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Abstract

Summary: Current approaches for pathway analyses focus on representing gene expression levels

on graph representations of pathways and conducting pathway enrichment among differentially

expressed genes. However, gene expression levels by themselves do not reflect the overall picture

as non-coding factors play an important role to regulate gene expression. To incorporate these

non-coding factors into pathway analyses and to systematically prioritize genes in a pathway we

introduce a new software: Triangulation of Perturbation Origins and Identification of Non-Coding

Targets. Triangulation of Perturbation Origins and Identification of Non-Coding Targets is a path-

way analysis tool, implemented in Java that identifies the significance of a gene under a condition

(e.g. a disease phenotype) by studying graph representations of pathways, analyzing upstream

and downstream gene interactions and integrating non-coding regions that may be regulating

gene expression levels.

Availability and implementation: The TriPOINT open source software is freely available at https://

github.uconn.edu/ajt06004/TriPOINT under the GPL v3.0 license.

Contact: asa.thibodeau@uconn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Pathway analyses are often utilized to identify pathways that are

enriched in differential genes between conditions (i.e. cases versus

controls) to gain a better understanding of the biological processes

that are affected by the phenotype of interest (e.g. a disease).

Methods for pathway analysis over the years have fallen into three

categories (Khatri et al., 2012): (i) over representation analyses

which count the number of differentially expressed genes within a

pathway (Huang et al., 2009a, b), (ii) functional class scoring which

calculates enrichment scores of pathway gene sets (Subramanian

et al., 2005, 2007) and (iii) pathway topology analyses where path-

ways are translated into directed graphs or networks to incorporate

directionality and interaction types such as activation or inhibition

(Bokanizad et al., 2016; Martini et al., 2013; Sebastián-León et al.,

2013; Tarca et al., 2009; Vaske et al., 2010; Zhao et al., 2017).

Only a few pathway analyses have integrated pathways with

additional data (Calura et al., 2014). These analyses can lead to the

identification of pathways whose functions are affected as a result of

a disruption in the processes, e.g. via a single nucleotide polymorph-

ism that might be associated with a disease state. However, the ma-

jority of single nucleotide polymorphisms are located in non-coding

regions (Hindorff et al., 2009), where determining their phenotypic

outcome is a challenging task. Moreover, non-coding regions in-

clude enhancers, which are cis-regulatory elements that have been

shown to precisely regulate a gene’s expression in cell-specific con-

texts (Ong and Corces, 2011), further reinforcing the importance of

incorporating non-coding information with gene expression and

pathway analyses. In recent years, several assays have been devel-

oped, including ChIA-PET (Fullwood et al., 2009), HiC

(Lieberman-Aiden et al., 2009) and HiChIP (Mumbach et al.,

2016), to identify chromatin loops that bring non-coding regions in

close proximity of their target genes’ promoters, which help uncover
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their phenotypic outcome. Furthermore, we recently showed that

the degree to which a gene interacts with non-coding regulators has

been associated with its importance in the studied cell type

(Thibodeau et al., 2017), which can be used to further prioritize

non-coding regions and their targets for experimental validation. As

more data and methods become available for linking non-coding

regions to their target genes, it becomes increasingly important to

provide the computational tools to incorporate non-coding regions

into downstream analyses of differentially expressed genes and

pathways.

Current approaches for pathway analyses are restricted to genes

(Bokanizad et al., 2016; Calura et al., 2014; Huang et al., 2009a, b;

Martini et al., 2013; Sebastián-León et al., 2013; Subramanian

et al., 2005, 2007; Tarca et al., 2009; Vaske et al., 2010; Zhao

et al., 2017) but do not incorporate non-coding regulatory elements.

To fill this gap we developed Triangulation of Perturbation Origins

and Identification of Non-Coding Targets (TriPOINT) (Fig. 1a),

software designed to identify genes perturbed in pathways and non-

coding regulatory elements regulating them. TriPOINT offers a

novel method for pathway analysis by identifying the genes that are

the most affected under a condition by using multiple novel scoring

metrics to uncover the impact of a gene’s perturbation on the net-

work and by providing the ability to integrate these genes with non-

coding regions using chromatin interaction datasets. TriPOINT is

an easy to use and flexible tool for furthering existing methods for

pathway analyses, which can lead to the identification of not only

the most relevant genes for a phenotype but also their non-coding

regulators.

2 Materials and methods

TriPOINT is implemented in Java, incorporating pathway graphs

from the GRAPHITE (Sales et al., 2012) R package through RServe

(Urbanek, 2003; ISSN 1609-395X). Methods from our software QuIN

(Thibodeau et al., 2016) are utilized to integrate chromatin interaction

data to identify non-coding regulators. Finally, the Cytoscape

(Shannon, 2003) java application is used as a platform for visualization

of TriPOINT JSON files which are easily imported and display path-

ways augmented with differential expression values and non-coding in-

formation (see Fig. 1b for an example).

