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A B S T R A C T   

Background: Thyroid cancer (THCA) has become a common malignancy in recent years, with the 
mortality rate steadily increasing. PANoptosis is a unique kind of programmed cell death (PCD), 
including pyroptosis, necroptosis, and apoptosis, and is involved in the proliferation and prog-
nosis of numerous cancers. This paper demonstrated the connection between PANoptosis-related 
genes and THCA based on the analyses of Gene Expression Omnibus (GEO) and The Cancer 
Genome Atlas (TCGA) databases, which have not been evaluated yet. 
Methods: We identified PANoptosis-related differentially expressed genes (PRDEGs) by multi- 
analyzing the TCGA-THCA and GEO datasets. To identify the significant PRDEGs, a prognostic 
model was constructed using least absolute shrinkage and selection operator regression (LASSO). 
The predictive values of the significant PRDEGs for THCA outcomes were determined using Cox 
regression analysis and nomograms. Gene enrichment analyses were performed. Finally, immu-
nohistochemistry was carried out using the human protein atlas. 
Results: A LASSO regression model based on nine PRDEGs was constructed, and the prognostic 
value of key PRDEGs was explored via risk score. Univariate and multivariate Cox regression were 
implemented to identify further three significant PRDEGs closely related to distant metastasis, 
lymph node metastasis, and tumor stage. Then, a nomogram was constructed, which presented 
high predictive accuracy for 5 years survival of THCA patients. Gene enrichment analyses in 
THCA were strongly associated with PCD pathways. CASP6 presented significantly differential 
expression during clinical T stage, N stage, and PFI events (P < 0.05 for all) and demonstrated the 
highest degree of diagnostic efficacy in PRDEGs (HR: 2.060, 95 % CI: 1.170–3.628, P < 0.05). 
Immunohistochemistry showed CASP6 was more abundant in THCA tumor tissue. 
Conclusion: A potential prognostic role for PRDEGs in THCA was identified, providing a new 
direction for treatment. CASP6 may be a potential therapeutic target and a novel prognostic 
biomarker for THCA.  
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1. Introduction 

Thyroid cancer (THCA) is a common malignant tumor of the thyroid gland in the world, which accounts for approximately 1 % of 
entire malignancies [1]. Globally, the THCA morbidity rate has increased in recent decades and is estimated to be the fourth leading 
cancer type [2]. With the advances in treatment made, including surgical resection, radioactive iodine, thyroid-stimulating hormone 
(TSH)-suppressive therapy, redifferentiation drugs, targeted therapies, and immunotherapy [3], patients with papillary thyroid car-
cinomas have an overall 5-year survival of as high as 95 %. Despite this, recurrence and metastasis still occur frequently (20–30 %) [4], 
which results in increased mortality associated with sizeable social healthcare burdens [5]. About half of distant metastasis patients 
pass away within five years [6,7]. Hence, it is essential to identify a more accurate prognostic module for THCA to develop and 
introduce novel treatments. 

Programmed cell death (PCD) is related to the occurrence and progression of malignancies and includes classical methods such as 
apoptosis, necroptosis, and pyroptosis. PANoptosis describes the simultaneous occurrence and regulation of apoptosis, necroptosis, 
and pyroptosis in the pathological processes of some diseases [8]. Plenty of evidence has been unveiled that PANoptosis participates in 
the development of cancer. A mouse model lacking IRF1 (an upstream regulator of PANoptosis) was found to be hypersusceptible to 
colorectal tumorigenesis [9]. Despite their resistance to the progression of melanoma and colorectal cancer, mice with adenosine 
deaminase acting on RNA-1 (ADAR1) deficiency exhibit restored tumorigenesis when the ZBP1 Zalpha2 domain is deleted, suggesting 
that ADAR1 restrains ZBP1-mediated PANoptosis, thereby facilitating tumorigenesis [10]. The PANscore, a scoring system based on 
PANoptosis patterns of individual gastric cancer patients, was developed, and the low PANscore group achieved higher immuno-
therapy response rates and prognoses. More recently, PANoptosis-related gene signatures for gliomas have been proven to be prog-
nostic. However, to date, PANoptosis-related differentially expressed genes (PRDEGs) have not been established as prognostic 
biomarkers of THCA. 

The goal of this research was to analyze PANoptosis-related genes in THCA using bioinformatics. The 510 THCA and 58 normal 
samples from The Cancer Genome Atlas (TCGA) database were utilized to acquire clinical data and gene expression. The GeneCards 
database was applied to download 14 PANoptosis-related genes. We screened the relevant literature in the PubMed database, resulting 
in 23 PANoptosis-related genes (PRGs). We then combined and de-duplicated the two resources, resulting in a final set of 28 PRGs, 
which were included in subsequent analyses. The GEO database was applied to acquire THCA gene expression data and clinical 
datasets (GSE33630, GSE35570, GSE65144, and GSE76039). We identified 14 TCGA-THCA PRDEGs that were consistent with those in 
the GSE33630 and GSE35570 datasets. According to the above data resources, a risk scoring system was constructed using the TCGA- 
THCA dataset and applied to a combined GEO dataset, including GSE33630, GSE35570, GSE65144, and GSE76039, to identify three 
PRDEGS. A nomogram was built by considering the three PRDEGs and then validated by calibration and decision curve analysis (DCA). 
In addition, the potential function and mechanism of PRDEGs in TCGA-THCA were explored by protein-protein interaction (PPI) 
network analysis, functional analysis, gene set variation analysis (GSVA), and gene set enrichment analysis (GSEA). As a result, three 
PRGs were discovered to be independent predictive factors of observed survival in THCA patients. CASP6 may be a potential thera-
peutic target and a prognostic biomarker for patients with THCA. 

2. Materials & methods 

2.1. Data download 

With the application of the R package "TCGAbiolinks", the expression matrix of the THCA dataset was downloaded from TCGA 
(https://portal.gdc.cancer.gov/) [11], including 510 samples of THCA (tumor group) and 58 paracancerous samples (normal group), 
standardized as Fragments Per Kilobase per million; the UCSC Xena database (http://genome.ucsc.edu) was utilized to acquire the 
relevant clinical data [12]. R package “limma” was utilized to normalize the count sequencing data from TCGA-THCA [13]. R package 
GEOquery was utilized to acquire clinical information and THCA-related gene expression data from the GEO database in datasets 
GSE33630 [14,15], GSE35570 [16], GSE65144 [17], and GSE76039 [18,19]. Gene annotation was performed by means of the GPL570 
Affymetrix Human Genome U133 Plus 2.0 (HG-U133_Plus_2) Array. All the samples included in this study were obtained from Homo 
sapiens. GSE33630 consisted of gene expression profile microarray data from 60 samples of THCA and 45 samples of normal tissue. 
GSE33570 contains gene expression profile microarray data of 65 THCA tissue specimens and 51 normal tissue samples. The GSE65144 
included 12 THCA samples and 13 normal thyroid tissue samples. Similarly, GSE76039 comprises 37 tumor tissue specimens. 
GSE33630 [20,21], GSE35570, GSE65144, and GSE76039 [22] served as validation sets. 

The GeneCards database [23] (https://www.genecards.org/) provides concise genomic information on all known human genes. 
"PANoptosis" served as a keyword to search for PRGs (PANoptosis-related genes) in the GeneCards database, from which 14 PRGs were 
obtained. We also identified 23 PRGs by retrieving all relevant published literature [24,25] from PubMed. The PRGs from the two 
resources were further combined and deduplicated, resulting in a final set of 28 PRGs, which were used for subsequent analyses. The 
specific gene names are presented in Supplementary Table S1. 

