwise phenotypic similarity of the candidate disease with all proteins within
each complex that are associated with any disease. The scoring function basically
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measures the overlap of the respective disease phenotypes as recorded in text entries of
OMIM (Online Mendelian Inheritance in Man) (Hamosh et al. 2005) based on the
vocabulary ofUMLS (UnifiedMedical Language System) (Bodenreider 2004). Lastly, all
candidates are prioritized by the probability returned by a Bayesian predictor trained on
the interaction data and phenotypic similarity. Therefore, this method depends on the
premise that the phenotypic effects caused by any disease-affected member in a
predicted protein complex are very similar to each other.

Another prioritization approach by Franke et al. (2006) does not make use of
overlapping disease phenotypes and primarily aims at connecting physically disjoint
genomic loci associated with the same disease using molecular networks. At the
beginning, their method Prioritizer performs a Bayesian integration of three different
network types of gene/protein relationships. The latter are derived from functional
similarity using Gene Ontology annotation, microarray coexpression, and protein–
protein interaction. This results in a probabilistic human network of general functional
links betweengenes. Prioritizer then assesseswhich candidate genes contained indifferent
disease loci are closely connected in this gene-gene network. To this end, the score of each
candidate is initially set to zero, but it is increased iteratively during network exploration
by a scoring function that depends on the network distance of the respective candidate
gene to candidates inside another genomic loci. This procedure finally yields separate
prioritization lists of ranked candidate genes for each genomic loci.

In contrast to the integrated gene-gene network used by Prioritizer, the Endeavour
system (Aerts et al. 2006) directly compares candidate genes with known disease genes
and creates different ranking lists of all candidates using various sources of evidence
for annotated relationships between genes or proteins. The evidence can be derived
from literature mining, functional associations based on Gene Ontology annotations,
co-occurrence of transcriptional motifs, correlation of expression data, sequence
similarity, common protein domains, shared metabolic pathway membership, and
protein–protein interactions. At the end, Endeavour merges the resultant ranking lists
using order statistics and computes an overall prioritization list of all candidate genes.

Finally, it is important to keep in mind that current datasets of human protein
interactions may still contain a significant number of false interactions and thus
biological and medical conclusions derived from them should always be taken with
a note of caution, in particular, if no good confidence measures are available.

12 Sequence-based prediction of protein interactions

A comprehensive atlas of protein interactions is fundamental for a better understanding
of the overall dynamic functioning of the living organisms. These insights arise from the
integration of functional information, dynamic data and protein interaction networks.
In order to fulfill the goal of enlarging our view of the protein interaction network,
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several approaches must be combined and a crosstalk must be established among
experimental and computational methods. This has become clear from comparative
evaluations which show similar performances for both types of methodologies. In fact,
over the recent years this field has grown into one of the most appealing fields in
bioinformatics. Evolutionary signals result from restrictions imposed by the need to
optimize the features that affect a given interaction and the nature of these features can
differ from interaction to interaction. Consequently, a number of different methods
have been developed based a range of different evolutionary signals. This section is
devoted to a brief review of some of these methods.

12.1 Phylogenetic profiling

These techniques are based on the similarity of absence/presence profiles of interacting
proteins. In its original formulation (Gaasterland and Ragan 1998; Huynen and Bork
1998; Pellegrini et al. 1999;Marcotte et al. 1999a) thephylogenetic profileswere codified as
0/1 vectors for each reference protein according to the absence/presence of proteins of the
studied family in a set of fully sequenced organisms (see Fig. 12a). The vectors for different
reference sequences are compared by using the Hamming distance (Pellegrini et al. 1999)
between vectors. This measure counts the number of differences between two binary
vectors. The rationale for this method is that both interacting proteins must be present in
an organism and that reductive evolution will remove unpaired proteins in the rest of the
organisms. Proposed improvements include the inclusion of quantitative measures of
sequence divergence (Marcotte et al. 1999b; Date and Marcotte 2003) and the ability to
deal with biases in the taxonomic distribution of the organisms used (Date andMarcotte
2003; Barker and Pagel 2005). These biases are due to the intuitive fact that evolutionarily
similar organismswill share a higher number of protein and genomic features (in this case
presence/absence of an orthologue).

To reduce this problem, Date et al. used Mutual Information from sequence
divergent profiles for measuring the amount of information shared by both vectors.
Mutual Information is calculated as:

MIðP1; P2Þ ¼ HðP1Þ þ HðP2Þ � HðP1; P2Þ;
where HðP1Þ ¼P pðP1Þ ln pðP1Þ is the marginal entropy of the probability distribu-
tion of protein P1 sequence distances and HðP1; P2Þ ¼ �PP pðP1; P2Þ ln pðP1; P2Þ
is the joint entropy of the probability distributions of both protein P1 and P2 sequence
distances. The corresponding probabilities are calculated from the whole distribution of
orthologue distances for the organisms. In this way, the most likely evolutionary
distances between orthologues from a pair of organisms will produce smaller entropies
and consequently smaller values of Mutual Information. This formulation should
implicitly reduce the effect of taxonomic biases. In an interesting work, published
recently by Barker et al. (2007), the authors showed that detection of correlated gene-
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gain/gene-loss events improves the predictions by reducing the number of false posi-
tives due to taxonomic biases.

