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ABSTRACT: We show that an Ng bridge function modified
version of the three-dimensional reference interaction site
model (3D-RISM-NgB) solvation free energy method can
accurately predict the hydration free energy (HFE) of a set of
504 organic molecules. To achieve this, a single unique
constant parameter was adjusted to the computed HFE of
single atom Lennard-Jones solutes. It is shown that 3D-RISM
is relatively accurate at predicting the electrostatic component
of the HFE without correction but requires a modification of
the nonpolar contribution that originates in the formation of
the cavity created by the solute in water. We use a free energy
functional with the Ng scaling of the direct correlation
function [Ng, K. C. J. Chem. Phys. 1974, 61, 2680]. This produces a rapid, reliable small molecule HFE calculation for
applications in drug design.

1. INTRODUCTION

Hydration mediates many processes in nature, among which
are protein folding, phase partitioning of chemicals, and
protein−ligand binding. There is increasing interest in taking
advantage of the water thermodynamics and structure in drug
design. Indeed, methods such as WaterMap1−3 and GIST4 use
explicit solvent simulations to score the stability of specific
water sites in an enzymatic active site by the means of explicit
solvent simulations. These methods have the disadvantage of
being relatively slow, which opens the way for more
approximate methods including GRID5−7 or SZMAP8 that
treat water as a fluid lacking correlations interacting with a
solute via an effective solvent potential as in the case of
SZMAP. More approximate methods based on continuum
solvent models can also capture certain aspects of hydration
such as the high dielectric polarization9,10 of water. They have
the advantage of being orders of magnitude faster than
molecular simulations, but lack the packing and H-bonding
structure of water, which greatly limits the behavior of the
model where the size and anisotropy of water molecules
matter.11 This is especially true in an enzyme active site. An
intermediate approach using liquid state integral equations,
called the three-dimensional reference interaction site model
(3D-RISM),12−14 is very attractive for applications where the
high dielectric polarization, the detailed interactions with a
solute, and the multibody correlations of the solvent structure
matters. The 3D-RISM method produces an approximate
average solvent distribution around a rigid solute. It also offers a
way to compute hydration free energy (HFE). It is orders of
magnitude faster than molecular simulations and does not share

the sequestered-water sampling problem that molecular
simulations have. Compared to the independent particle
approximation or continuum models, it has the advantage of
treating water in a liquid state, incorporating the molecular
correlations in an effective way.15

The 3D-RISM approach becomes an interesting alternative
in many applications to the more traditional methods.
However, a major weakness of the 3D-RISM is its poor ability
to compute, with any reasonable accuracy, the hydration free
energy (HFE) of organic solutes.16−18 This defect is related to
the problem of all extended RISM theories in dealing with the
thermodynamics of hydrophobicity.19 Figure 1 shows the
inadequacy of the 3D-RISM with the KH closure HFEs for a
set of 504 small organic molecules when compared to
experimental results (c.f. section 3 for calculation details).
It is important to be able to calculate with sufficient accuracy

the HFE of small solutes given that the equilibrium for ligand
binding depends on both the direct interaction of the ligand as
well as the desolvation penalty. Explicit solvent approaches such
as WaterMap and GIST are scoring functions not designed to
compute HFEs since these methods do not account, for
example, for the cavity free energy. The independent particle
methods and continuum approaches are also missing most of
the cavity free energy and usually rely on surface area (SA)
scaling20,21 or other approximate types of methods.22−25 It is
known that SA types of approaches do not produce accurate
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cavity terms compared to more rigorous theoretical calcu-
lations.26−28

It is therefore of great interest to find a theoretical formalism
to compute the full HFE including the cavity free energy
component. In this article, we test 3D-RISM with the KH
closure and the Ng modified free energy functional29 against
converged explicit solvent simulations. We show that only a
single component of the energy functional is responsible for
most of the error correction. In the next sections, we first briefly
review important aspects of the 3D-RISM/KH; we then show
results and present our calculations.