2.2. Differential expression analysis 

To identify potential mechanisms, related biological features, and signaling pathways of differential genes between the tumor and 
normal groups in THCA datasets of TCGA, GSE33630, and GSE35570 were standardized using the R package "limma", followed by a 
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differential analysis of gene expression profiles between the two TCGA-THCA groups. The identification of differentially expressed 
genes (DEGs) was performed in diverse groups, with adjusted P < 0.05 and logFC >0.2 (upregulated genes) or < 0.2 (downregulated 
genes) as differential expression. R package "ggplot 2" was utilized to make volcano plots for DEG. Upregulated genes and down-
regulated genes were intersected with PRGs and displayed using Venn Diagrams. PRDEGs for THCA were derived by combining both 
intersections. Furthermore, we drew boxplots of group comparisons separately for DEGs in datasets including TCGA-THCA, GSE33630, 
and GSE35570. The DEGs with the same expression trend and statistically significant discrepancy were extracted for subsequent 
analyses, and their expression in TCGA-THCA dataset was plotted as a heatmap using the "pheatmap" package of R. 

2.3. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses 

Large-scale functional enrichment research is commonly conducted using GO analysis [26], which comprising molecular functions 
(MF), biological processes (BP), and cellular components (CC). KEGG [27,28] is a comprehensive database that integrates biological 
pathways, genomics, medicines, and diseases. The "ClusterProfiler" R package was utilized to conduct KEGG and GO pathway 
enrichment analyses of PRDEGs, with thresholds set as FDR <0.2 and P < 0.05, followed by correcting P-value by means of the 
Benjamini–Hochberg (BH) method. 

2.4. GSEA 

We assessed gene distribution trends within a predefined gene set to identify genes contributing to phenotypes using GSEA. The 
enrichment analysis was processed in genes from the tumor and normal groups of TCGA-THCA using the R package "ClusterProfiler" 
(seed = 2020), repeated 1000 times, Min Size = 10 and Max Size = 500; the P-value was corrected by the BH method. The MSigDB 
database was applied to download the "c2. cp.v7.2. symbols" gene set, and significantly enriched functions were identified with FDR (q- 
value) < 0.25 and P < 0.05. 

3. GSVA 

GSVA [29] is a non-parametric, unsupervised approach in which expression matrixes of genes in different samples are converted to 
examine the transcriptome results related to gene set enrichment to assess whether there are enriched different pathways in various 
samples. The MSigDB database was applied to download a "h.all.v7.4. symbols.gmt" gene set, and GSVA was conducted on 
TCGA-THCA, with adjusted P < 0.05 as statistical difference, so as to explore the functional enrichment difference between the two 
groups. 

3.1. PPI network 

STRING [30] is a database used to search for interactions between known and predictive proteins. In this study, we conducted 
STRING to construct a PPI network related to candidate PRDEGs, with >0.400 as the minimum required interaction score. Protein 
complexes with specific biological functions can be identified by looking for densely connected regions in the PPI network. The 
maximal clique centrality (MCC) algorithm has been broadly applied to performance indicators in bioinformatics. Cytoscape [31] 
(version 3.9.1) was applied to perform PPI network visualization. GeneMANIA, a website used to predict genes that possess similar 
functions to the screened PRDEGs, was employed to construct an interaction network of candidate genes. 

3.2. Least absolute shrinkage and selection operator (LASSO) regression model 

To obtain a prognostic model of PRDEGs in THCA, with 10-fold cross-validation, we utilized LASSO [32,33] regression (seed =
2021). In addition, we ran 1000 repeats per period to prevent overfitting. LASSO regression is a type of linear regression that avoids 
overfitting and enhances the generalization capability of the refined model by imposing a penalty term (λ × absolute values of slopes) 
on the magnitude of the model coefficients. According to the LASSO regression model, risk factor graphs were drawn to depict the 
group and survival status of each tumor sample in accordance with the risk score. 

risk score=
∑

i
Coefficient (hub genei) ∗ mRNA Expression (hub genei)

3.3. Cox regression model 

For the purpose of assessing the prognostic value of PRDEGs in THCA, the expression of screened PRDEGs in the TCGA-THCA 
dataset was analyzed using multivariate Cox regression with the P-value threshold set to 0.1, and then the Cox regression model 
was built and presented in a forest plot. According to the results of the multivariate, a nomogram was constructed to individualize the 
predicted probability of 1-, 3-, and 5-year survivals. A calibration evaluation was performed on the accuracy and discriminative ca-
pacity of the nomogram. Calibration curves and nomograms were drawn using R package "rms". The clinical utility of these models was 
assessed with DCA. The R package "ggDCA" [34] was adopted to conduct DCA and evaluate the predictions of 1-, 3-, and 5-year 
prognostic nomograms. 
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3.4. Immunohistochemical analysis 

Immunohistochemical (IHC) analysis uses the principle of specific antigen-antibody binding to detect and locate target antigens in 
cells and tissues, mainly with light microscopy. Human Protein Atlas (HPA) [35] database (www.proteinatlas.org/) was utilized to 
implement IHC analysis for key gene expression screened by the Cox model in THCA and normal thyroid tissues before contrast 
staining. 

3.5. Statistical methods 

R version 4.1.2 was adopted for statistical analysis and plotting, and continuous variables are described by mean ± standard 
deviation. Data between two continuous variable groups were compared using the Wilcoxon rank sum test; Student’s t-test was utilized 
for statistical difference between the two groups, and the Kruskal–Wallis test was implemented for multi-group comparison. Cate-
gorical variables were examined by means of chi-square or Fisher’s exact tests. LASSO regression was carried out using the "glmnet" 
[36] package, and R package "pROC" [37] was applied to generate a receiver operating characteristic (ROC) curve. Unless otherwise 
indicated, correlations were analyzed using the Spearman test, with statistical significance setting as two-tailed P-values less than 0.05. 

4. Results 

4.1. Differential expression analysis 

Altogether, there were 18,436 DEGs acquired from the TCGA-THCA dataset, 10,798 of which were identified using the following 
thresholds: average |logFC| > 0.2 and adjusted P < 0.05. Under such threshold, 5863 DEGs were highly expressed (upregulated), and 
4935 DEGs were lowly expressed (downregulated) in THCA, as shown in Fig. 1. The final DEGs were visualized using a volcano plot 
(Fig. 2A). Eight upregulated genes (CASP6, CASP7, FADD, GSDMD, MLKL, PSTPIP2, PYCARD, and RBCK1) and six downregulated 
genes (AIM2, IFNG, TAB3, TNF, TNFAIP3, and ZBP1) were maintained by taking the intersection of diversely regulated DEGs and PRGs, 
and a Venn diagram was generated (Fig. 2B and C). The names and expression information for the 14 PRDEGs are listed in Tables 1 and 
2. Next, we drew grouped comparison plots (Fig. 2D–F) of the 14 PRDEGs in TCGA-THCA, GSE 33630, and GSE35570 to recognize the 
expression trends and whether the differences were statistically significant. According to the figure, comparing genes in the GSE33630 
and GSE35570 datasets with TCGA, nine genes were consistent with the validation results, including CASP6, CASP7, FADD, GSDMD, 
MLKL, PSTPIP2, PYCARD, RBCK1, and TAB3. 

