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Abstract

Background: Newly-evolved multiplex sequencing technology has been bringing transcriptome sequencing into an
unprecedented depth. Millions of transcript tags now can be acquired in a single experiment through parallelization. The
significant increase in throughput and reduction in cost required us to address some fundamental questions, such as how many
transcript tags do we have to sequence for a given transcriptome? How could we estimate the total number of unique
transcripts for different cell types (transcriptome diversity) and the distribution of their copy numbers (transcriptome dynamics)?
What is the probability that a transcript with a given expression level to be detected at a certain sampling depth?

Methodology/Principal Findings: We developed a statistical model to evaluate these parameters based on transcriptome-
sampling data. Three mixture models were exploited for their potentials to model the sampling frequencies. We
demonstrated that relative abundances of all transcripts in a transcriptome follow the generalized inverse Gaussian
distribution. The widely known beta and gamma distributions failed to fulfill the singular characteristics of relative
abundance distribution, i.e., highly skewed toward zero and with a long tail. An estimator of transcriptome diversity and an
analytical form of sampling growth curve were proposed in a coherent framework. Experimental data fitted this model very
well and Monte Carlo simulations based on this model replicated sampling experiments in a remarkable precision.

Conclusions: Taking human embryonic stem cell as a prototype, we demonstrated that sequencing tens of thousands of
transcript tags in an ordinary EST/SAGE experiment was far from sufficient. In order to fully characterize a human
transcriptome, millions of transcript tags had to be sequenced. This model lays a statistical basis for transcriptome-sampling
experiments and in essence can be used in all sampling-based data.
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Introduction

Transcriptomes vary significantly according to specialization of

cell types as well as their life cycle or dynamic status, such as growth

and apoptosis under various physiological and pathological

conditions. This extremely dynamic nature of transcriptomes

requires thorough and unbiased profiling experiments to identify as

many transcripts as possible, including alternative spliced variants

and non-coding RNAs [1]. There are two basic approaches for

transcriptomic studies in terms of methodology: hybridization-

based and sequencing-based. Hybridization-based microarray

technology, due to its high throughput and affordability, is widely

used for mapping gene expression patterns [2,3], transcriptional

activities (genome tiling array) [4–6], and binding sites of regulatory

proteins (ChIP-on-chip) [7]. However, it relies on a predefined

probe set and suffers from poor sensitivity for low abundant targets.

In contrast, sequencing-based transcript-sampling experiments

extract sequence tags to interrogate transcriptomes, such as

expressed sequence tag (EST) sequencing [8], serial analysis of

gene expression (SAGE) [9,10], massively parallel signature

sequencing (MPSS) [11,12], cap analysis gene expression (CAGE)

[13], and most recently paired-end ditags (PETs) technique [14,15]

(see reference [16] for a thorough review). All these techniques

share an assumption that the sampling frequency of a tag (or the

number of overlapping ESTs) is proportional to the abundance of

the corresponding transcript in a given cellular mRNA pool. The

sequencing-based methods do not depend on any prior knowledge

about the transcriptomes so that in theory they can identify as

many targeted transcripts as possible to reach an adequate

coverage. A comprehensive survey of transcriptomes by transcript

or its tag sampling, followed by extensive microarray experiments

for repeated measurements under various physiological conditions

should be able to significantly accelerate de novo analyses and

functional annotations of unknown transcriptomes, especially when

the genome sequence of the targeted organism is available. In

recent years, sequencing technology is undergoing a revolution

where highly-multiplexed sequencing instruments allow effective

acquisition of sequence reads by millions in a single experiment

[17–19]. Although the read length of some current techniques,

typically 30–150 nt in length, is not long enough for de novo

sequencing of large and complex genomes, it is sufficient for

transcript tag sequencing. As their throughputs and protocols are
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being improved constantly, sequencing-based methods are expect-

ed to gain a great momentum in the years to come [20].