The phylogenetic profiling approach has been shown to be quite powerful, because
its simple formulation has allowed the exploration of a number of alternative inter-
dependencies between proteins. This is the case for enzyme “displacement” in meta-
bolic pathways detected as anti-correlated profiles (Morett et al. 2003), and for complex
dependence relations among triplets of proteins (Bowers et al. 2004). Phylogenetic
profiles have also been correlated with bacterial traits to predict the genes related to
particular phenotypes (Korbel et al. 2005). The main drawbacks of these methods are
the difficulty of dealing with essential proteins (where there is no absence information)
and the requirement for the genomes under study to be complete (to establish the
absence of a family member).

Fig. 12 Prediction of protein interactions based on genomic and sequence features. Information coming
from the set of close homologs of the proteins P1 and P2 from the Organism 1 in other organisms can be
used to predict an interaction between these proteins. (a) Phylogenetic profiling. Presence/absence of a
homolog of both proteins in different organisms is coded as the corresponding two �1/0� profiles (most
simple approach) and an interaction is predicted for very similar profiles. (b) Similarity of phylogenetic trees.
Multiple sequence alignments are built for both sets of proteins and phylogenetic trees are derived from
the proteins with a possible partner present in its organism. Proteins with highly similar trees are predicted
to interact. (c) Gene neighbourhood conservation. Genome closeness is checked for those genes coding for
both sets of homologous proteins. Interaction is predicted if gene pairs are recurrently close to each other in
a number of organisms. (d) Gene fusion. Finding the proteins containing different sequence regions
homologous to each of the two proteins is used to predict an interaction between them
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12.2 Similarity of phylogenetic trees

Similarity in the topology of phylogenetic trees of interacting proteins has been
qualitatively observed in a number of cases (Fryxell 1996; Pages et al. 1997; Goh
et al. 2000). The extension of this observation to a quantitativemethod for the prediction
of protein interactions requires measuring the correlation between the similarity
matrices of the explored pairs of protein families (Goh et al. 2000). This formulation
allows systematic evaluation of the validity of using the original observation as a signal of
protein interaction (Pazos and Valencia 2001).

The general protocol for these methods is illustrated in Fig. 12b. It includes the
building of the multiple sequence alignment for the set of orthologues (one per
organism) related to every query sequence, the calculation of all protein pair evolu-
tionary distances (derived from the corresponding phylogenetic trees) and finally the
comparison of evolutionary distancematrices of pairs of query proteins using Pearson�s
correlation coefficient. Protein pairs with highly correlated distance matrices are
predicted to be more likely to interact.

Although this signal has been shown to be significant, the underlying process
responsible for this similarity is still controversial (Chen and Dokholyan 2006). There
are twomain hypotheses for explaining this phenomenon. The first hypothesis suggests
that this evolutionary similarity comes from the mutual adaptation (co-evolution) of
interacting proteins and the need to retain interaction features while sequences diverge.
The second hypothesis implicates external factors. In this scenario, the restrictions
imposed by evolution on the functional process implicating both proteins would be
responsible for the parallelism of their phylogenetic trees.

Although the relative importance of both factors is still not clear, the predictive
power of similarities in phylogenetic trees is not affected. Indeed, a number of
developments have improved the original formulation (Pazos et al. 2005; Sato et al.
2005). The first advance involved managing the intrinsic similarity of the trees because
of the common underlying taxonomic distribution (due to the speciation processes).
This effect is analogous to the taxonomic biases discussed above. In these cases, the
approach followed was to correct both trees by removing this common trend. For
example, Pazos et al. subtracted the distances of the 16S rRNA phylogenetic tree to the
corresponding distances for each protein tree. The correlations for the resulting distance
matrices were used to predict protein interactions.

Additionally some analyses have focused on the selection of the sequence regions
used for the tree building (Jothi et al. 2006; Kann et al. 2007). For example, it has been
shown that interacting regions, both defined as interacting residues (using structural
data) and as the sequence domain involved in the interaction, show more clear tree
similarities than the whole proteins (Mintseris andWeng 2005; Jothi et al. 2006). Other
interesting work showed that prediction performance can be improved by removing
poorly conserved sequence regions (Kann et al. 2007).
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Finally, in a very recent work (Juan et al. 2008) the authors have suggested a new
method for removing noise in the detection of tree similarity signals and detecting
different levels of evolutionary parallelism specificity. This method introduces the new
strategy of using the global network of protein evolutionary similarity for a better
calibration of the evolutionary parallelism between two proteins. For this purpose, they
define a protein �co-evolutionary� profile as the vector containing the evolutionary
correlations between a given protein tree and all the rest of the protein trees derived from
sequences in the same organism. This co-evolutionary profile is a more robust and
comparable representation of the evolution of a given protein (it involves hundreds of
distances) andcanbeused todeploy anew level of evolutionary comparison.The authors
compare these co-evolutionary profiles by calculating Pearson�s correlation coefficient
foreachpair. In thisway, themethoddetectspairsofproteins forwhichhighevolutionary
similarities are supported by their similarities with the rest of proteins of the organism.
This approach significantly improves the predictive performance of the tree similarity-
based methods so that different degrees of co-evolutionary specificity are obtained
according to the number of proteins that might be influencing the co-evolution of the
studied pair. This is done by extending the approach of Sato et al. (2006), that uses par-
tial correlations and a reduced set of proteins for determining specific evolutionary
similarities. Juan et al. calculated the partial correlation for each significant evolutionary
similarity with respect to the remaining proteins in the organism and defined levels of
co-evolutionary specificity according to the number of proteins that are considered to be
co-evolving with each studied protein pair. With this strategy, it�s possible to detect a
rangeofevolutionaryparallelisms fromtheproteinpairs (forvery specific similarities)up
to subsets ofproteins (formore relaxed specificities) that arehighly evolutiondependent.
Interestingly, if specificity requirements are relaxed, protein relationships among
componentsofmacro-molecular complexesandproteins involved in the samemetabolic
process canbe recovered.This canbe consideredas afirst step in the applicationofhigher
orders of evolutionary parallelisms to decode the evolutionary impositions over the
protein interaction network.