4.2. Heatmap and GOKEGG enrichment analysis 

The expression of the nine PRDEGs in TCGA-THCA is depicted in a heatmap (Fig. 3A). To analyze the association between THCA 
and the BP, CC, and MF of nine PRDEGs (CASP6, CASP7, FADD, GSDMD, MLKL, PSTPIP2, PYCARD, RBCK1, and TAB3), we conducted 

Fig. 1. Flowchart of the selection of the related genes. TCGA, the cancer genome atlas. THCA, thyroid cancer. PRGs, PANoptosis-related genes. 
PRDEGs, PANoptosis-related differentially expressed genes. GO, Gene Ontology. KEGG, Kyoto Encyclopedia of Genes and Genomes. GSEA, Gene Set 
Enrichment Analysis. GSVA, Gene Set Variation Analysis. PPI, Protein-protein interaction. LASSO, least absolute shrinkage and selection operator. 
ROC curve, receiver operating characteristic curve. IHC, immunohistochemical analysis. 
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GOKEGG gene function enrichment analysis (Table 3) of the PRDEGs, with a threshold of FDR (q-value) < 0.2 and P < 0.05. According 
to GO enrichment analysis, the genes in BP were mainly enriched in the "necroptotic process" (GO:0070,266), "programmed necrotic 
cell death" (GO:0097,300), and "positive regulation of extrinsic apoptotic signaling pathway" (GO:2,001,238), while in CC, mainly 
involved "inflammasome complex" (GO:0061,702), "cytosolic part" (GO:0044,445), "secretory granule lumen" (GO:0034,774), and MF 
primarily engaged in "cysteine-type endopeptidase activity involved in the apoptotic process" (GO:0097,153), "cysteine-type 

Fig. 2. Analyses of differentially expressed genes. (A) Volcano plot of the distribution of all differentially expressed genes, mapping 5863 upre-
gulated (red dots) and 4935 downregulated (blue dots) genes. (B) Venn diagram showing overlap of the upregulated DEGs and the PRGs. (C) Venn 
diagram showing overlap of the downregulated DEGs and the PRGs. (D–E) Expression differences in the 14 PRDEGs between tumor tissues and 
normal samples in TCGA-THCA, GSE33630, and GSE35570 datasets. Ns, not significant, P ≥ 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001. TCGA, 
the cancer genome atlas. THCA, thyroid cancer. DEGs, differentially expressed genes. PRGs, PANoptosis-related genes. PRDEGs, PANoptosis-related 
differentially expressed genes. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 

D. Xie et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e31707

6

endopeptidase activity" (GO:0008234) and "receptor serine/threonine kinase binding" (GO:0033,612). According to KEGG enrichment 
analysis, the nine PRDEGs were involved in "Salmonella infection"” (hsa05132), "NOD-like receptor signaling pathway" (hsa04621), 
and "TNF signaling pathway" (hsa04668). The findings of the enrichment analysis are shown in a bar plot (Fig. 3B) and network 
diagram (Fig. 3C). Furthermore, we performed logFC combined GOKEGG enrichment analysis for nine PRDEGs based on the 
enrichment analysis and calculated the z-score of each molecule using the logFC obtained from the differential analysis of the tumor 
and normal groups according to the nine PRDEGs in the TCGA-THCA dataset. A chord diagram (Fig. 3D) and circular plot (Fig. 3E) are 
shown for functional annotation of the enrichment analysis combined with logFC. The circular plot depicted that cysteine-type 
"endopeptidase activity involved in the apoptotic process" (GO:0097,153) was the significant upregulated BP while "Salmonella 
infection" (hsa05132) was the significant upregulated KEGG pathway. 

4.3. GSEA and GSVA 

To disclose the impact of gene expression levels on the discrepancy between the THCA and normal groups, this study analyzed all 
genes in the TCGA-THCA dataset using GSEA to identify the associations between their expressions and CC, BP, and MF (Fig. 4A). The 
enrichment significance levels were FDR (q-value) < 0.25 and P < 0.05. GSEA showed that genes in TCGA-THCA dataset were enriched 
in "senescence and autophagy in cancer" (Fig. 4B), "p53 downstream pathway" (Fig. 4C), "Focal adhesion" (Fig. 4D), and "Fatty acid 
omega-oxidation" (Fig. 4E) (Table 4). For the purpose of further investigating the difference in hallmark gene sets between normal and 
tumor groups, analyses of all TCGA-THCA gene expressions were studied with GSVA. GSVA revealed that 44 hallmark gene sets 
presented significant differences (P < 0.05, Fig. 5A, Table 6) between distinct groups. Moreover, 15 hallmark gene sets, which 
possessed significant differences (P < 0.001, Fig. 5B), were displayed in grouped comparisons as a boxplot, showing that genes were 
primarily enriched in pathways including "hallmark apoptosis", "hallmark epithelial-mesenchymal transition", "hallmark fatty acid 
metabolism", "hallmark glycolysis", and "hallmark hedgehog signaling". 

4.4. PPI network 

The PPI network of nine PRDEGs (CASP6, CASP7, FADD, GSDMD, MLKL, PSTPIP2, PYCARD, RBCK1, and TAB3) was established 
with the STRING database. A PPI network was established for the hub genes with 0.400 as the minimum required interaction score and 
was further visualized (Fig. 6A) using Cytoscape software. The findings displayed no gene-gene interaction between PSTPIP2 and other 
genes. Besides, each of the others contained an interaction with at least one PRDEG, of which MLKL presented the most interactions 
with the five other PRDEGs, including CASP7, FADD, GSDMD, RBCK1, and TAB3. Subsequently, the scores of PRDEGs that interacted 
with other nodes in the PPI network were calculated by means of the maximal clique centrality (MMC) method. Fig. 6B was created 
with gradual color changes from red to yellow according to the score in descending order and showed that MLKL was the first score of 
the MCC algorithm. Specific score ranks of each gene are provided in Supplementary Table S2. Finally, we used GeneMANIA to predict 
and construct a gene-gene interaction network map (Fig. 6C) of genes that function similarly to the nine PRDEGs to observe their 

Table 1 
List of gene symbol of PRDEGs.  

Gene symbol 

AIM2 FADD MLKL RBCK1 TNFAIP3 
CASP6 GSDMD PSTPIP2 TAB3 ZBP1 
CASP7 IFNG PYCARD TNF  

PRDEGs, PANoptosis-related differentially expressed genes. 

Table 2 
Expression difference in PRDEGs.  

Gene Symbol logFC P-value adj.P 

AIM2 − 1.419186732 5.32e− 07 2.11e− 06 

CASP6 0.452419353 9.72e− 16 9.81e− 15 

CASP7 0.254072692 1.11e− 05 3.68e− 05 

FADD 0.475491767 1.85e− 16 2.00e− 15 

GSDMD 0.283371728 3.76e− 05 0.000115305 
IFNG − 0.87403605 0.003869742 0.008406309 
MLKL 0.358276507 8.54e− 05 0.00024785 
PSTPIP2 0.691976548 2.11e− 07 8.82e− 07 

PYCARD 0.851316867 3.10e− 09 1.61e− 08 

RBCK1 0.385396769 3.44e− 15 3.29e− 14 

TAB3 − 0.217431728 0.000114563 0.000326124 
TNF − 0.60882139 0.009131725 0.018355204 
TNFAIP3 − 0.881702017 3.48e− 09 1.79e− 08 

ZBP1 − 0.661708952 0.013610214 0.026403918 

PRDEGs, PANoptosis-related differentially expressed genes. 
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interaction, co-expression, and co-location. 