There have been several attempts to model transcriptome-

sampling data in recent years. Stern and colleagues empirically

estimated the relative abundance of a transcript as the ratio of its

sampling frequency over the sample size and transcriptome

diversity by a simple correction of sampling errors [21]. Although

this is mathematically valid when the sample size is sufficiently

large, the empirical estimation might lead to biases for the low-

abundant transcripts. Kuznestsov and colleagues [22] extended

discrete Pareto-like distribution to model the sampling frequencies

directly, but gave no implication on the distribution of true relative

abundances. Very recently, Thygesen and Zwinderman [23] used

the gamma distribution to model the relative abundances but, as

we demonstrated in this manuscript, it was not suitable despite of

their mathematical simplicity. Statistically determining the distri-

bution of relative abundances not only provides a theoretical basis

for accurately estimating transcriptome diversity but also sheds

light on the dynamics of a transcriptome.

In this study, we proposed an effective statistical model for

systematically analyzing transcriptome-sampling data. We used

continuous probability distribution to model relative abundances

of all transcripts in a transcriptome, and then mixed it with a

binomial or Poisson model to derive the distribution of sampling

frequencies. The resulted distribution was explicitly distinguished

from the underlying relative abundance distribution since it has

taken sampling errors into account. We exploited the beta-binomial,

gamma-Poisson, and generalized inverse Gaussian-Poisson models,

and concluded that the relative abundances of a transcriptome

followed the generalized inverse Gaussian distribution. We proposed

an effective estimator for transcriptome diversity and provided an

analytical form of sampling growth curve. Our results were derived

from a coherent statistical model thus superior to other empirical

curve-fitting methods. Monte Carlo simulations of transcriptome-

sampling process were also carried out, and both the experimental

and simulated data fitted our model fairly well. Through extensive

simulations, we could determine the probability of detecting

transcripts with a certain expression level at a given sampling stage,

which provides important implications for future experimental

design. Our method can be readily programmed with a moderate

demand for computing time.

Results
Experimental data

For illustration of our model, we used a selected dataset from

SAGE Genie website [24], including ten libraries constructed from

normal human embryonic stem cells (hESC) generated by Marco

Marra’s group in Canada according to a LongSAGE protocol

[25,26]. Among these libraries, SAGE Genie library 843 (or Lib843,

derived from undifferentiated hESC cell line H9 over 38 passages)

has the largest sample size. We pooled it with two other libraries,

Lib1390 (hESC cell line H1 over 31 passages) and Lib1313 (hESC

cell line H7 over 33 passages), to represent a more in-depth sampling.

Pooling the three hESC cell lines has been rationalized to represent

the overall state of hESC as sampling single cell line may lead to

variations due to culture conditions rather than intrinsic differences

[27]. Previous microarray analysis has suggested remarkably similar

expression pattern between the three cell lines [28].

We eliminated erroneous tags by two criteria. First, we matched

all tags to human genomic sequences (UCSC Golden Path hg18)

[29], and only matched tags went through further analyses. About

90% of the unmatched tags were found in the one-count bin, and

97% were present in first three count bins, thus a significant

fraction of them were likely resulted by sequencing errors. For

matched tags, only those observed in more than one of ten

libraries were finally regarded as reliable tags. Finally, Lib843 had

311,175 tags corresponding to 38,244 unique tags and the pooled

library had 747,778 tags corresponding to 51,470 unique tags. The

libraries used for demonstration were summarized in Table 1;

analyses on other libraries gave the similar results (data not shown).

Mixture model
We model transcriptome-sampling data as follows. When N

transcripts (or transcript tags) are sequenced from a transcriptome

of a given cell type, let fx be the number of unique transcripts that

are detected x times. {f1, f2,…} is termed as the frequencies of

frequencies (FOF), as it is irrelevant to the identity of transcripts.

The sample size N =Sx?fx and s =S fx is the total number of

unique transcripts detected in the library (x$1). Assuming that

there are S (unknown) unique transcripts expressed in the RNA

preparation (transcriptome diversity), f0 = S2s stands for those

undetected transcripts.