12.3 Gene neighbourhood conservation

This method exploits the well-known tendency of bacterial organisms to organize
proteins involved in the same biochemical process by clustering them in the genome.
This observation is obviously related to the operon concept and the mechanisms for the
coordination of transcription regulation of the genes present in these modules. These
mechanisms are widespread among bacterial genomes. Therefore the significance of a
given gene proximity can be established by its conservation in evolutionary distant
species (Dandekar et al. 1998; Overbeek et al. 1999).

The availability of fully sequenced organisms makes computing the intergenic
distances between each pair of genes easy. Genes with the same direction of transcrip-
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tion and closer than 300 bases are typically considered to be in the same genomic
context (see Fig. 12c). The conservation of this closeness must be found in more than
two highly divergent organisms to be considered significant because of the taxonomic
biases.

While this signal is strong in bacterial genomes, its relevance is unclear in eukaryotic
genomes. This is themain drawback of thesemethodologies. In fact, this signal only can
be exploited for eukaryotic organisms by extrapolating genomic closeness of bacterial
genes to their homologues in eukaryotes. Obviously, this extrapolation leads to a
considerable reduction in the confidence and number of obtained predictions for this
evolutionary lineage. However, conserved gene pairs that are transcribed from a shared
bidirectional promoter can be detected by similar methods and can found in eukaryotes
as well as prokaryotes (Korbel et al. 2004)

12.4 Gene fusion

A further use of evolutionary signals in protein function and physical interaction
prediction has been the tendency of interacting proteins to be involved in gene fusion
events. Sequences that appear as independently expressed ORFs in one organism
become �fused� as part of the same polypeptide sequence in another organism. These
fusions are strong indicators of functional and structural interaction that have been
suggested to increase the effective concentration of interacting functional domains
(Enright et al. 1999; Marcotte et al. 1999b). This hypothesis proposes that gene fusion
could remove the effect of diffusion and relative correct orientation of the proteins
forming the original complex.

These fusion events are typically detected when sequence searches for two non-
homologous proteins obtain a significant hit in the same sequence. Cases matching to
the same region of the hit sequence are removed (these cases are schematically
represented in Fig. 12d).

In spite of the strength of this signal, gene fusion seems to not be a habitual event in
bacterial organisms. The difficulty of distinguishing protein interactions belonging to
large evolutionary families is the main drawback of the automatic application of these
methodologies.

13 Integration of experimentally determined
and predicted interactions

As described above, there are many both experimental techniques and computational
methods for determining and predicting interactions. To obtain the most comprehen-
sive interaction networks possible, as many as possible of these sources of interactions
should be integrated. The integration of these resources is complicated by the fact that
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the different sources are not all equally reliable, and it is thus important to quantify the
accuracy of the different evidence supporting an interaction.

In addition to the quality issues, comparison of different interaction sets is further
complicated by the different nature of the datasets: yeast two-hybrid experiments are
inherently binary, whereas pull-down experiments tend to report larger complexes.
To allow for comparisons, complexes are typically represented by binary interaction
networks; however, it is important to realize that there is not a single, clear definition of a
“binary interaction”. For complex pull-down experiments, two different representa-
tions have been proposed: the matrix representation, in which each complex is
represented by the set of binary interactions corresponding to all pairs of proteins
from the complex, and the spoke representation, in which only bait-prey interactions
are included (von Mering et al. 2002). The binary interactions obtained using either of
these representations are somewhat artificial as some interacting proteins might in
reality never touch each other and others might have too low an affinity to interact
except in the context of the entire complex bringing them together. Even in the case of
yeast two-hybrid assays, which inherently report binary interactions, not all interactions
correspond to direct physical interactions.

The database STRING (“Search Tool for the Retrieval of Interacting Genes/
Proteins”) (vonMering et al. 2007) represents an effort to provide many of the different
types of evidence for functional interactions under one common framework with an
integrated scoring scheme. Such an integrated approach offers several unique advan-
tages: 1) various types of evidence are mapped onto a single, stable set of proteins,
thereby facilitating comparative analysis; 2) known and predicted interactions often
partially complement each other, leading to increased coverage; and 3) an integrated
scoring scheme can provide higher confidence when independent evidence types agree.