4.5. LASSO regression model 

The prognostic value of nine PRDEGs (CASP6, CASP7, FADD, GSDMD, MLKL, PSTPIP2, PYCARD, RBCK1, and TAB3) in the TCGA- 
THCA dataset was investigated using LASSO regression analysis (Fig. 7A and B). Normal samples were eliminated, and the median risk 
score was determined as a cutoff level, dividing tumor groups into high- and low-risk score groups. A risk score curve was utilized to 
visualize and display the results (Fig. 7C). The proportion of deaths in high-risk samples was higher than in low-risk samples. 

Fig. 3. Function and pathway enrichment analysis of PRDEGs. (A) Heatmap of expression patterns of nine PRDEGs in TCGA-THCA dataset. (B) Bar 
plot of significantly enriched GO annotations and KEGG pathway of the PRDEGs. (C) Network diagram of GO annotations and KEGG pathway: red 
dots for genes and blue dots for pathways. (D) Chord diagram of functional annotation of the PRDEGs combined with logFC using GO terms of 
biological processes and KEGG pathway. (E) Circular plot depicts the enriched GO and KEGG pathways of PRDEGs: red dots for upregulated genes 
(logFC > 0) and blue dots for downregulated genes (logFC < 0). GO, Gene Ontology. BP, biological process. CC, cellular component. MF, molecular 
function. KEGG, Kyoto Encyclopedia of Genes and Genomes. PRDEGs, PANoptosis-related differentially expressed genes. P < 0.05, and FDR (q. 
value) < 0.2 were set as the significant thresholds. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 
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Moreover, PRDEGs expression exhibited marked difference between the two groups in TCGA database, including the high expressions 
of CASP6, CASP7, PSTPIP2, PYCARD, RBCK1, and TAB3 and the low expressions of GSDMD and MLKL. TCGA-THCA dataset was 
utilized to acquire the clinical data of patients with THCA, which were statistically analyzed (Table 5) to validate the LASSO regression 
model further. The combined dataset for validation was obtained by merging the datasets GSE33630, GSE35570, GSE65144, and 
GSE76039, and the LASSO model was conducted to determine median risk scores and distinguish the tumor group to groups with high- 
and low-risk scores. The expression of each PRDEG (CASP6, CASP7, FADD, GSDMD, MLKL, PSTPIP2, PYCARD, RBCK1, and TAB3) in 
TCGA-THCA dataset and the combined dataset were grouped by risk level and depicted as a group comparison map (Fig. 7D and E) to 
identify the trend of expression and whether there was statistically marked difference (P < 0.05). Finally, four genes were consistent 
between the combined dataset and TCGA-THCA dataset, namely CASP6, GSDMD, MLKL, and RBCK1. 

4.6. Clinical correlation analysis 

To research the connection between the expressions of four PRDEGs and the occurrence of THCA, we plotted ROC curves 
(Fig. 8A–D) of the above genes in the TCGA-THCA dataset by setting clinical status (tumor vs. normal) as the outcome variable. Both 
CASP6 and RBCK1 had the area under the curves (AUCs) larger than 0.7, indicating an accurate predictive ability of the tumor, 
whereas the AUCs of GSDMD and MLKL were more significant than 0.6 and less than 0.7, respectively, implying a lower accuracy of 
predictive power. In addition, we distinguished subgroups in patients with THCA based on M0 and M1 in clinical M stages, from which 
we produced a ROC curve of PRDEGs (Fig. 8E and F). The AUC value of RBCK1, between 0.6 and 0.7, suggested that the predictive 
ability of the outcome of M0 or M1 was low. We also plotted ROC curves (Fig. 8G and H) for the groups with high- and low-risk scores 
from the LASSO model as outcome variables. From the plot, the AUC value of CASP6 was more significant than 0.8, illustrating a 
prognostic capacity for high- and low-risk outcomes. The AUC of MLKL was more significant than 0.6 and lower than 0.7; hence, the 
ability to predict high- and low-risk outcomes had low accuracy. Finally, clinical-related analyses of four PRDEGs were performed in T 
stage, N stage, M stage, and progression-free interval (PFI) subgroups (Fig. 8I-L), identified that the expression of CASP6 was 
significantly different between T1&T2 and T3& T4 (P < 0.01) in clinical T stage, between N0 and N1 (P < 0.001) in clinical N stage, as 
well as between live and dead PFI events (P < 0.05). In addition, the expression of MLKL was different (P < 0.01) between M0 and M1 
in the clinical M stage. 

Table 3 
GOKEGG enrichment analysis results of PRDEGs.  

ONTOLOGY ID Description GeneRatio BgRatio P-value p.adjust q-value 

BP GO:0070,266 Necroptotic process 3/9 44/18,670 1.02e- 
[06] 

1.81e− 04 5.00e− 05 

BP GO:0097,300 Programmed necrotic cell death 3/9 49/18,670 1.41e− 06 1.81e− 04 5.00e− 05 

BP GO:2,001,238 Positive regulation of extrinsic apoptotic signaling 
pathway 

3/9 49/18,670 1.41e− 06 1.81e− 04 5.00e− 05 

BP GO:0070,265 Necrotic cell death 3/9 62/18,670 2.89e− 06 2.33e− 04 6.45e− 05 

BP GO:0043,122 Regulation of I-kappaB kinase/NF-kappaB signaling 4/9 237/ 
18,670 

3.03e− 06 2.33e− 04 6.45e− 05 

CC GO:0061,702 Inflammasome complex 2/9 14/19,717 1.68e− 05 4.20e− 04 2.48e− 04 

CC GO:0044,445 Cytosolic part 3/9 247/ 
19,717 

1.54e− 04 0.002 0.001 

CC GO:0034,774 Secretory granule lumen 2/9 321/ 
19,717 

0.009 0.049 0.029 

CC GO:0060,205 Cytoplasmic vesicle lumen 2/9 338/ 
19,717 

0.010 0.049 0.029 

CC GO:0031,983 Vesicle lumen 2/9 339/ 
19,717 

0.010 0.049 0.029 

MF GO:0097,153 Cysteine-type endopeptidase activity involved in 
apoptotic process 

3/9 15/17,697 4.13e− 08 1.69e− 06 5.21e− 07 

MF GO:0004197 Cysteine-type endopeptidase activity 3/9 116/ 
17,697 

2.24e− 05 4.59e− 04 1.41e− 04 

MF GO:0033,612 Receptor serine/threonine kinase binding 2/9 25/17,697 6.86e− 05 9.09e− 04 2.80e− 04 

MF GO:0008234 Cysteine-type peptidase activity 3/9 184/ 
17,697 

8.87e− 05 9.09e− 04 2.80e− 04 

MF GO:0004175 Endopeptidase activity 3/9 427/ 
17,697 

0.001 0.009 0.003 

KEGG hsa05132 Salmonella infection 6/8 249/8076 2.15e− 08 7.10e− 07 4.53e− 07 

KEGG hsa04621 NOD-like receptor signaling pathway 5/8 181/8076 2.84e− 07 4.68e− 06 2.99e− 06 

KEGG hsa04668 TNF signaling pathway 4/8 112/8076 2.35e− 06 2.59e− 05 1.65e− 05 

KEGG hsa 04217 Necroptosis 4/8 159/8076 9.52e− 06 7.86e− 05 5.01e− 05 

KEGG hsa 05130 Pathogenic Escherichia coli infection 4/8 197/8076 2.23e− 05 1.47e− 04 9.38e− 05 