Previous studies estimated the relative abundances of all

transcripts in fx as x/N and used FOF to formulate the distribution

of relative abundances directly [21]. Although this is statistically

valid when sample size is sufficiently large, in practice the

empirical estimation may be seriously biased due to sampling

errors [30]. In this study, we used continuous probability

distribution w(p), 0,p,1 to model relative abundance distribution

(RAD). That is, any transcript has a probability w(p)dp to be

expressed at relative abundance p. RAD was then mixed with a

basic sampling model, binomial or Poisson distribution, to give

sampling frequency distribution (SFD) P(x|N), x = 0,…, N, which

gives the probability for any transcript of being detected x times

when N transcripts are sequenced. That is, a proportion P(x|N) of

total unique transcripts are expected to occur x times in a sample

of size N. Since FOF is generated from SFD, we used FOF to fit

SFD rather than empirically formulate RAD.

When the mixture model is fitted, one can deduce the estimator

of transcriptome diversity and sampling growth curve in a unified

statistical framework. When N transcripts are sequenced, there are

s(N) = S[12P(0|N)] unique transcripts expected to be detected. If

we actually detect s unique transcripts, the total number of unique

transcripts can be estimated as Ŝ~s
�

1{P̂ 0 Njð Þ
� �

. In addition,

RAD w(p) has expectation E(p)&
XS

i~1
pi

.
S~S{1, giving an

alternative estimator of transcriptome diversity
^̂
SŜSS~E pð Þ{1

as S is

large. Using the estimated transcriptome diversity
^̂
SŜSS and P̂ 0 Njð Þ

given by the fitted model, we can deduce an explicit formula for

sampling growth curve as s Nð Þ~ ^̂
SŜSS 1{P̂ 0 Njð Þ
h i

.

Evaluation of mixture model
We exploited three potential mixture models, beta-binomial (BB),

gamma-Poisson (GP), and generalized inverse Gaussian-Poisson

(GIGP) distribution. We first used Lib843 to demonstrate their

performances in fitting the experimental data. The error-filtered

SAGE data were first formulated as FOF data, and SFD were fitted

by using maximum likelihood method. Once fitted, the expected

FOF can be written as f̂x~P̂ x Njð Þ:Ŝ, where x = 1,…, N and Ŝ is the

estimated transcriptome diversity that is generated based on

sampling models simultaneously. We plotted the expected FOF

under each model against experimental observations (Figure 1). The

magnitude of sample size N in our study made BB and GP mixtures

behave in the same way, consistent with their theoretical behaviors.

From a practical point of view, there was no difference found

between these two mixtures; both fitted the FOF data poorly

A Transcriptome-Sampling Model
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(Figure 1A and 1B). The fitted BB mixture had parameters

a= 1.2841e-005, b= 11,573, under which transcriptome diversity

was grossly overestimated as S = 8.9492e+008. For GP mixture, the

parameters were a= 2.0108e-012, b= 0.036825, and S = 5.6984e+
015. As the parameter is very approximate to zero, the estimate may

have been seriously biased due to rounding errors. Although both

beta and gamma distributions are mathematically simple and

straightforward to form probability mixtures, they are not flexible

enough to represent RAD, i.e., being highly skewed and with a long

tail. This phenomenon was recognized by Thygesen and Zwinder-

man, leading to a separation of FOF into two parts and introduction

of another nonparametric component to model the high frequency

bins. Their model resulted in unnecessary mathematical complexity

and in essence an incomplete RAD [23].

In contrast, GIGP mixture with parameters c= 20.6439,

b = 0.0518 and c = 0.0008 predicted FOF data fairly well for

Lib843 (Figure 1C). The large dispersion at the tail was attributed

to inconsistent logarithmic scale rather than model errors.

Transcriptome diversity was estimated as S = 81,645 under GIGP

model. For comparison, we also fitted GIGP mixture using the

pooled library (Figure 1D), which gave a consistent estimation

S = 77,152. The minor difference was likely due to variations of the

original cDNA libraries. The results under GIGP model were

summarized in Table 1.