In addition to the many associations imported from the protein interaction
databases mentioned above (Bader et al. 2003; Salwinski et al. 2004; Guldener et al.
2006; Mishra et al. 2006; Stark et al. 2006; Chatr-aryamontri et al. 2007), STRING also
includes interactions from curated pathway databases (Vastrik et al. 2007; Kanehisa et
al. 2008) and a large body of predicted associations that are produced de novo using
many of the methods described in this chapter (Dandekar et al. 1998; Gaasterland and
Ragan 1998; Pellegrini et al. 1999; Marcotte et al. 1999c). These different types of
evidence are obviously not directly comparable, and even for the individual types of
evidence the reliability may vary. To address these two issues, STRING uses a two-stage
approach. First, a separate scoring scheme is used for each evidence type to rank the
interactions according to their reliability; these raw quality scores cannot be compared
between different evidence types. Second, the ranked interaction lists are benchmarked
against a common reference to obtain probabilistic scores, which can subsequently be
combined across evidence types.

To exemplify how raw quality scores work, we will here explain the scoring scheme
used for physical protein interactions from high-throughput screens. The two funda-
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mentally different types of experimental interaction data sets, complex pull-downs and
binary interactions are evaluated using separate scoring schemes. For the binary
interaction experiments, e.g. yeast two-hybrid, the reliability of an interaction correlates
well with the number of non-shared interaction partners for each interactor. STRING
summarizes this in the following raw quality score:

S1 ¼ logððN1þ1Þ � ðN2þ1ÞÞ;
where N1 and N2 are the numbers of non-shared interaction partners. This score is
similar to the IG1 measure suggested by Saito et al. (2002). In the case of complex pull-
down experiments, the reliability of the inferred binary interactions correlates better
with the number of times the interactors were co-purified compared to what would be
expected at random:

S2 ¼ logððN12 � NÞ=ððN1þ1Þ � ðN2þ1ÞÞÞ;
where N12 is the number of purifications containing both proteins, N1 and N2 are
the numbers of purifications containing either protein 1 or 2, and N is the total number
of purifications. For this purpose, the bait protein was counted twice to account for
bait–prey interactions being more reliable than prey–prey interactions. These raw
quality scores are calculated for each individual high-throughput screen. Scores vary
within one dataset, because they include additional, intrinsic information from the data
itself, such as the frequency with which an interaction is detected. For medium sized
data sets that are not large enough to apply the topology based scoring schemes, the
same raw score is assigned to all interactions within a dataset. Finally, very small data
sets are pooled and considered jointly as a single interaction set.

We similarly havedifferent scoring schemes forpredicted interactionsbasedon co-
expression in microarray expression studies, conserved gene neighborhood, gene
fusion events andphylogenetic profiles. Based on these rawquality scores, a confidence
score is assigned to eachpredicted associationbybenchmarking theperformanceof the
predictions against a common reference set of trusted, true associations. STRINGuses
as reference the functional grouping of proteins maintained at KEGG (Kyoto
Encyclopedia ofGenes andGenomes (Kanehisa et al. 2008). Any predicted association
for which both proteins are assigned to the same “KEGGpathway” is counted as a true
positive. KEGGpathways are particularly suitable as a reference because they are based
on manual curation, are available for a number of organisms, and cover several
functional areas. Other benchmark sets could also be used, for example “Biological
Process” terms from Gene Ontology (Ashburner et al. 2000) or Reactome pathways
(Vastrik et al. 2007). The benchmarked confidence scores in STRING generally
correspond to the probability of finding the linked proteins within the same pathway
or biological process.

The assignment of probabilistic scores for all evidence types solves many of the
issues of data integration. First, incomparable evidence types are made comparable by
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assigning a score that represents howwell the evidence type can predict a certain type of
interactions (the type being specified by the reference set used). Second, the separate
benchmarking of interactions from, for example, different high-throughput protein
interaction screens accounts for any differences in reliability between different studies.
Third, use of raw quality scores allows us to separatemore reliable interactions from less
reliable interactions even within a single dataset. The probabilistic nature of the scores
also makes it easy to calculate the combined reliability of an interaction given multiple
lines of evidence. It is computed under the assumption of independence for the various
sources, in a na€ıve Bayesian fashion.

In addition to having a good scoring scheme, it is crucial tomake the evidence for an
interaction transparent to the end users. To achieve this, the STRING interaction
network is made available via a user-friendly web interface (http://string.embl.de).
When performing a query, the user will first be presented with a network view, which
provides a first, simplified overview (Fig. 13). From here the user has full control over
parameters such as the number of proteins shown in the network (nodes) and the
minimal reliability required for an interaction (edge) to be displayed. From the network,
the user also has the ability to drill down on the evidence that underlies any given
interaction using the dedicated viewer for each evidence type. For example, it is possible
to inspect the publications that support a given interaction, the set of protein that were

Fig. 13 Protein interaction network of the core cell-cycle regulation in human. The network was
constructed by querying the STRING database (vonMering et al. 2007) for very high confidence interactions
(conf. score > 0.99) between four cyclin-dependent kinases, their associated cyclins, the WEE1 kinase and
the CDC25 phosphatases. The network correctly recapitulates CDC2 interacts with cyclin-A/B, CDK2 with
cyclin-A/E, and CDK4/6 with cyclin-D. It also shows that the WEE1 and CDC25 phosphatases regulate CDC2
and CDK2 but not CDK4 and CDK6. Moreover, the network suggests that CDC25A phosphatase regulates
CDC2 and CDK2, whereas CDC25B and CDC25C specifically regulate CDC2
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co-purified in a particular experiment and the phylogenetic profiles or genomic context
based on which an interaction was predicted.