2.1 Ranking of genes in pathways in terms of their

significance
TriPOINT utilizes graph representations of pathways obtained from

GRAPHITE (Sales et al., 2012) to analyze the expression of genes in

pathways using our novel triangulation measure based on four basic

metrics: inconsistency, support, consistency and impact (Supplementary

Material). Expression values of immediate upstream genes are scored

using support and inconsistency measures to quantify how much a

gene’s expression is ‘supporting’ or going against the pathway’s activa-

tion or inhibition status (Supplementary Fig. S1). These two metrics are

combined to define the consistency score where negative values reflect

perturbed genes and positive values reflect genes following the expected

expression pattern in the pathway. The impact score quantifies the

downstream effect of a gene’s expression. Breadth first search is

employed to identify the sub-graph of downstream genes that support

their upstream activation/inhibition interactions where each down-

stream gene’s expression is normalized using exponential decay as a

function of the graph edge distance from the source gene. Consistency,

impact and optionally the number of non-coding regulators of the gene

are combined to calculate the triangulation score, which is used to

identify perturbed genes with the highest downstream impact and op-

tionally ones with more interactions with non-coding regulators, which

may influence their activity within the pathway. Our triangulation

score maintains the sign of the consistency score so it can be used to

identify both (i) gene inconsistent with their upstream targets and (ii)

genes that are highly supported by their upstream associated genes,

which can be useful for identifying enriched pathways. To assess the

significance of each score, TriPOINT calculates permuted P-values.

Permuted P-values are obtained by randomly reassigning gene expres-

sion values between genes from the expression values provided and

recalculating scores based on the number of permutations to generate a

null distribution.

TriPOINT is currently available for Human pathways and

designed to be used with differential expression data. Although dif-

ferential expression data are the preferred metric, other metrics for

gene expression may be applied with appropriate parameter

configurations.

2.2 Integration with non-coding regulators
We implemented two approaches to incorporate non-coding regula-

tors into the graph representations defining pathways. The first ap-

proach utilizes chromatin interaction loops from genome-wide

assays such as ChIA-PET (Fullwood et al., 2009), HiC (Lieberman-

Aiden et al., 2009) or HiChIP (Mumbach et al., 2016) datasets.

Methods available from our software QuIN (Thibodeau et al.,

2016) were employed to construct a chromatin interaction network

to identify loci directly interacting with genes in a pathway. If chro-

matin interaction data are not yet available for the given cell type,

TriPOINT attempts to identify non-coding regulators based on

proximity, assigning non-coding regions provided by the user to

genes within a user-defined distance from the transcription start site.

P-values relating to the significance of the number of non-coding

regulators targeting a gene are calculated based on the Poisson dis-

tribution (Supplementary Material).

3 Results

We demonstrate the efficacy of TriPOINT in a case study by analyz-

ing all stage-one breast cancer RNA-seq samples from females older

than 50 (n ¼ 7) profiled by The Cancer Genome Atlas (Koboldt

et al., 2012), which we obtained through the National Cancer

Institute Genomic Data Commons (Grossman et al., 2016) portal.

We identified differentially expressed genes using all individuals by

comparing their tumor and normal samples using DESeq2 (Love

et al., 2014). We employed TriPOINT on the differential expression

data using KEGG (Kanehisa and Goto, 2000; Kanehisa et al., 2016,

2017) pathway graphs available from GRAPHITE (Sales et al.,

2012). Non-coding regulators were included in these graphs by inte-

grating MCF-7 (an early stage breast cancer cell line) DNASE-Seq

(GSE32970) and RNA-Pol2 ChIA-PET (GSE39495) datasets from

ENCODE (Dunham et al., 2012). Genes/pathways were then

selected using triangulation scores.

We obtained 864 gene/pathway combinations with triangulation

score P-value <0.005. We observed 682 gene/pathway combina-

tions with positive triangulation scores, 90 of which were in cancer

pathways. Positive triangulation scores represent those gene/path-

way combinations that are consistent with their respective surround-

ing pathway topology. We focused on the 182 gene/pathway

combinations with negative triangulation scores as these represent

genes that are perturbed in their respective pathways (i.e. they are

inconsistent with the upstream genes activating or inhibiting them).
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Among these genes/pathways with negative triangulation scores, we

identified ACVR1 and BMPR1A in the ‘Signaling pathways regulat-

ing pluripotency of stem cells’ KEGG pathway as among the top

genes/pathways using these scoring criteria (Fig. 1b). We also noted

other genes in the same pathway, namely FGFR3 and IGF1R with

significant triangulation scores. ACVR1 and BMPR1A have each

been previously associated with breast cancer (Slattery et al., 2013).

Interestingly, overexpression of FGFR3 and IGF1R in breast cancer

(more specifically in MCF-7 for FGFR3) has been observed in previ-

ous studies (Farabaugh et al., 2015; Fillmore et al., 2010), each

related to breast cancer expansion through stem cells. Further in-

spection of these genes revealed that many of the non-coding regula-

tors interacting with IGF1R were also identified within two super

enhancers (Hnisz et al., 2013; Whyte et al., 2013) in MCF-7: chr15:

99286560–99323022 and chr15: 99385754–99447217, revealing

additional evidence that these loci are possibly in control of the

IGF1R’s expression and merits further experimental study. This case

study demonstrates the usefulness of TriPOINT in connecting non-

coding factors to pathway analyses and prioritizing genes in path-

ways, bringing closer a more complete picture of underlying mecha-

nisms in the control of expression by uncovering potential

therapeutic targets via data integration.
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