Since BB and GP mixtures fitted the data poorly, we limited

further analyses only on GIGP mixture. Once SFD is determined by

experimentally observed FOF data, RAD and transcriptome

diversity S also become known. To validate the fitted RAD, we

did Monte Carlo simulation to imitate the sampling process in

SAGE experiments. Based on the fitted RAD and estimated S under

GIGP model, a simulated library with the same sample size N as the

pooled library was generated and the FOF was plotted in Figure 2,

showing that the simulation exactly replicated the experimental

result. This gave solid confidence on our fitted RAD and estimated S.

Relative abundance distribution
Under GIGP model, RAD is the generalized inverse Gaussian

distribution; it is unimodal and very flexible in shape. Being fitted

with the pooled library, the RAD—highly skewed toward zero and

with a long tail—had values of mode, mean, and median, 4.11e-7,

1.30e-5, and 1.65e-6, respectively (Figure 3). The 75% confidence

interval with minimum length was at [1.00e-7, 4.80e-6], and 90%

of the unique transcripts had relative abundances less than 1.66e-

5. Although it has been previously recognized that most transcripts

are expressed at low abundances and highly abundant transcripts

are rare, the fitted RAD in this study for the first time precisely

described the constitution of transcriptomes.

In order to make the concept of relative abundance more

biologically relevant, the copy number of a transcript in a given

cell can be calculated by multiplying its relative abundance with

the estimated total number of transcripts in that cell. A lower

bound of this estimated total was based on the RNA-DNA

hybridization experiment; it was about 300,000 mRNA molecules

in HeLa cell [31,32]. As this number may vary across different cell

types in vivo and under different culture conditions, it is often hard

to determine precisely. We converted the relative abundances into

copy numbers under different assumptions within a nearly true

range on the total copy number per cell (or per cell type), from

100,000 to 5,000,000. Based on the fitted RAD and transcriptome

diversity S, the copy numbers were clustered into different

expression level bins and the number of unique transcripts in

each bin was formulated in Table 2. As the total copy number per

cell increases, most transcripts centre at 1–5 copies per cell. For

instance, if we assume there are 1,000,000 copies of transcript per

cell, the mean and median copy numbers are 12.96 and 1.65

copies per cell respectively and 90% of transcripts have expression

levels less than 16.60 copies per cell. These results have been

supported by the experimental evidence in yeast [33].

Based on repeated Monte Carlo simulations and assuming there

are 1,000,000 total transcripts per cell, we calculated the mean and

median copy numbers of detected transcripts (Figure 4) and the

probability of detection in different expression level bins (Figure 5)

at different sampling stages. When sampling 10,000 transcripts,

the experiment (typical for EST studies) should have enough

power to identify all abundant transcripts with expression level

greater than 500 copies per cell. For sample sizes ranging from

50,000 to 300,000 (typical for SAGE experiments), only 10% to

47% of the transcripts at expression levels of 1–5 copies per cell are

expected to be detected. When a million tags are acquired, 40%

and 85% of the transcripts with an expression level of ,1 copy per

cell and 1–5 copies per cell become detectable, respectively; other

high frequency bins should have been saturated to different extents

in this sampling range.

Growth curve of transcriptome sampling
Another important result of our sampling model is an explicit

analytical form of the sampling growth curve (Equation 12). In

general, sampling histories are not available for SAGE data archived

in public databases. Since tags are assumed to be randomly sampled,

one can approximate the sampling history by drawing tags from the

library without replacement, and at each sampling point, the

observed number of unique transcript tags s(N) can be recorded. We

did so and plotted the expected growth curve against the simulated

one (Figure 6), showing that the equation (12) faithfully predicted the

Table 1. Parameters and estimations under GIGP model.