GO, Gene Ontology. KEGG, Kyoto Encyclopedia of Genes and Genomes. PRDEGs, PANoptosis-related differentially expressed genes. BP, biological 
process. CC, cellular component. MF, molecular function. 
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4.7. Cox model 

To validate the LASSO regression prognostic model, the correlation between the expression of four PRDEGs and clinical prognosis 
was explored through univariate and multivariate Cox regression analyses in the TCGA-THCA dataset, and a forest plot was drawn 
(Fig. 9A). Three PRDEGs (CASP6, MLKL, and RBCK1) exhibited a marked association between clinical outcome and expression 
(Table 7). Based on this, the prognostic power of multivariate Cox regression was assessed using a clinical prognostic nomogram model 
(Fig. 9B). We subsequently drew a calibration curve (Fig. 9C–E) on the calibration analysis of predictions of 1-, 3-, and 5-year survivals 
to assess the nomogram accuracy. The prediction (blue line) mainly corresponded to the ideal line (gray line) in the 5-year survival 
curve, which meant that in this model, the ability of 5-year prediction was better than the 1-year and 3-year. DCA (Fig. 9F–H) was 
applied to assess the clinical utility of 1-, 3-, and 5-year LASSO-Cox regression models and demonstrated that the model provides a 
more accurate 5-year prediction than the 1-year and 3-year models. 

4.8. Immunohistochemical analysis 

In the multivariate Cox model, with the hazard ratio (HR) of CASP6 higher than 1, its expression in THCA tissues and normal 
thyroid tissues was further demonstrated by immunohistochemical analysis in the HPA dataset with the HPA024303 antibody. CASP6 
was more abundant in THCA tumor tissue (Fig. 10B) than in normal thyroid tissue (Fig. 10A). 

5. Discussion 

Thyroid cancer (THCA) is defined as a tumor with a better prognosis. Up to 90 % of THCAs are well differentiated and have a 
favorable prognosis [38,39] under traditional clinical treatment, including surgery, radioactive iodine, and endocrine suppression 
therapy. Nevertheless, 20–30 % of patients still face tumor recrudescence, resistance to radioactive iodine treatment, and distant 
metastasis, yielding poor prognosis and shorter survival [40], suggesting that the classical prognostic method based on clinicopath-
ological risk is not sufficient. 

Programmed cell death (PCD) plays a crucial role in tumorigenesis. Several studies have recently identified a unique form of in-
flammatory PCD, namely PANoptosis, which is controlled by PANoptosomes composed of multifaceted subunits that are the assembly 
of incorporating pivotal components of other PCD pathways, including necroptosis, apoptosis, and pyroptosis [41]. A single PCD 
pathway alone cannot account for the biological effects observed in PANoptosis [42]. Triggering PANoptosis may elicit extensive 
responses to kill an abundant variety of cancer cells while simultaneously arousing lasting immune protection, initiating robust 

Fig. 4. Enrichment plots from GSEA in TCGA-THCA. Several biological processes and pathways are differentially enriched in TCGA-THCA (A), 
including the senescence and autophagy in cancer (B), p53 downstream pathway (C), focal adhesion (D), and fatty acid omega-oxidation (E). GSEA, 
Gene Set Enrichment Analysis. P < 0.05, and FDR (q.value) < 0.25 set as the significant thresholds. 
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Table 4 
GSEA analysis of the TCGA-THCA dataset.  

Description setSize enrichmentScore NES P-value p.adjust q-value 

REACTOME_FORMATION_OF_THE_CORNIFIED_ENVELOPE 128 0.70590884 2.16973083 0.00114155 0.0708692 0.06733117 
REACTOME_COLLAGEN_DEGRADATION 64 0.75265778 2.12182827 0.00128866 0.0708692 0.06733117 
REACTOME_DEGRADATION_OF_THE_EXTRACELLULAR_MATRIX 140 0.6796979 2.1065108 0.00113379 0.0708692 0.06733117 
REACTOME_KERATINIZATION 216 0.63214431 2.03185018 0.00104932 0.0708692 0.06733117 
REACTOME_ACTIVATION_OF_MATRIX_METALLOPROTEINASES 33 0.77740605 2.00009345 0.00133869 0.0708692 0.06733117 
PID_INTEGRIN1_PATHWAY 66 0.6904069 1.9570183 0.00126904 0.0708692 0.06733117 
REACTOME_CELL_JUNCTION_ORGANIZATION 91 0.65718076 1.95167563 0.0011976 0.0708692 0.06733117 
REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION 300 0.5961427 1.94142062 0.00104058 0.0708692 0.06733117 
REACTOME_COLLAGEN_FORMATION 90 0.65653842 1.94106179 0.00120482 0.0708692 0.06733117 
REACTOME_SYNDECAN_INTERACTIONS 27 0.78546485 1.9330673 0.00140056 0.0708692 0.06733117 
PID_SYNDECAN_1_PATHWAY 46 0.70776478 1.91319355 0.00133156 0.0708692 0.06733117 
NABA_ECM_REGULATORS 237 0.58937386 1.89552421 0.00104822 0.0708692 0.06733117 
REACTOME_CELL_CELL_JUNCTION_ORGANIZATION 64 0.66849329 1.88455897 0.00128866 0.0708692 0.06733117 
REACTOME_INTEGRIN_CELL_SURFACE_INTERACTIONS 84 0.63154824 1.85889626 0.00121359 0.0708692 0.06733117 
REACTOME_ADHERENS_JUNCTIONS_INTERACTIONS 33 0.72028962 1.85314553 0.00133869 0.0708692 0.06733117 
REACTOME_REGULATION_OF_TLR_BY_ENDOGENOUS_LIGAND 19 0.80298603 1.84646543 0.00143472 0.0708692 0.06733117 
PID_TAP63_PATHWAY 53 0.66582091 1.84059312 0.00130378 0.0708692 0.06733117 
REACTOME_NON_INTEGRIN_MEMBRANE_ECM_INTERACTIONS 59 0.6565379 1.83548998 0.00131234 0.0708692 0.06733117 
PID_AVB3_INTEGRIN_PATHWAY 74 0.63446547 1.83257655 0.00124533 0.0708692 0.06733117 
REACTOME_DISEASES_ASSOCIATED_WITH_O_GLYCOSYLATION_OF_PROTEINS 67 0.64096343 1.82107843 0.00126263 0.0708692 0.06733117 
REACTOME_CELL_CELL_COMMUNICATION 129 0.59063944 1.81573801 0.00114155 0.0708692 0.06733117 
REACTOME_MET_ACTIVATES_PTK2_SIGNALING 30 0.7124567 1.8022331 0.0013624 0.0708692 0.06733117 
REACTOME_MET_PROMOTES_CELL_MOTILITY 41 0.67301382 1.79422414 0.00133156 0.0708692 0.06733117 
REACTOME_DISEASES_ASSOCIATED_WITH_SURFACTANT_METABOLISM 10 0.89882431 1.78864192 0.00312989 0.12963368 0.12316192 
REACTOME_O_LINKED_GLYCOSYLATION 110 0.59281552 1.78792773 0.00117647 0.0708692 0.06733117 
PID_INTEGRIN3_PATHWAY 43 0.66523744 1.78768891 0.0013245 0.0708692 0.06733117 
PID_P53_DOWNSTREAM_PATHWAY 136 0.52933552 1.63735221 0.00113250 0.07086920 0.06733116 
WP_SENESCENCE_AND_AUTOPHAGY_IN_CANCER 105 0.52563855 1.57457776 0.00356718 0.13641594 0.12960559 
KEGG_FOCAL_ADHESION 199 0.45188839 1.43906629 0.00320855 0.12963368 0.12316192 
WP_FATTY_ACID_OMEGA_OXIDATION 15 − 0.7143672 − 1.8693513 0.00604229 0.18134536 0.17229198 

GSEA, Gene Set Enrichment Analysis. TCGA, the cancer genome atlas. THCA, thyroid cancer. 
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inflammatory cell death, and enhancing the function and durability of T cells in tumor microenvironments [9]. 
The presence of PRDEGs has been reported as a prognostic marker in multiple tumors such as melanoma [10] and gastric carcinoma 

[43]. However, research on the potential biomarkers of THCA in PANoptosis genes is limited. This is the first research to examine the 
prognostic role of PRDEGs in THCA. We not only constructed a prognostic model using nine PRDEGs but also identified three PRDEGs 
as biomarkers for THCA. 