2. THEORY
The fundamental equations that lead to the practical framework
we use can be derived using the variational principle in the
density functional theory of liquids.30 This formally states that,
given an external potential (e.g., the interaction potential
coming from a solute), the true physical solvent distribution
density minimizes the grand canonical potential functional. The
Ornstein−Zernike type of integral equation such as the RISM
approximation for molecular solvents,30,31 may be used to
compute solvent density and thermodynamic functions that can
be solved on a spatial grid. Alone, it is difficult to use this
approach to treat complicated solutes such as drug-like
molecules or proteins. The 3D-RISM method makes possible
applications such as computing the HFE of more elaborate
solutes.12,14 The idea is to fix a single solute (implying infinite
dilution of the solute) and compute the solvent perturbation
using any of a number of closures.15,32,33 The 3D-RISM
equations with a suitable closure only need the solute and
solvent potential parameters as input, typically from molecular
two-body additive force fields (e.g., AMBER, CHARMM, etc.),
and the solvent thermodynamic conditions (bulk solvent
density, temperature, and composition). Once solved, the 3D-
RISM equations yield approximate density distribution
functions, direct correlation functions (DCF) for each H and
for O in the case of pure water. The distribution function is the

three-dimensional analog to the radial distribution function
(also called pair distribution function). It gives the spatial
density of the solvent atoms in the presence of a solute. The
auxiliary DCFs are essential to relating the solvent distribution
functions to the solvent free energy.
It is very convenient that, using thermodynamic integration,

an exact equation can be derived for the HFE.17,34,35 The
equivalent formalism applied to molecular simulations requires
multiple simulations, each of which account for the variation of
a transformation parameter.26,36−40 However, as previously
shown, the approximate 3D-RISM HFEs lack sufficient
accuracy when compared to either experiments or more
rigorous simulation methods. This will be further demonstrated
hereafter. In an attempt to improve the 3D-RISM HFEs, both
theoretical and empirical approaches have been applied.15,33

The theoretical corrections had success on a limited number of
molecules16,18 and focus on the improvement of the closure
equation with additional so-called bridge terms. More recently,
a technique called “universal correction” (UC) shows that, with
a two parameter fit to the partial molar volume, the 3D-RISM
HFE can be reasonably well corrected.41 The original UC is
given by

ρΔ = Δ − · +G G V3.312 1.152UC KH m (1)

where ΔGUC is the corrected hydration free energy in kcal/mol,
ΔGKH is the 3D-RISM hydration free energy using the
Kovalenko−Hirata (KH) closure in kcal/mol, ρ is the number
density of bulk water (0.0333 molecule/Å3), and Vm is the
partial molar volume in units of Å3/molecule.
The correction optimized by Palmer et al. is quite

interesting.41 Here, we go beyond a fit to experimental
hydration free energies. We find a correction optimized on
computed quantities that ultimately only depends on
fundamental atomic quantities derived from simulation and
the thermodynamic state of the system. Also, our proposed
method stems from correcting the analytical free energy
functional found in 3D-RISM/KH and provides a better
understanding of the nature of the HFE errors. To accomplish
this, we fit with a single parameter based on a computed
Lennard-Jones sphere HFE to obtain a demonstrably trans-
ferable constant that scales a well-known approximate bridge
function.
In order to set the stage for what follows, it is useful to

examine the equation used to calculate the HFE and derived, as
stated above, directly from the thermodynamic formula-
tion.13,35,42 The formulas and its approximation changes with
different closure equations, but for the approximate KH closure
one has
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where kB is the Boltzmann constant, T is the temperature in
Kelvin units, ρα is the bulk density of solvent center α (0.0333
Å−3 for oxygen and 0.0666 Å−3 for hydrogen), and Δρα(⇀r ) is
the deviation of the solvent particle density relative to bulk for
the solvent center α. The position dependent change in density
can be written as Δρo(⇀r ) = ρo(⇀r ) − ρo where ρo(⇀r ) is the
calculated oxygen density distribution of water that results from