SAGE Genie Lib ID Experimental Data After Filteringa Parametersb Estimationsc

N s N s c b c S

Lib843 401432 104438 311175 38244 20.6439 0.0518 0.0008 81645

Lib1390 276203 71104 219088 29174 20.7579 0.0307 0.0030 73866

Lib1313 272465 68695 217515 29869 20.8142 0.0349 0.0035 65842

Pooledd 950100 186693 747778 51470 20.7277 0.0417 0.0016 77152

aTags matched to genomic sequences and observed in more than one of ten hESC libraries are regarded as reliable.
bParameters are calculated based on the maximum likelihood method as described in the text.
cTranscriptome diversity S is estimated with equation (10) or (11) in Methods.
dLib843, Lib1390, and Lib1313 are pooled to represent the overall state of hESC transcriptome.
doi:10.1371/journal.pone.0001659.t001
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sampling processes for both Lib843 and the pooled library. We

noted that only about 47% of the transcripts were identified in

Lib843—the deepest transcriptome sampling by far from SAGE

experiments; even for the pooled library with doubled sample size,

nearly 33% of the transcripts were still missed.

We further used Monte Carlo simulation to evaluate the overall

behavior of transcriptome sampling. For sampling effort N from 0

up to 3,000,000 with step length 120,000, the simulated growth

curve and that predicted by equation (12) were plotted in Figure 7.

Even for this long sampling range, equation (12) still predicted the

sampling growth curve quite well. As most transcripts in a given

transcriptome exist at very low levels, the sampling efficiency

significantly decreases as sampling proceeds. A sampling size of

100,000 is rather minimal for covering the first quarter of the

transcriptome. To cover the second and the third quarter, 300,000

and 1,000,000 additional tags have to be acquired, respectively.

To identify 90% of the expressed genes, a transcriptome project

should aim at sequencing at least 3 million tags. To reach this goal

the newly-evolved sequencing technology is indispensable.

Discussion

Although we used SAGE data for illustration in this manuscript,

our method is certainly applicable to other types of transcriptome-

sampling experiments such as EST and MPSS as well as other

large-scale sampling-based methodologies. For example, our

method may still be useful for analyzing chromatin immunopre-

cipitation data (ChIP-tag) [34,35]. We have found that the relative

abundances of ChIP-enriched DNA fragments also follow the

generalized inverse Gaussian distribution (data not shown). In

general, as long as sampling frequencies are formulated as FOF,

our sampling model can be used for statistical evaluation and is

independent of experimental details in most circumstances. In this

context, the sampling frequency of a target may be the number of

short sequence tags from a particular transcript in a SAGE

experiment, the number of overlapping ESTs when properly

clustered to form a gene (or a transcript) model, or the number of

overlapping tags from an immunoprecipitated DNA fragment in a

ChIP-tag experiment. Methodology concerning detailed data
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Figure 1. The expected FOF plotted against experimental observations. Both axes are in logarithmic scale to make FOF data more legible.
The expected FOFs under BB (A) and GP (B) models are plotted against the experimentally observed FOF from Lib843. The expected FOF under GIGP
model is plotted against the experimental observations from Lib843 (C) and the pooled library (D).
doi:10.1371/journal.pone.0001659.g001
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processing for different types of experiments has been discussed

intensively in the literatures [34–37].

All tag-based methods essentially depend on the assumption

that tags contain sufficient information to establish one-to-one

correspondence between tags and transcripts. However, this

assumption may collapse to some extents due to many factors.

First, sequencing and PCR amplification errors often contribute a

large fraction to unmatched tags [38]. The tags with low

frequencies are often suspicious but have been revealed corre-

sponding to legitimate transcripts [39]. In addition, aberrant tags

may also be produced from genomic contaminations [40]. Second,

the assumption that the long SAGE tags of 21 bp in length are

long enough to ensure unique transcript identification is imperfect

[41]. Identical sequence tags can be generated from isoforms of a

gene, produced by alternative splicing and initiation/termination,

as well as different paralogs in a gene family. Third, internally

primed reverse transcription, incomplete digestion of tag site and
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Figure 2. Monte Carlo simulation for the pooled library. Both
axes are in logarithmic scale to make FOF data more legible. A virtual
transcriptome is generated with S = 77,152 according to the fitted RAD.
With the same sample size as the pooled library, the simulated FOF data
is plotted against the experimental observation. The simulation based
on the fitted RAD and estimated transcriptome diversity S exactly
replicates the SAGE experiment.
doi:10.1371/journal.pone.0001659.g002