Based on the TCGA database, this study developed a prognostic model of THCA survival using nine PRGs: CASP6, CASP7, FADD, 
GSDMD, MLKL, PSTPIP2, PYCARD, RBCK1, and TAB3. Specifically, a nomogram model that includes CASP6, MLKL, and RBCK1 may be 
a feasible tool for predicting the probability of survival in patients with THCA. Each gene in the model showed significant functions in 
diverse tumor statuses. In addition, a gene-based nomogram was constructed, which may have an accurate prediction of the 5-year 
survival probability of THCA. CASP6 expression had a significant association with the prognosis of THCA, and its higher expression 

Fig. 5. GSVA of TCGA-THCA. (A) Heatmap of enrichment on hallmark gene sets from GSVA in TCGA-THCA. (B) Boxplot shows differences in 15 
statistically significant hallmark gene sets between THCA and normal groups based on GSVA. ***, P < 0.001. GSVA, Gene Set Variation Analysis. 
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had a correlation with a marked reduction of progression-free survival. Furthermore, in THCA, CASP6 expression had a noticeable 
correlation with lymph node metastasis and tumor stage. 

TGF-β activated kinase 1 (TAK1) binding protein 3 (TAB3) activates nuclear factor-κB by linking TAK1 to signaling molecules that 
function in the NF-κB signal transduction pathway. Knockdown TAB3 reduced the expressions of the NF-κB pathway in human 
esophageal squamous carcinoma cells and inhibited the invasion, migration, and proliferation [44]. Criollo et al. confirmed that 
overexpression of TAB3 suppresses autophagy, whereas its depletion triggers autophagy [45]. Furthermore, in response to TAK1 
deficiency, multifaceted inflammatory cell death is caused by PANoptosome formation, which facilitates activation and pyroptosis of 
NLRP3 inflammasome, MLKL (mixed lineage kinase domain-like)-mediated necroptosis, and FADD-caspase-8 dependent apoptosis 
[46]. In our study, the downregulation of TAB3 in THCA may weaken the function of TAK1 to initiate PNAoptosis by FADD- and 
MLKL-upregulation and serve as a defensive factor against tumorigenesis. Furthermore, during TAK1 suppression induced by Yersinia 
infection, inflammatory caspases cleave gasdermin-D (GSDMD) is activated to induce cell death [47]. GSDMD, the executor of 
pyroptotic cell death, which is vital for host defense and the danger response. Through oligomerization of the GSDMD N-terminus, 
pores can be formed inside the cell membranes, which facilitates the release of pro-inflammatory cytokines, in turn leading to cell 
death [42]. Similar to GSDMD in pyroptosis, phosphorylation of MLKL induces self-oligomerization, forms pores within the plasma 
membranes, and lyses the cells [48]. The present study also demonstrated that MLKL expression had an association with the lower M 
stage and played a protective role in the THCA nomogram model. Caspase-7, an apoptotic executioner, which executes apoptosis by 
cleaving other substrates [49]. The above results are consistent with the conclusions of our study and imply the formation of 
TAB3-initiated PANoptosis, composed of caspase-7- and FADD-related apoptosis, MLKL-mediated necroptosis, and GSDMD-executed 
pyroptosis. Proline-serine-threoninephosphatase-interacting protein 2 (PSTPIP2) modulates F-actin bundling and facilitates the for-
mation of filopodia, strongly indicating that this protein is involved in cancer invasion [50,51]. PYCARD is constituted of a pyrin 
domain (PYD) and a caspase activation and recruitment domain (CARD) [52,53]. PYCARD has diverse functions in many types of 
human tumors, including late-stage lung, gastric, and pancreatic cancers [54–56]. A similar higher expression pattern was observed in 
THCA for PSTPIP2 and PYCARD in our study. RBCK1 protein could serve as an applicable diagnostic signature and drug target due to its 
abnormal expression in breast tumors. Research has shown that RBCK1 modulates breast cancer progression through estrogen 
signaling pathways [57,58]. Moreover, the RBCK1 has been linked to unfavorable prognosis and endocrine resistance in breast cancer 
[59]. As THCA is one of the most prevalent endocrine tumors, our THCA model also showed that RBCK1 is expressed more in the 
high-risk group. 

Caspases are cysteine proteases that have crucial roles in apoptotic cell death. The activation of caspase 6 is an early event of 
apoptosis through proteolysis of lamin B, which induces apoptosis in human fetal thyroid cells (TAD-2) [60]. CASP6 has generally been 
considered an apoptosis executor. Additionally, during infection with the influenza A virus (IAV), CASP6 knockout macrophages 
showed a reduction in pyroptosis, demonstrating that it works in this process [61]. A prognostic model for glioma was constructed, in 
which CASP6 showed higher expression in a high-risk group and had a close correlation with the anticancer drug nelarabine, indicating 
that CASP6 may be involved in pan-cancer signaling pathways and influence the effectiveness of anticancer agents [62]. Moreover, the 
former study confirmed that CASP6 promotes the interaction between RIPK3 and ZBP1 through the RHIM (RIP homotypic interaction 
motif), enhancing ZBP1-triggered inflammasome activation, PANoptotic cell demise, and host defense mechanisms [63]. However, a 

Table 5 
Characteristics of patients with THCA in the TCGA datasets.  

Characteristic levels Overall 

n  510 
T stage, n (%) T1 143 (28.1 %) 

T2 167 (32.9 %) 
T3 175 (34.4 %) 
T4 23 (4.5 %) 

N stage, n (%) N0 229 (49.8 %) 
N1 231 (50.2 %) 

M stage, n (%) M0 286 (96.9 %) 
M1 9 (3.1 %) 

Pathologic stage, n (%) Stage I 286 (56.3 %) 
Stage II 52 (10.2 %) 
Stage III 113 (22.2 %) 
Stage IV 57 (11.2 %) 

Gender, n (%) Female 371 (72.7 %) 
Male 139 (27.3 %) 

Age, n (%) ≤45 241 (47.3 %) 
>45 269 (52.7 %) 

OS event, n (%) Alive 494 (96.9 %) 
Dead 16 (3.1 %) 

PFI event, n (%) Alive 456 (89.4 %) 
Dead 54 (10.6 %) 

Age, median (IQR)  46 (35, 58) 

THCA, thyroid cancer. TCGA, the cancer genome atlas. OS, overall survival. PFI, progression-free 
interval. IQR, interquartile range. 
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study showed that caspase 6 is related to favorable prognosis in patients with uterine corpus endometrial cancer [64]. In the context of 
thyroid cancer, our data indicated that CASP6 presented significantly differential expression during clinical T stage, N stage, and PFI 
events, and demonstrated the highest degree of diagnostic efficacy in PRDEGs. After adjusting for multiple COX regression, CASP6 was 
selected as the hub gene due to its p-value remaining less than 0.01 and its close association with multiple clinical manifestations. Our 
findings using IHC revealed that CASP6 exhibited significant protein-level changes in thyroid cancer compared to normal tissue, 
suggesting its potential as a diagnostic and prognostic biomarker for thyroid cancer. Furthermore, we noted that CASP6 may serve as a 
therapeutic target for inhibitors to reduce PTC recurrence, and its expression level was positively correlated with the tumor burden, 
indicating its potential as a prognostic biomarker for recognizing high-risk patients. Overall, CASP6 exhibits potential as both a 
therapeutic target and a prognostic biomarker in thyroid cancer, although further studies are required to validate its clinical utility. 