14 Domain–domain interactions

Protein binding is commonly characterized by specific interactions of evolutionarily
conserved domains (Pawson and Nash 2003). Domains are fundamental units of
protein structure and function (Aloy and Russell 2006), which are incorporated into
different proteins by genetic duplications and rearrangements (Vogel et al. 2004).
Globular domains are defined as structural units of fifty and more amino acids that
usually fold independently of the remaining polypeptide chain to form stable, compact
structures (Orengo and Thornton 2005). They often carry important functional sites
and determine the specificity of protein interactions (Fig. 14). Essential information on

Fig. 14 Exemplary interaction between the two human proteins HHR23B and ataxin-3. Each protein
domain commonly adopts a particular 3D structure and may fulfill a specific molecular function. Generally,
the domains responsible for an observed protein-protein interaction need to be determined before further
functional characterizations are possible. In the depicted protein-protein interaction, it is known from
experiments that the ubiquitin-like domain UBL of HHR23B (yellow) forms a complex with de-ubiquitinat-
ing Josephin domain of ataxin-3 (blue) (Nicastro et al. 2005)
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the cellular function of specific protein interactions and complexes can often be gained
from the known functions of the interacting protein domains. Domains may contain
binding sites for proteins and ligands such as metabolites, DNA/RNA, and drug-like
molecules (Xia et al. 2004).Widely spread domains that mediate molecular interactions
can be found alone or combined in conjunction with other domains and intrinsically
disordered, mainly unstructured, protein regions connecting globular domains
(Dunker et al. 2005). According to Apic et al. (2001) multi-domain proteins constitute
two thirds of unicellular and 80% of metazoan proteomes. One and the same domain
can occur in different proteins, and many domains of different types are frequently
found in the same amino acid chain.

Much effort is being invested in discovering, annotating, and classifying protein
domains both from the functional (Pfam (Finn et al. 2006), SMART (Letunic et al.
2006), CDD (Marchler-Bauer et al. 2007), InterPro (Mulder et al. 2007) and structural
(SCOP (Andreeva et al. 2004), CATH (Greene et al. 2007)) perspective. Notably, it
may be confusing that the term �domain� is commonly used in two slightly different
meanings. In the context of domain databases such as Pfam and SMART, a domain is
basically defined by a set of homologous sequence regions, which constitute a domain
family. In contrast, a specific protein may contain one or more domains, which are
concrete sequence regions within its amino acid sequence corresponding to autono-
mously folding units. Domain families are commonly represented by Hidden Markov
Models (HMMs), and highly sensitive search tools like HMMER (Eddy 1998) are used
to identify domains in protein sequences.

Different sources of information about interacting domains with experimental
evidence are available. Experimentally determined interactions of single-domain
proteins indicate domain–domain interactions. Similarly, experiments using protein
fragments help identifying interaction domains, but this knowledge is frequently hidden
in the text of publications and not contained in any database. However, domain
databases like Pfam, SMART, and InterPro may contain some annotation obtained by
manual literature curation. In the near future, high-throughput screening techniques
will result in even larger amounts of protein fragment interaction data to delineate
domain borders and interacting protein regions (Colland and Daviet 2004).

Above all, three-dimensional structures of protein domain complexes are experi-
mentally solved by X-ray crystallography or NMR and are deposited in the PDB
database (Berman et al. 2007). Structural contacts between two interacting proteins can
be derived by mapping sequence positions of domains onto PDB structures. Extensive
investigations of domain combinations in proteins of known structures (Apic et al.
2001) as well as of structurally resolved homo- or heterotypic domain interactions (Park
et al. 2001) revealed that the overlap between intra- and intermolecular domain
interactions is rather limited. Two databases, iPfam (Finn et al. 2005) and 3did (Stein
et al. 2005), provide pre-computed structural information about protein interactions
at the level of Pfam domains.
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Analysis of structural complexes suggests that interactions between a given pair of
proteins may be mediated by different domain pairs in different situations and in
different organisms. Nevertheless, many domain interactions, especially those involved
in basic cellular processes such as DNAmetabolism and nucleotide binding, tend to be
evolutionarily conserved within a wide range of species from prokaryotes to eukaryotes
(Itzhaki et al. 2006). In yeast, Pfam domain pairs are associated with over 60% of
experimentally known protein interactions, but only 4.5% of them are covered by iPfam
(Schuster-Bockler and Bateman 2007).

Domain interactions can be inferred from experimental data on protein interactions
by identifying those domain pairs that are significantly overrepresented in interacting
proteins compared to random protein pairs (Deng et al. 2002; Ng et al. 2003a; Riley et al.
2005; Sprinzak and Margalit 2001) (Fig. 15). However, the predictive power of such
an approach is strongly dependent on the quality of the data used as the source of
information for protein interactions, and the coverage of protein sequences in terms of
domain assignments. Basically, the likelihood of two domains, Di and Dj, to interact

Fig. 15 Deriving the likelihood of domain interactions from experimental data of protein interactions. Six
different proteins are shown containing domains D1., D2., . . . , D6 in different combinations. Known
interactions between these proteins are shown as black arrows. The matrix in the bottom part of the figure
shows the likelihood for each pair of domains to interact – from low (white) to high (dark)
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can be estimated as the fraction of protein pairs known to interact among all proteins
in the dataset containing this domain pair.