Figure 3. Relative abundance distribution for hESC transcrip-
tome. The GIGP mixture is fitted with the pooled library that represents
the hESC transcriptome. The probability density of the fitted
generalized inverse Gaussian distribution is plotted (mode: 4.11e-7,
mean: 1.30e-5, and median: 1.65e-6). The 75% confidence interval (CI)
with minimum length is at [1.00e-7, 4.80e-6]. It is highly skewed toward
zero and has a long tail. Inset: the distribution function of RAD, showing
that 90% of the transcripts have relative abundances less than 1.66e-5.
doi:10.1371/journal.pone.0001659.g003

Table 2. Distribution of expression level.

Expression level
(copies/cell) Total number of copies (6100000)a

1 3 5 10 30 50

,1 65858 52612 43211 27580 5476 1186

1–5 8150 16875 22648 30952 33879 26394

5–10 1451 3251 4643 7327 13257 15631

10–50 1410 3387 4957 8150 16875 22648

50–100 187 551 844 1451 3251 4643

100–500 96 442 753 1410 3387 4957

.500 1 35 97 284 1028 1693

Mode 0.04 0.12 0.21 0.41 1.23 2.06

Mean 1.30 3.89 6.48 12.96 38.88 64.81

Median 0.17 0.50 0.83 1.65 4.95 8.25

aThe RAD is generated based on the pooled library with an estimated
transcriptome diversity S = 77,152. The number of unique transcripts in each
expression level bin is calculated from numerical integral between
corresponding intervals. The total transcript copies per cell are assumed for
different complexity and the corresponding mode, mean, and median are
calculated accordingly.

doi:10.1371/journal.pone.0001659.t002
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Figure 4. Mean and median copy numbers of detected
transcripts at different sampling stages. Monte Carlo simulation
is done with the fitted RAD and estimated transcriptome diversity S of
the pooled library. Assuming there are 1,000,000 copies of transcript
per cell, the mean and median copy numbers of all detected transcripts
at each sampling stage are plotted.
doi:10.1371/journal.pone.0001659.g004
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alternative poly(A) cleavage may produce different tags for one

unique transcript [24,42,43]. Forth, the existence of SNPs in an

outbred population also complicates the interpretation of tran-

script tags [44]. The overall impact of these factors on the

relationship between tags and transcripts is rather complicated and

needs further investigations. In this study we used a very strict

filtering process and ambiguities from the first factor have been

reduced to a large extent. The biases introduced by the latter two

factors are opposite, i.e., one makes several transcripts correspond

to one tag and the other matches several tags to one transcript.

Overall, we suppose that the two biases would cancel out each

other and our estimation has effectively captured the reality.

Methods

Sampling frequency distribution
Binomial distribution is a fundamental statistical assumption

about sampling process. For a given transcript with relative

abundance p, the sampling frequency when N transcripts are

sampled can be modeled by Binomial(N, p). The binomial

distribution is often approximated by Poisson distribution Poisson(l)