To better understand the biological function of abnormally expressed genes, GO enrichment analyses showed that the majority of 
genes participated in necroptotic, apoptotic, and inflammasome complexes, which confirmed that PANoptosis is an extensive and 
unique crosstalk among several types of PCD pathways. KEGG analysis revealed that Salmonella infection (hsa05132) was significantly 
upregulated. Wu et al. pointed out that Salmonella infection could activate the autophagic signaling pathway and downregulate the 
AKT/mTOR pathway to inhibit anaplastic THCA growth [65]. Recently, abundant evidence has demonstrated that Salmonella exerts 
anti-tumor properties [66] and is synergistic with PANoptosis [67]. 

In our research, GSEA was implemented on THCA tumor groups, from which significantly enriched pathways were identified, 
including senescence and autophagy in cancer, the p53 downstream pathway, focal adhesion, and fatty acid omega-oxidation. Mu-
tations in p53 often occur in THCA, especially anaplastic THCA. Research has suggested that transfection of wild-type p53 improves 

Table 6 
GSVA analysis of the TCGA-THCA dataset.  

ontology logFC Avenir t P-value adj.P 

HALLMARK_P53_PATHWAY 0.36295 0.012729 10.86072 3.79e− 25 1.89e− 23 

ELECTROCOAGULATION 0.350964 0.020324 8.961907 4.31e− 18 7.50e− 17 

HALLMARK_NOTCH_SIGNALING 0.343766 0.030524 8.956358 4.50e− 18 7.50e− 17 

HALLMARK_WNT_BETA_CATENIN_SIGNALING 0.338027 0.013214 8.826929 1.26e− 17 1.57e− 16 

HALLMARK_APICAL_JUNCTION 0.314673 0.014636 8.590547 7.94e− 17 7.94e− 16 

LYMPHANGIOGENESIS 0.388934 0.019353 8.062906 4.25e− 15 3.55e− 14 

HALLMARK_UV_RESPONSE_DN − 0.2586 0.003803 − 6.81355 2.38e− 11 1.70e− 10 

HALLMARK_GLYCOLYSIS 0.209504 − 0.00232 6.748355 3.62e− 11 2.26e− 10 

HALLMARK_HEME_METABOLISM − 0.19046 0.001482 − 6.65432 6.58e− 11 3.65e− 10 

HALLMARK_PEROXISOME 0.198578 0.001942 6.589468 9.89e− 11 4.95e− 10 

HALLMARK_BILE_ACID_METABOLISM − 0.19416 − 0.00903 − 6.36022 4.08e− 10 1.85e− 09 

HALLMARK_HEDGEHOG_SIGNALING 0.257311 0.007462 5.903765 6.04e− 09 2.52e− 08 

HALLMARK_ESTROGEN_RESPONSE_LATE 0.184935 0.004802 5.853222 8.05e− 09 3.10e− 08 

HALLMARK_IL2_STAT5_SIGNALING 0.211812 0.01976 5.527072 4.92e− 08 1.76e− 07 

EMBRYOGENESIS 0.174955 0.001608 5.297651 1.67e− 07 5.55e− 07 

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 0.246368 0.001867 5.190398 2.90e− 07 9.07e− 07 

HALLMARK_DNA_REPAIR 0.169331 − 0.00934 5.002548 7.50e− 07 2.21e− 06 

HALLMARK_COMPLEMENT 0.204655 0.014286 4.917892 1.14e− 06 3.17e− 06 

HALLMARK_FATTY_ACID_METABOLISM − 0.175 − 0.01994 − 4.87811 1.38e− 06 3.64e− 06 

HALLMARK_PANCREAS_BETA_CELLS − 0.2257 − 0.0154 − 4.78969 2.12e− 06 5.30e− 06 

HALLMARK_UNFOLDED_PROTEIN_RESPONSE − 0.14915 − 0.01707 − 4.48103 8.95e− 06 2.13e− 05 

HALLMARK_CHOLESTEROL_HOMEOSTASIS 0.148926 − 0.00141 4.423661 1.16e− 05 2.53e− 05 

HALLMARK_INFLAMMATORY_RESPONSE 0.219619 0.022342 4.422877 1.16e− 05 2.53e− 05 

HALLMARK_E2F_TARGETS 0.182513 − 0.00297 4.39443 1.32e− 05 2.66e− 05 

HALLMARK_IL6_JAK_STAT3_SIGNALING 0.228261 0.010495 4.39235 1.33e− 05 2.66e− 05 

HALLMARK_KRAS_SIGNALING_UP 0.160773 0.016513 4.008711 6.90e− 05 0.000133 
HALLMARK_APOPTOSIS 0.150887 0.020022 3.910504 0.000103 0.000191 
HALLMARK_MYC_TARGETS_V2 0.173592 − 0.00647 3.891872 0.000111 0.000198 
HALLMARK_PI3K_AKT_MTOR_SIGNALING 0.127265 0.003976 3.820932 0.000147 0.000254 
HALLMARK_OXIDATIVE_PHOSPHORYLATION − 0.18948 − 0.03356 − 3.68458 0.00025 0.000417 
HALLMARK_INTERFERON_ALPHA_RESPONSE 0.205442 − 0.00389 3.616642 0.000324 0.000523 
HALLMARK_ALLOGRAFT_REJECTION 0.193174 0.011578 3.526323 0.000455 0.00071 
HALLMARK_MITOTIC_SPINDLE 0.13588 0.010936 3.376937 0.000782 0.001185 
HALLMARK_INTERFERON_GAMMA_RESPONSE 0.183761 0.001364 3.302922 0.001015 0.001493 
HALLMARK_ADIPOGENESIS − 0.10353 − 0.02419 − 3.15933 0.001663 0.002376 
HALLMARK_ESTROGEN_RESPONSE_EARLY 0.102473 0.003602 3.11537 0.001928 0.002677 
HALLMARK_G2M_CHECKPOINT 0.127479 − 0.0007 3.092723 0.002078 0.002808 
HALLMARK_UV_RESPONSE_UP 0.093472 0.001517 3.072626 0.002221 0.002922 
HALLMARK_XENOBIOTIC_METABOLISM 0.088258 0.004748 2.971494 0.003086 0.003956 
HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY − 0.09007 − 0.00523 − 2.37368 0.017935 0.022419 
HALLMARK_SPERMATOGENESIS − 0.07121 − 0.01352 − 2.28486 0.02268 0.027658 
HALLMARK_KRAS_SIGNALING_DN − 0.06021 − 0.00073 − 2.07011 0.038882 0.046288 
HALLMARK_ANDROGEN_RESPONSE − 0.08163 0.018995 − 2.05748 0.040085 0.04661 
HALLMARK_MTORC1_SIGNALING 0.07304 − 0.00442 2.02274 0.043556 0.049496 