This basic idea has been improved upon by using a maximum-likelihood (ML)
approach based on the expectation-maximization (EM) algorithm. This method finds
the maximum likelihood estimator of the observed protein–protein interactions by
an iterative cycle of computing the expected likelihood (E-step) and maximizing
the unobserved parameters (domain interaction propensities) in the M-step. When
the algorithm converges (i.e. the total likelihood cannot be further improved by the
algorithm), theML estimate for the likelihood of the unobserved domain interactions is
found (Deng et al. 2002; Riley et al. 2005). Riley and colleagues further improved this
method by excluding each potentially interacting domain pair from the dataset and re-
computing the ML-estimate to obtain an additional confidence value for the respective
domain–domain interaction. This domain pair exclusion (DPEA)methodmeasures the
contribution of each domain pair to the overall likelihood of the protein interaction
network based on domain–domain interactions. In particular, this approach enables the
prediction of specific domain–domain interactions between selected proteins which
would have beenmissed by the basicMLmethod. AnotherML-based algorithm is InSite
which takes differences in the reliability of the protein–protein interaction data into
account (Wang et al. 2007a). It also integrates external evidence such as functional
annotation or domain fusion events.

An alternative method for deriving domain interactions is through co-evolutionary
analysis that exploits the notion that mutations of residue pairs at the interaction
interfaces are correlated to preserve favorable physico-chemical properties of the
binding surface (Jothi et al. 2006). The pair of domains mediating interactions between
two proteins P1 and P2 may therefore be expected to display a higher similarity of
their phylogenetic trees than other, non-interacting domains (Fig. 16). The degree of
agreement between the evolutionary history of two domains, Di and Dj, can be
computed by the Pearson�s correlation coefficient rij between the similarity matrices
of the domain sequences in different organisms:

rij ¼
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are themean values of thematrices, respectively. In Figure 16 the

evolutionary tree of the domainD2 ismost similar to those of D5 andD6, corroborating
the actual binding region.

Awell-known limitation of the correlatedmutation analysis is that it is very difficult
to decide whether residue co-variation happens as a result of functional co-evolution

392

Chapter 6.2: Protein–protein interactions: analysis and prediction



directed at preserving interaction sites, or because of sequence divergence due to
speciation. To address this problem, (Kann et al. 2007) suggested to distinguish the
relative contribution of conserved andmore variable regions in aligned sequences to the
co-evolution signal based on the hypothesis that functional co-evolution is more
prominent in conserved regions.

Finally, interacting domains can be identified by phylogenetic profiling, as described
above for full-chain proteins. As in the case of complete protein chains, the similarity of
evolutionary patterns shared by two domains may indicate that they interact with each
other directly or at least share a common functional role (Pagel et al. 2004). As illustrated
in Fig. 17, clustering protein domains with similar phylogenetic profiles allows
researchers to build domain interaction networks which provide clues for describing
molecular complexes. Similarly, the DomainTeammethod (Pasek et al. 2005) considers
chromosomal neighborhoods at the level of conserved domain groups.

A number of resources provide and combine experimentally derived and predicted
domain interaction data. InterDom (http://interdom.i2r.a-star.edu.sg/) integrates do-
main-interaction predictions based on known protein interactions and complexes with
domain fusion events (Ng et al. 2003b). DIMA (http://mips.gsf.de/genre/proj/dima2) is
another database of domain interactions, which integrates experimentally demon-

Fig. 16 Co-evolutionary analysis of domain interactions. Two orthologous proteins from different
organisms known to interact with each other are shown. The first protein consists of two domains, D1
and D2, while the second protein includes the domains D3, D4, D5, and D6. Evolutionary trees for each
domain are shown, their similarity serves as an indication of interaction likelihood that is encoded in the
interaction matrix
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strated domain interactions from iPfam and 3did with predictions based on the DPEA
algorithm and phylogenetic domain profiling (Pagel et al. 2007). Recently, two new
comprehensive resources, DOMINE (http://domine.utdallas.edu) (Raghavachari et al.
2008) and DASMI (http://www.dasmi.de) (Blankenburg et al. 2008, submitted), were
introduced and are available online. These resources contain iPfam and 3did data and
predicted domain interactions taken from several other publications. Predictions are
based on several methods for deriving domain interactions from protein interaction
data, phylogenetic domain profiling data and domain coevolution.With the availability
of an increasing number of predictions the task of method weighting and quality
assessment becomes crucial. A thorough analysis of the quality of domain interaction
data can be found in Schlicker et al. (2007).

Beyond domain–domain contacts, an alternative mechanism of mediating molec-
ular recognition is through binding of protein domains to short sequence regions
(Santonico et al. 2005), typically from three to eight residues in length (Zarrinpar et al.
2003; Neduva et al. 2005). Such linear recognition motifs can be discovered from pro-
tein interaction data by identifying amino acid sequence patterns overrepresented in
proteins that do not possess significant sequence similarity, but share the same in-
teracting partner (Yaffe 2006). Web services like EML (http://elm.eu.org (Puntervoll
et al. 2003)), support the identification of linear motifs in protein sequences.