Figure 1. Comparison of the 3D-RISM/KH prediction of the
hydration free energy with experimental results for a set of 504
small organic molecules.
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the 3D-RISM calculations. The function θ(x) is a Heaviside
step function that effects the quadratic term of the density
deviation when the density is less than bulk. Finally, the direct
correlation function for a solvent particle α is noted cα(⇀r ). The
solute−solvent interaction potential, used in the 3D-RISM
calculation, is defined as
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where the i summation is over the solute centers, ε0 is the
vacuum permittivity, the atomic partial charges are denoted by
q, and the distance between the point ⇀r and the ith solute
atomic center coordinate is given by ri. The standard Lennard-
Jones potential is used where εi is the energy well depth
associated with the ith solute atom, εα is the energy well depth
associated with the α solvent particle, and the Lennard-Jones
atomic radius minima are denoted by σ.
It is useful to point out at this stage that the HFE can be

formally split into its nonpolar (np) and electrostatic (ele)
components

Δ = Δ + ΔG G Gnp ele (4)

Each of these terms can be calculated using molecular
simulations and the free energy perturbation (FEP) technique
using double decoupling for instance.11,36,43 The ΔGnp term
corresponds to the work required to create a cavity with
Lennard-Jones attractions in water, while all the atomic charges
of the solute are zero. The ΔGele term corresponds to the work
needed to restore the solute atomic partial charges in solution
once the cavity is created. In other words, it is the cost (or gain)
of the reorganization of the solvent when the solute Lennard-
Jones volume recovers its full polarity. This separation of the
total free energy commands a stepwise calculation with a
specific order of decoupling in simulation where the atomic
partial charges need to be zeroed before decoupling the
Lennard-Jones parameters. These free energy quantities can
also be computed individually with 3D-RISM using eq 2 in two
steps: ΔGnp is calculated using eq 2 from a 3D-RISM/KH run
with the solute atomic partial charges set to zero, and then
ΔGele is computed using eqs 2 and 4.
We can rewrite eq 2 with the definition of a free energy

density function integrand for each solvent center α, noted
ΔGα(⇀r ), as follows
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which simplifies the notation when the volume of integration V
is partitioned by a surface within which the solvent is excluded
Vin and the part of space outside the exclusion domain Vext

∫ ∫∑Δ = ·Δ ⇀ + ·Δ ⇀
α

α αG r G r r G rd ( ) d ( )
V V
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3 3

in ext (6)

Then, for the integral over Vin, ΔGKH is split into an
electrostatic and a nonpolar component.

We wish to correct the behavior of the 3D-RISM/KH HFEs
for the problematic behavior of the nonpolar component only.
An effective bridge function correction29 to the HFE may be
introduced by scaling the DCFs (c functions) in eq 5 by a
constant γ yet to be determined. This leads directly to

∫∑γ ρ

ρ
ρ

Δ = Δ + − ·

+
Δ ⇀

· ⇀

γ

α
α

α

α
α

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

G G k T r

r
c r

(1 ) d

1
( )

2
( )

V
KH KH B

3

np
np

in

(7)

from which one recovers eq 2 when the full DCFs are used (γ =
1). It is useful to note that the most positive contribution to
ΔGKH comes from co

np(⇀r ) inside the molecular core exclusion
domain. Also, the theoretical separation of the solvent water
molecule densities into oxygen and hydrogen in the exclusion
domain should be dominated by the repulsive core behavior
(exclusion) of single water molecules. This led us to consider
the oxygen correction only given that the packing is mainly
represented by the oxygen L-J in most water models

∫ρ
γΔ = Δ + − · ⇀G G
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This leaves us with an equation with one adjustable
parameter. The details of the mathematical steps can be
found in the Supporting Information. We can optimize the free
energy functional by adjusting the γ parameter following a
strategy employed by others with bridge functions.16,32,44 We
note that the bridge function correction proposed here is not
computed self-consistently in the integral equation but only for
the free energy form itself.