GSVA, Gene Set Variation Analysis. TCGA, the cancer genome atlas. THCA, thyroid cancer. 
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the uptake of radioactive iodine and triggers apoptosis [68,69]. The p53 tumor suppression pathway induces apoptotic cell death and 
maintains cellular senescence to prevent carcinogenesis. Further, reactivating p53 mutants to restore their tumor-suppressor activity 
could be a practical anti-tumor approach for TC [70]. Synthesizing our results from GOKEGG enrichment with prior studies, we 
propose that in the context of thyroid cancer, CASP6, a known regulator of PANoptosis, could potentially amplify this process by 
facilitating PANoptosome assembly and activation, thereby leading to PCD. Simultaneously, GSDMD and MLKL, implicated in 
membrane disruption and subsequent pyroptosis and necroptosis, respectively, may serve pivotal roles in cancer cell eradication by 
promoting inflammatory cell death. Additionally, RBCK1, another gene associated with PANoptosis regulation, could significantly 
influence thyroid cancer progression and PANoptosis modulation. However, these hypotheses warrant further investigation. Future 
research should prioritize validating the clinical significance of the hub genes in PRDEGs associated with THCA through more 
extensive studies, creating detection methods, and assessing the therapeutic possibilities to advance precision diagnosis and treatment 
of THCA. 

Although we identified a correlation between PRDEGs expression and prognosis in patients with THCA, several limitations remain 
to be addressed. First, the data from TCGA and GEO were insufficient, which might have caused selection bias. To validate these 
assumptions, more experimental data and high-throughput screening results from clinical specimens are acquired to support them. 
Second, despite the AUC of the model displaying an acceptable discriminative capacity, its performance still needs further 

Fig. 6. Protein-protein interaction (PPI) network of PRDEGs. (A) PPI network of PRDEGs constructed with Cytoscape. (B) PPI network of PRDEGs 
using the MMC method; the rectangle color changes gradually from red to yellow according to the score in descending order. (C) Gene network of 
PRDEGs produced by GeneMANIA: red line for physical interactions, purple line for co-expression, yellow line for shared protein domain, and blue 
line for co-localization. PRDEGs, PANoptosis-related differentially expressed genes. PPI, protein-protein interaction. MCC, Maximal Clique Cen-
trality. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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improvement. Research with larger sample sizes should be carried out to corroborate and enhance the clinical role of our findings. 
Third, to elaborate on the biological functions and underlying mechanisms of CASP6 in THCA, further studies and rigorous in vivo and 
in vitro trials should be conducted. Additionally, relying solely on the analysis of a single gene like CASP6 may limit the comprehensive 
understanding of the collective impact of PRDEGs on THCA prognosis. Therefore, it is crucial to delve into a broader range of PRDEGs 
in future research. Finally, as PANoptosis has a close correlation with the immunotherapeutic response of patients with tumors and T 
cell function in tumor microenvironment [9], we can further investigate the connection of PRDEGs with the tumor immune 
microenvironment. 

Fig. 7. Risk model of PRDEGs. (A) Ten-time cross-validation for tuning parameter selection in the LASSO model. (B) LASSO coefficient profiles of 
nine PRDEGs. (C) Risk score curve (upper), showing a gradual increase in the risk score of patients from left to right; point of survival chart (middle), 
red dot for dead, and blue dot for survival; and survival heap map (lower) of nine candidate PRDEGs in the high- and low-risk groups. (D, E) Boxplot 
showing distribution patterns of PRDEGs in TCGA-THCA and combined dataset according to the risk score. PRDEGs, PANoptosis-related differ-
entially expressed genes. TCGA, the cancer genome atlas. THCA, thyroid cancer. LASSO, least absolute shrinkage and selection operator. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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6. Conclusions 

This study identified nine PRDEGs (CASP6, CASP7, FADD, GSDMD, MLKL, PSTPIP2, PYCARD, RBCK1, and TAB3) for the first time 
that may be used as novel prognostic models for predicting THCA risks. Moreover, our results showed that a nomogram model 
including CASP6, MLKL, and RBCK1 may be closely related to the survival probability of THCA. Furthermore, among the identified 
PRDEGs, CASP6 levels were considerably correlated with the prognosis of patients with THCA, which provided a new treatment di-
rection. However, the specific mechanisms by which PRGs regulate tumorigenesis and the advancement of THCA warrant further 
investigation. 
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Fig. 8. ROC curves and clinical relevance analyses. (A–D) ROC curves of CASP6 (A), RBCK1 (B), GSDMD (C), and MLKL (D) for diagnosing THCA. 
(E, F) ROC curve analyses of MLKL (E) and RBCK1 (F) distinguishing the clinical M stage. (G, H) ROC curves of different LASSO risk score in CASP6 
(G) and MLKL (H). (I–K) Boxplot display expressions of CASP6 in different clinical parameters: T stage (I), N stage (J), and PFI event (K). (L) Boxplot 
depicts expression of MLKL according to M stage. *, P < 0.05; **, P < 0.01; ***, P < 0.001. TPR, true positive rate. FPR, false positive rate. ROC, 
receiver operating characteristic curve. PFI, progression free interval. 
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the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/query). 

Fig. 9. Cox regression model. (A) Forest plot of multivariate Cox analysis. (B) Prognostic nomogram for the 1-, 3-, and 5-year survival probability of 
patients with THCA. (C–E) Nomogram calibration curves for predicting the 1-, 3-, and 5-year survival probability of TCGA-THCA cohort. The x-axis 
is the predicted survival probability and the y-axis is the observed fraction survival probability. (F–H) DCA for LASSO-Cox regression model in the 1- 
, 3-, and 5-year predictions. The x-axis is the risk threshold probability that changes from 0 to 1 (right truncated at 1.00) and the y-axis is the 
calculated net benefit for a given threshold probability. The blue curve depicts the net benefit of the risk model, whereas the red and gray lines 
display the net benefits in the alternative strategies of all positive (red) versus negative (gray) in the dataset. DCA, decision curve analysis. LASSO, 
least absolute shrinkage and selection operator. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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Table 7 
Cox regression to identify hub genes and clinical features associated with PFI.  

Characteristics Total (N) Univariate analysis Multivariate analysis 

HR (95 % CI) p-value HR (95 % CI) P-value 

CASP6 512  <0.01   
Low 256 Reference  Reference  
High 256 2.060 (1.170–3.628) <0.05 2.132 (1.209–3.759) <0.01 
GSDMD 512  0.945   
Low 256 Reference    
High 256 0.981 (0.575–1.674) 0.945   
MLKL 512  0.052   
Low 255 Reference  Reference  
High 257 0.582 (0.333–1.017) 0.057 0.524 (0.299–0.921) <0.05 
RBCK1 512  0.097   
Low 256 Reference  Reference  
High 256 1.581 (0.915–2.733) 0.101 1.680 (0.969–2.914) 0.065 

PFI, progression free interval. HR, hazard ratio. CI, confidence interval. 

Fig. 10. CASP6 expression levels Normal thyroid (A) and THCA (B) tissues shown by immunohistochemistry (IHC) from the human protein atlas. 
THCA, thyroid cancer. 
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