As described above, specific adapter domains can mediate protein–protein inter-
actions.While some of these interaction domains recognize small target peptides, others

Fig. 17 Similarity of domain phylogenetic profiles can be used to build a domain interaction network
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are involved in domain–domain interactions. As short bindingmotifs have a rather high
probability of being found by chance and the exact mechanisms of binding specificity
for this mode of interaction are not understood completely, predictions of protein–
protein interactions based on binding domains is currently limited to domain–domain
interactions for which reliable data is available.

Predicting PPIs from domain interactions may simply be achieved by reversing the
ideas discussed above, that is, by using the domain composition of proteins to evaluate
the interaction likelihood of proteins (Bock and Gough 2001; Sprinzak and Margalit
2001;Wojcik and Schachter 2001). In a naive approach, domain interactions are treated
as independent, and all protein pairs with a matching pair of interacting domains are
predicted to engage in an interaction. Given that protein interactions may also be
mediated by several domain interactions simultaneously, more advanced statistical
methods take into account dependencies between domains and exploit domain
combinations (Han et al. 2004) and multiple interacting domain pairs (Chen and Liu
2005).

Exercising and validating these prediction approaches revealed that the most
influential factor for PPI prediction is the quality of the underlying data. This suggests
that, as for most biological predictions in other fields, the future of prediction methods
for protein and domain interactions may lie in the integration of different sources of
evidence and weighting the individual contributions based on calibration to gold-
standard data. Further methodological improvements may include the explicit con-
sideration of cooperative domains, that is, domain pairs that jointly interact with other
domains (Wang et al. 2007b).

15 Biomolecular docking

Basic interactions between two or up to a few biomolecules are the basic elements of the
complex molecular interaction networks that enable the processes of life and, when
thrown out of their intended equilibrium,manifest themolecular basis of diseases. Such
interactions are at the basis of the formation of metabolic, regulatory or signal
transduction pathways. Furthermore the search for drugs boils down to analyzing the
interactions between the drug molecule and the molecular target to which it binds,
which is often a protein.

For the analysis of a singlemolecular interaction, we do not need complex biological
screening data. Thus it is not surprising that the analysis of the interactions between two
molecules, one of them being a protein, has the longest tradition in computational
biology of all problems involving molecular interactions, dating back over three
decades. The basis for such analysis is the knowledge of the three-dimensional structure
of the involved molecules. To date, such knowledge is based almost exclusively on
experimental measurements, such as X-ray diffraction data or NMR spectra. There are
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also a few reported cases in which the analysis of molecular interactions based on
structural models of protein has led to successes.

The analysis of the interaction of two molecules based on their three-dimensional
structure is called molecular docking. The input is composed of the three-dimensional
structures of the participating molecules. (If the involved molecule is very flexible one
admissible structure is provided.) The output consists of the three-dimensional
structure of the molecular complex formed by the two molecules binding to each
other. Furthermore, usually an estimate of the differential free energy of binding is
given, that is, the energy difference DG between the bound and the unbound con-
formation. For the binding event to be favorable that difference has to be negative.

15.1 Protein-ligand docking

This slight misnomer describes the binding between a protein molecule and a small
molecule. The small molecule can be a natural substrate such as a metabolite or a
molecule to be designed to bind tightly to the protein such as a drug molecule. Protein-
ligand docking is the most relevant version of the docking problem because it is a useful
help in searching for new drugs. Also, the problem lends itself especially well
to computational analysis, because in pharmaceutical applications one is looking for
small molecules that are binding very tightly to the target protein, and that do so in a
conformation that is also a low-energy conformation in the unbound state. Thus, subtle
energy differences between competing ligands or binding modes are not of prime
interest. For these reasons there is a developed commercial market for protein-ligand
docking software.

Usually the small molecule has amolecular weight of up to several hundred Daltons
and can be quite flexible. Typically, the small molecule is given by its 2D structure
formula, e.g., in the form of a SMILES string (Weininger 1988). If a starting 3D
conformation is needed there is special software for generating such a conformation
(see, e.g. (Pearlman 1987; Sadowski et al. 1994)).

Challenges of the protein ligand problem are (i) finding the correct conformation of
the usually highly flexible ligand in the binding site of the protein, (ii) determining
the subtle conformational changes in the binding site of the protein upon binding of
the ligand, which are termed induced fit, (iii) producing an accurate estimate of the
differential energy of binding or at least ranking different conformations of the same
ligand and conformations of different ligands correctly by their differential energy of
binding. Methods tackling problem (ii) can also be used to rectify smaller errors in
structuralmodels of proteinswhose structure has not been resolved experimentally. The
solution of problem (iii) provides the essential selection criterion for preferred ligands
and binding modes, namely those with lowest differential energy of binding.