3. CALCULATION DETAILS
Data Set. The 504 molecules used in this work come from a

compilation done by Rizzo et al.45 and then enriched by
Mobley et al.26 with extensive free energy perturbation results.
The atomic partial charges, computed using AM1-BCC,46,47

and starting geometry come from the Supporting Information
of Mobley et al.26

Force Field and Molecule Preparation. The small
molecule Lennard-Jones parameters were set using the
MOE48 assignment rules based on the OPLS parameters and
functions.49 The solute geometries were optimized using MOE
and the MMFF94 force field with the MOE 2011.10 RField
implicit solvation model with a dielectric of 80 to account for
the formation of intramolecular polar interactions. We used the
c-TIP3P water model that was shown to reproduce the pair
correlation function of pure water50 in simulation. It should be
noted that the results for all RISM like integral equations are
approximate.51 The atomic partial charge on the oxygen atom is
−0.834 e,̅ the εO = 0.156 kcal/mol, σO = 1.76827 Å, εH = 0.152
kcal/mol, and σH = 0.6938 Å. The OH distance is set to 0.9572
Å and the HOH angle to 104.52°. The main difference with the
standard TIP3P water model is the addition of a hydrogen
repulsive L-J term set to match the water dimer potential of the
TIP3P water model and the water−water pair correlation
functions, which eliminates the need for other approximations
typically needed.16

RISM Calculations. The calculations were conducted using
AmberTools, version 1.4. The Kovalenko−Hirata (KH)
closure13 is used unless otherwise stated. The susceptibility
response function of the pure liquid was computed using the
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AmberTools rism1d program based on the DRISM method.52

For that purpose, the grid spacing was set to 0.025 Å. The
calculation was stopped when the direct correlation function
residuals reached 10−12, the temperature was set to 298 K, and
the water dielectric constant was set to 78.497. The water
number density was set to 0.0333 molecule/Å3. The produced
correlation functions were used as the input to the 3D-RISM
program for which the grid spacing was set to 0.4 Å; the
minimum distance between any atom of the solute and the
boundary of the grid box was set to 10 Å. The water model was
used to compute the solute−solvent potential energy. The
periodic supercell background charge electrostatic was modified
using the asymptotic charge correction.53 The calculation was
converged to a direct correlation function residual of 10−5 per
point. In all cases, the fast Fourier transform code from the
library FFTW version 3 was used. The HFEs produced with
these parameters had numerical errors around 0.1 kcal/mol.
Our choice of calculation parameters allowed computation of
HFEs within seconds instead of many tens of minutes as
previously reported.41 This was achieved by reducing the grid
density, by reducing the grid volume, and by lowering the
convergence thresholds. The improved timings come from the
combined effects of a careful scan of the parameters and the
efficient MDIIS algorithm.17,54−56 The presented approach is
orders of magnitude faster than explicit solvent simulation that
typically requires thousands of CPU hours.
Calculation of the Solvent-Excluded Domain. The Vin

region or interior volume was determined using the 3D-RISM
calculation grid. At each grid point, the Lennard-Jones
interaction potential between the water oxygen and the solute
was calculated. Any point with a potential larger than 10 kcal/
mol was considered as part of Vin and included as part of the
integration domain of eq 8. Beyond 5 kcal/mol, the exact value
is not important and leads to statistically identical results. The
boundary threshold does not need to be fitted. What matters is
that the water density must be very low. A threshold based on
the Lennard-Jones potential as opposed to the water oxygen
density has the advantage of decoupling the choice of the
boundary from the 3D-RISM solution.
Statistical Analysis. The reported standard errors are

estimated for the fitted parameters and the predicted quantities
using 2000 samples in a bootstrap analysis.57