with l=p?N when N is large, p is small, and p?N is moderate, which

is precisely the case even for the most abundant transcript. Assuming

there are S (unknown) unique transcripts expressed in a given cell

type, and each of them has relative abundance p1, p2,…, pS

respectively. For mathematical convenience, we assume that pi s are

distributed as a continuous probability density (RAD) w(p), 0,p,1

under the constraint
XS

i~1
pi~1. By basic probability calculus, for

any transcript, the unconditional distribution of sampling frequency

(SFD) is written as

P x Njð Þ~
Ð 1

0

N

x

� �
:px: 1{pð ÞN{x:w pð Þdp , ð1Þ

where x = 0,…, N. As w(p) is necessarily highly skewed toward zero in

our context, the binomial in (1) can be approximated by the Poisson

distribution. Writing l=p?N and y lð Þ~ 1

N
:w

l

N

� �
, it follows that

P x Njð Þ&
ðN

0

lx

x!
:e{l:y lð Þdl&

ð?
0

lx

x!
:e{l:y lð Þdl : ð2Þ

Probability (2) is the counterpart of (1) under Poisson assumption,

and y(l) is a re-parameterized form of RAD w(p). Extending the

upper integration limit N to infinity is justifiable as the integration

between N and infinity is negligibly small. Using different RAD leads

to different SFD; the justification for one or another depends on its

ability to characterize the transcriptome.
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with the fitted RAD and estimated transcriptome diversity S of the
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cell, the detecting probabilities of transcripts in different expression
level bins are plotted as a function of sample size N.
doi:10.1371/journal.pone.0001659.g005
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Figure 6. Sampling growth curve and transcriptome diversity
estimation. Number of unique transcripts (solid square) identified in
Lib843 (A) and the pooled library (B) as well as the sampling histories
(red open circle) and predicted growth curve (blue solid line) are
plotted. Blue-shaded areas divide the estimated transcriptome diversity
S (black dashed line) into four quarters.
doi:10.1371/journal.pone.0001659.g006
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Beta-binomial (BB) and gamma-Poisson (GP) mixtures
Beta distribution is straightforward for modeling how propor-

tions vary. Mixing it with binomial distribution according to (1)

leads to the widely known BB mixture

P x Njð Þ~

N

x

� �
B azx,bzN{xð Þ

B a,bð Þ , ð3Þ

where x = 0,…, N; a,b.0 are two parameters and B(a,b) is the

beta function. Under the Poisson assumption, let the parameter l
follow the gamma distribution y(l). According to (2), GP mixture

can be written as

P x Njð Þ~ 1

x!
: ba

bz1ð Þazx
:C azxð Þ

C að Þ , ð4Þ

where x = 0,…, N; a,b.0 are two N-dependent parameters and

C(a)is the gamma function. Note that y(l) depends on the sample

size N, and so do its parameters. RAD can be obtained simply as

w(p) = N?y(pN). It is worth noting that gamma distribution can be

obtained from beta distribution analogous to that Poisson

approximates to binomial. GP mixture thus is an approximate

form of BB mixture when N is large.

Generalized inverse Gaussian-Poisson (GIGP) mixture
To capture the singular characteristics of RAD, i.e., highly

skewed toward zero and having a long tail, some sophisticated

distributions are to be applied. Generalized inverse Gaussian

distribution is such a flexible distribution [45]. It has density

w pð Þ~ 2=bcð Þc

2:Kc bð Þ
:pc{1: exp {

p

c
{

b2c

4p

� �
:I pw0ð Þ , ð5Þ

where 2‘,c,+‘, b.0 and c.0 are three parameters. Kc(a) is

the second kind of modified Bessel function of order c. Under the

Poisson approximation, according to (2) the GIGP mixture can be

written as

P x Njð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zcN
p c

Kc bð Þ
h i{1

x!
: bcN

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zcN
p

� �x

:

Kxzc b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zcN
p� �

,

ð6Þ

which has been previously studied by Sichel [46,47]. The

complicated mathematical form of GIGP mixture, especially the

appearance of the modified Bessel function, seems daunting for

practical use; this is likely the primary reason for its failure to be

widely used. However, by using recurrence relation [48,49] all the

seeming drawbacks are trivial and probability (6) can be evaluated

very readily.

Transcriptome diversity and sampling growth curve
Based on SFD, one can deduce the estimator of transcriptome

diversity and sampling growth curve in a systematical manner.

According to the probability (1) or (2), when a sample of size N is

sequenced, any transcript has probability P(0|N) to be missed.