Challenge (i) has basically been conquered in the last decade as a number of docking
programs have been developed that can efficiently sample the conformational space of
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the ligand and produce correct binding modes of the ligand within the protein,
assuming that the protein is given in the correct structure for binding the ligand.
Several methods are applied here. The most brute-force method is to just try different
(rigid) conformations of the ligand one after the other. If the program is fast enough one
can run through a sizeable number of conformations per ligand (McGann et al. 2003).
A more algorithmic and quite successful method is to build up the ligand from its
molecular fragments inside the binding pocket of the protein (Rarey et al. 1996). Yet
another class of methods sample ligand conformations inside the protein binding
pocket by methods such as local search heuristics, Monte Carlo sampling or genetic
algorithms (Abagyan et al. 1994; Jones et al. 1997; Morris et al. 1998). There are also
programs exercising combinations of different methods (Friesner et al. 2004). The
reported methods usually can compute the binding mode of a ligand inside a protein
within fractions of a minute to several minutes. The resulting programs can be applied
to screening through large databases of ligands involving hundreds of thousands to
millions of compounds and are routinely used in pharmaceutical industry in the early
stages of drug design and selection. They are also repeatedly compared on benchmark
datasets (Kellenberger et al. 2004; Chen et al. 2006; Englebienne et al. 2007). More
complex methods from computational biophysics, such as molecular dynamics (MD)
simulations that compute a trajectory of the molecular movement based on the forces
exerted on the molecules take hours on a single problem instance and can only be used
for final refinement of the complex.

Challenges (ii) and (iii) have not been solved yet. Concerning problem (ii),
structural changes in the protein can involve redirections of side chains in or close
to the binding pocket and more substantial changes involving backbone movement.
While recently methods have been developed to optimize side-chain placement upon
ligand binding (Claußen et al. 2001; Sherman et al. 2006), the problem of finding the
correct structural change upon binding involving backbone and side-chain movement
is open (Carlson 2002). Concerning problem (iii), there are no scoring functions to date
that are able to sufficiently accurately estimate the differential energy of binding on a
diverse set of protein-ligand complexes (Wang et al. 2003;Huang and Zou 2006). This is
especially unfortunate as an inaccurate estimate of the binding energy causes the
docking program to disregard correct complex structures even though they have been
sampled by the docking program because they are labeled with incorrect energies. This
is the major problem in docking which limits the accuracy of the predictions. Recent
reviews on protein-ligand docking have been published in Sousa et al. (2006) and Rarey
et al. (2007).

One restriction with protein-ligand docking as it applies to drug design and
selection is that the three-dimensional structure of the target protein needs to be
known.Many pharmaceutical targets aremembrane-standing proteins for which we do
not have the three-dimensional structure. For such proteins there is a version of drug
screening that can be viewed as the negative imprint of docking: Instead of docking the
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drug candidate into the binding site of the protein – which is not available – we
superpose the drug candidate (which is here called the testmolecule) onto another small
molecule which is known to bind to the binding site of the protein. Such amolecule can
be the natural substrate for the target protein or another drug targeting that protein. Let
us call this small molecule the reference molecule. The suitability of the new drug
candidate is then assessed on the basis of its structural and chemical similarity with the
reference molecule. One problem is that now both the test molecule and the reference
molecule can be highly flexible. But in many cases largely rigid reference molecules
can be found, and in other cases it suffices to superpose the test moelcule onto any
low-energy conformation of the reference molecule. There are several classes of drug
screening programs based on this molecular comparison, ranging from (i) programs
that perform a detailed analysis of the three-dimensional structures of the molecules to
be compared (e.g. (Lemmen et al. 1998; Kr€amer et al. 2003)) across (ii) programs that
perform a topological analysis of the two molecules (Rarey and Dixon 1998; Gillet et al.
2003) to (iii) programs that represent both molecules by binary or numerical property
vectors which are compared with string methods (McGregor and Muskal 1999; Xue
et al. 2000). The first class of programs require fractions of seconds to fractions of a
minute for a single comparison, the second can perform hundreds comparisons per
second, the third up to several ten thousand comparisons per second. Reviews of
methods for drug screening based on ligand comparison are given in (Lengauer et al.
2004; K€amper et al. 2007).

15.2 Protein–protein docking

Here both binding partners are proteins. Since drugs tend to be small molecules this
version of the docking problem is not of prime interest in drug design. Also, the energy
balance of protein–protein binding is much more involved that for protein-ligand
binding. Optimal binding modes tend not to form troughs in the energy landscape that
are as pronounced as for protein-ligand docking. The binding mode is determined by
subtle side-chain rearrangements of both binding partners that implement the induced
fit along typically quite large binding interfaces. The energy balance is dominated by
difficult to analyze entropic terms involving the desolvation of water within the binding
interface. For these reasons, the software landscape for protein–protein docking is not as
well developed as for protein-ligand docking and there is no commercial market for
protein–protein docking software.

Protein–protein docking approaches are based either on conformational sampling
and MD – which can naturally incorporated molecular flexibility but suffers from very
high computing demands – or on combinatorial sampling with both proteins con-
sidered rigid in which case handling of protein flexibility has to be incorporated with
methodical extensions. For space reasons we do not detail methods for protein–protein
docking. A recent review on the subject can be found in Hildebrandt et al. (2007).
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A variant of protein–protein docking is protein-DNA docking. This problem
shares with protein–protein docking the character that both binding partners are
macromolecules. However, entropic aspects of the energy balance are even more
dominant in protein-DNA docking than in protein–protein docking. Furthermore
DNA can assume nonstandard shapes when binding to proteins which deviate much
more from the known double helix than we are used to when considering induced
fit phenomena.
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