■ RESULTS
As mentioned in the Introduction, the calculated 3D-RISM/
KH HFEs do not correlate well with either experimental or
FEP values, as clearly shown in Figures 1 and 2a. Even more
troubling, the dynamic range of the values calculated with 3D-
RISM is not reasonable. Others have observed similar
discrepancies for nonpolar molecules.16,18,58,59 This over-
estimation was attributed to the poor entropy of cavity
formation.18,19 However, this explanation does not lead to a
straightforward correction since the calculation of the entropy
is not explicit in the formula. When the FEP-calculated HFE is
partitioned into the nonpolar and electrostatic components, the
3D-RISM evaluation of the electrostatic components of the
HFE correlates remarkably well, as shown in Figure 2c, given
that no parameter is fitted. The slope is close to one and the y-
axis intercept close to zero.
The nonpolar contribution explains most of the variance

observed in the residuals of the calculated HFEs as shown in
Figure 2b. Therefore, ΔGnp needs to be corrected. Here, we use
eq 8. It seems natural to simplify the problem to the calculation

of the HFE of monatomic spherical Lennard-Jones (LJ) solutes,
which by definition do not have atomic partial charge and bear
the simplest molecular shape one can imagine. For this
purpose, we used the data set of Fennell et al.28

The optimization of the γ parameter in eq 8 to reproduce the
calculated HFEs of the LJ monatomic solutes shows
considerable improvement as demonstrated in Figure 3a and
b (see also Figure 4). The DCF scaling factor obtained was γ =
0.380. To verify that it is not only valid for the solute of

Figure 2. Plots of ΔG FEP vs ΔG 3D-RISM, ΔGnp FEP vs ΔGnp 3D-
RISM, and ΔGele FEP vs ΔGele 3D-RISM. The total 3D-RISM/KH
hydration free energy (HFE) does not correlate with the simulation
based free energy perturbation HFE (a). The nonpolar component of
the HFE explains most of the errors (b) because the electrostatic
component (c) of the HFE obtained with 3D-RISM correlates well
with the FEP results.
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spherical shapes, it was also fitted to reproduce the ΔGnp of the
Mobley data set. The obtained optimal value for γ is 0.379.
Considering the error margins on the fit (c.f. Table 2), the two
values are statistically indistinguishable, which suggests that the
optimal value of γ is solute-shape-invariant, at least for
molecules of the size and shape of our data set. Once again,
the correction applied on the DCF in the solvent-excluded
volume markedly improves the correspondence between the
3D-RISM and the calculated FEP ΔGnp as shown by the
correlation graph illustrated in Figure 3a. Most notably, the
dynamical ranges of both FEP and corrected 3D-RISM match;
the correlation slope is close to one and the intercept close to
zero. Using our corrected nonpolar 3D-RISM component and
the electrostatic term leads to a corrected 3D-RISM HFE in
good agreement with FEP. Indeed, with a single γ constant
fitted to the LJ solute HFE, one cannot statistically distinguish
FEP from 3D-RISM HFEs as shown in Figure 3b.
Table 1 reports the accuracy and precision of the different

models optimized. The repulsive bridge correction (RBC) from
Kovalenko and Hirata18 was shown to improve the HFE of

inert gas atoms, and we computed the HFE using their
thermodynamic perturbation theory (TPT) approximation.
Although we observed that the comparison with experimental
results changed the R2 of the RBC-TPT model from 0.2 to 0.6,
the ΔGnp R

2 remains poor at a value of 0.16. We also fitted two
additional models based on the UC correction. The refit was
necessary because we used a more extensive data set and a
different water model. It is interesting to observe that the fit on
the LJ solute data set leads to statistically similar constants to
those fit to the Mobley HFEs. Furthermore, the addition of a
constant (b in Table 2) did not significantly improve the model.
The universal correction previously reported was the UC2 form
studied here.41 The fact that the corrections presented in Table
2 and using either the water-excluded domain or the more
empirical approach based on the partial molar volume have
similar accuracy is not too surprising since the partial molar
volume is related to the solvent-excluded volume given that the
former represents the volume of one solute in pure water.

Figure 3. Plots of ΔG FEP vs ΔG 3D-RISM and vs ΔG 3D-RISM corrected. The optimization of the γ parameter in eq 8 improves the hydration
free energy (HFE) correlation for a series of Lennard-Jones monatomic solutes as shown above, where (a) the initial 3D-RISM formula (c.f. eq 2) is
applied and where (b) the correction is applied (c.f. eq 8) with γ = 0.38. The function y = x is shown as a reference.