That is, there are

s Nð Þ~S 1{P 0 Njð Þ½ � ð7Þ

unique transcripts are expected to be detected. Plugging any

estimated Ŝ and P̂ 0 Njð Þ given by the fitted mixture into (7) yields

a sampling growth curve. If we actually detect s unique transcripts

when totally N transcript tags are sequenced, the total number of

unique transcripts can be estimated as

Ŝ~
s

1{P̂ 0 Njð Þ
: ð8Þ

In addition, it is worth noting that RAD w(p) has expectation

E pð Þ& 1

S

XS

i~1
pi~S{1. This gives an alternative estimator of

transcriptome diversity

^̂
SŜSS~E pð Þ{1 : ð9Þ

Equation (7), (8) and (9) can be applied to any probability

mixture. As BB and GP mixtures fit experimental data rather

poorly, we only present results of GIGP mixture; yet that of BB

and GP mixture can be written out in a similar way. Under GIGP

mixture, according to (8) it is straightforward to obtain

ŜS~
s:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zcN
p c:Kc bð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1zcN
p c:Kc bð Þ{Kc b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zcN
p	 
 : ð10Þ
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Figure 7. Monte Carlo simulation of a deep transcriptome
sampling. Monte Carlo simulation is done with the fitted RAD and
estimated transcriptome diversity S of the pooled library, for a deep
sampling that ranges from 0 up to 3,000,000 with step length of
120,000. The predicted growth curve (blue solid line) aligns well with
the simulation (red open circle). Both the simulated and the predicted
growth curves intercept at the data point for the original library (solid
square). Blue-shaded areas divide the estimated transcriptome diversity
S (black dashed line) into four quarters.
doi:10.1371/journal.pone.0001659.g007
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As distribution (5) has mean E pð Þ~ bc

2
:Kcz1 bð Þ

Kc bð Þ , according to

(9) S can be estimated alternatively as

^̂
SŜSS~

2Kc bð Þ
bc:Kcz1 bð Þ : ð11Þ

In our study, estimator (10) and (11) give identical estimate to

the second decimal. Using (11) as an estimator of S, one can write

out an analytical form of the sampling growth curve under GIGP

mixture according to (7) as

s(N)~
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zcN
p c:Kc bð Þ{Kc b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zcN
p	 
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zcN
p c:bc:Kcz1 bð Þ

: ð12Þ

Fitting probability mixture
The parameters of SFD (3), (4) and (6) can be fitted using

experimentally observed FOF data. Since the zero frequency bin f0
representing the number of undetected transcripts is unknown, the

FOF {f1, f2,…} is actually drawn from the zero-truncated SFD given by

P� x Njð Þ~ P x Njð Þ
1{P 0 Njð Þ : ð13Þ

In this study, we used maximum likelihood method to fit the

parameters. The log-likelihood of {f1, f2,…} can be written as

l hð Þ~
X
x§1

fx
: log P x Njð Þ½ �{s: log 1{P 0 Njð Þ½ � , ð14Þ

where h represents the general model parameter. We highly

recommend to evaluate the probability involved in (14) using

recurrence formula under each mixture, as in our experiences,

directly evaluating high order Bessel function through easy

mathematical routine often leads to computational overflow.

The maximum likelihood estimation of model parameters can be

computed by maximizing (14) numerically. Burrell and Fenton

[50] proposed to use derivative of log-likelihood in Quasi-Newton

method to accelerate the maximizing procedure. In our experi-

ences, taking advantage of modern computational power, direct

maximization methods without using derivative information are

efficient enough. In this study, we used the Nelder-Meed algorithm

to maximize (14). The convergence was quite rapid.

Monte Carlo simulation of transcriptome sampling
Once SFD is fitted based on FOF data, RAD and transcriptome

diversity S are determined simultaneously under the sampling

model. Based on these parameters, one can carry out Monte Carlo

simulation to ab initio imitate experimental sampling processes. At

first, a virtual transcriptome with S transcripts indexed by 1,…,S is

created. Relative abundances p1,…, pS are randomly generated

from fitted RAD and normalized to fulfill the constraintXS

i~1
pi~1. A random number r is then chosen for each tag

and its identity is determined by looking up r in a table of the

cumulative sum of the simulated relative abundances. This ensures

that the ith transcript has probability pi to be detected. Repeatedly

choosing N random numbers generates a virtual library of size N.
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