Figure 4. Plots of ΔGnp FEP vs ΔGnp 3D-RISM corrected and ΔG FEP vs ΔG 3D-RISM corrected. The corrected 3D-RISM nonpolar hydration
free (HFE) energy (c.f. eq 8), using γ = 0.38 obtained by fitting monatomic Lennard-Jones solute HFEs, shows a significant improvement for both
the nonpolar component and the total HFE over the original formulation.
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■ DISCUSSION
In this study, we showed that the 3D-RISM hydration free
energy (HFE) with the KH closure formula is not accurate
when used on a large data set of 504 small molecules for which
experimental and double decoupling free energy perturbation
(FEP) values are available from the literature. The decom-
position of the HFE into its electrostatic and nonpolar
components lead us to conclude that the electrostatic
component of the HFE is reasonably well reproduced without
any empirical fit, i.e., using standard molecular mechanics
parameters for the Lennard-Jones potential and the AM1-BCC
partial charge model. However, the nonpolar component of the
HFE was the clear source of error. We have found that scaling
the nonpolar oxygen-solute Ng-style direct correlation bridge
function contribution to the HFE only over the solvent-
excluded region using a single scaling constant γ brings the
theoretically correct 3D-RISM formula to much better
agreement with the corresponding simulated FEP and
experimental values. It was also surprising that this single γ
parameter is the same for Lennard-Jones monatomic solutes
and for a diverse set of 504 small molecules. This γ-corrected
HFE functional can simultaneously reproduce the high level
FEP nonpolar HFEs, the FEP electrostatic HFEs, the FEP total

HFEs, and the experimental HFEs of the set of 504 small
molecules used in this study. It is important to realize that the
optimal γ was not fit to experimental quantities but solely to
computed quantities. Moreover the transferability of the γ
parameter from a Lennard-Jones solute to small molecules
suggests that it is a shape-independent property. Ultimately, it
was derived from atomistic fundamental properties of a
Lennard-Jones force field at a relevant thermodynamic state.
The ability of the γ-corrected 3D-RISM nonpolar free energy

term to reproduce the FEP-calculated corresponding values is
remarkable, and here we compare it to recent attempts using
different methods. First, it was shown that surface area or
volume based approximations do not correlate with the FEP
nonpolar components.26−28 Previous attempts using the full
dispersion solvent−solute terms were shown to be challenging
and demonstrated poor transferability.23 Wagoner and Baker
had optimized an approach based on a combination of the
Weeks−Anderson−Chandler decomposition and scaled particle
theory.60 In their work, they focus on the HFE of 11 alkanes
and were able to match the FEP computed HFE with an R2 of
0.71 and an R2 of 0.38 against experimental results. The γ-
corrected 3D-RISM values on this subset lead to an R2 of 0.72
versus FEP and 0.88 versus experimental results.
More recently, Chen et al. have developed a method based

on a differential geometry approach with three free parameters
that predicted the experimental HFE of 11 alkane molecules
with a root-mean-square error (RMSE) of 0.12 kcal/mol. The
corresponding γ-corrected 3D-RISM RMSE is 0.44 kcal/mol.
In their article, they show that the RMSE on the prediction of
the experimental HFE on 19 alkanes is 0.33 kcal/mol.61 The
results of Chen et al.’s method’s ability is most likely due to
their focus on alkanes, whereas we tried to cover a more broad
range of chemical species. Finally, Guo et al.62 used a level-set
based approach, called VISM-CFA, to compute the nonpolar
component of the HFE. Using the Mobley data set, they report
an R2 of 0.76 versus experimental results and of 0.84 versus
FEP. Our corresponding results reported in Table 1 are 0.88
and 0.96, respectively. However, the VISM-CFA R2 for the

Table 1. Hydration Free Energy Prediction Statistics against Experiment and Free Energy Perturbation Simulation

method ΔGexp ΔGFEP ΔGnp ΔGelec

3D-RISM (γ = 0.38 this work) R2 0.88 ± 0.01 0.967 ± 0.004 0.87 ± 0.01 0.972 ± 0.005
MUE 1.00 ± 0.04 0.71 ± 0.03 0.29 ± 0.01 0.56 ± 0.02
MSE 0.10 ± 0.06 −0.57 ± 0.03 −0.03 ± 0.02 −0.54 ± 0.02
RMSE 1.29 ± 0.06 0.93 ± 0.05 0.36 ± 0.01 0.77 ± 0.04

3D-RISM/KH R2 0.20 ± 0.03 0.14 ± 0.03 0.07 ± 0.02 0.972 ± 0.005
MUEa 24.4 ± 0.3 23.7 ± 0.3 24.2 ± 0.3 0.56 ± 0.02
MSEa 24.4 ± 0.3 23.7 ± 0.3 24.2 ± 0.3 −0.54 ± 0.02
RMSEa 25.3 ± 0.3 24.7 ± 0.3 25.2 ± 0.3 0.77 ± 0.05

3D-RISM RBC-TPT R2 0.58 ± 0.03 0.54 ± 0.03 0.16 ± 0.03 0.961 ± 0.005
MUE 7.1 ± 0.2 6.5 ± 0.2 7.8 ± 0.2 1.41 ± 0.05
MSE 7.1 ± 0.2 6.4 ± 0.2 7.8 ± 0.2 −1.4 ± 0.05
RMSE 7.9 ± 0.2 7.3 ± 0.2 8.5 ± 0.2 1.75 ± 0.06

UC1 R2 0.85 ± 0.01 0.967 ± 0.005 0.89 ± 0.01 0.970 ± 0.005
MUE 0.95 ± 0.04 1.05 ± 0.02 0.79 ± 0.01 0.35 ± 0.02
MSE −0.35 ± 0.05 −1.02 ± 0.03 −0.78 ± 0.02 −0.24 ± 0.02
RMSE 1.24 ± 0.05 1.18 ± 0.03 0.85 ± 0.01 0.54 ± 0.04

UC2 R2 0.86 ± 0.01 0.958 ± 0.005 0.60 ± 0.03 0.970 ± 0.005
MUE 0.91 ± 0.03 0.58 ± 0.02 0.37 ± 0.01 0.36 ± 0.02
MSE 0.27 ± 0.05 −0.41 ± 0.03 −0.150 ± 0.02 −0.26 ± 0.02
RMSE 1.18 ± 0.04 0.77 ± 0.04 0.48 ± 0.02 0.54 ± 0.04

aEnergies are in kcal/mol. MUE: mean unsigned error. MSE: mean signed error. RMSE: root-mean-square error.

Table 2. Fitted Parameters for the Different Hydration Free
Energy Equations

ΔGc = ΔGKH + (1 − γ)·ΔGcavity (eq 8)

L-J sphere small molecules

γ 0.38 ± 0.01 0.379 ± 0.002
ΔGUC2 = ΔGKH + a·Vm + b

L-J spheres small molecules

a −0.149 ± 0.007 −0.1524 ± 0.0009
b 0.44 ± 0.7 1.47 ± 0.2

ΔGUC1 = ΔGKH + a·Vm

L-J spheres small molecules

a −0.146 ± 0.007 −0.144 ± 0.001
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nonpolar HFE component is only 0.42. Although encouraging,
all these methods are either less accurate or more limited than
the model developed here. Furthermore, the herein presented
semiempirical method has strong theoretical underpinnings
that only rely on theory and computed quantities.
Finally, the correction we found for the 3D-RISM

formulation of hydration free energy shows that it accounts
accurately for most of the physical phenomena involved in the
hydration free energy of small molecules. The major asset in
3D-RISM is the computational expediency at which converged
hydration functions can be calculated within a few seconds for
small molecules. It is reasonable to think that this accuracy can
translate into more complex environments such as protein
binding sites. A proper demonstration based on experimental
evaluations remains challenging due to the lack of high quality
data available.
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