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There is evidence that long-term cannabis use is associated with alterations to glutamate
neurotransmission and glial function. In this study, 26 long-term cannabis users
(males=65.4%) and 47 non-cannabis using healthy controls (males=44.6%) underwent
proton magnetic resonance spectroscopy (1H-MRS) of the anterior cingulate cortex (ACC)
in order to characterize neurometabolite alterations in cannabis users and to examine
associations between neurometabolites, cannabis exposure, and cannabis use
behaviors. Myo-inositol, a marker of glial function, and glutamate metabolites did not
differ between healthy controls and cannabis users or cannabis users who met criteria for
DSM5 cannabis use disorder (n=17). Lower myo-inositol, a putative marker of glial
function, was related to greater problematic drug use (F1,22 = 11.95, p=.002; Cohen’s
f=0.59, large effect; Drug Abuse Screening Test) and severity of cannabis dependence
(F1,22 = 6.61, p=.17; Cohen’s f=0.44, large effect). Further, past-year cannabis exposure
exerted different effects on glutamate and glutamate+glutamine in males and females
(glutamate: F1,21 = 6.31, p=.02; glutamate+glutamine: F1,21 = 7.20, p=.014), such that
greater past-year cannabis exposure was related to higher concentrations of glutamate
metabolites in male cannabis users (glutamate: F1,14 = 25.94, p=.00016; Cohen’s f=1.32,
large effect; glutamate+glutamine: F1,14 = 23.24, p=.00027, Cohen’s f=1.24, large effect)
but not in female cannabis users (glutamate: F1,6 = 1.37, p=0.78; glutamate+glutamine:
F1,6 = 0.001, p=.97). The present results extend existing evidence of altered glial function
and glutamate metabolism with cannabis use by providing evidence linking problematic
drug use behaviors with glial function as measured with myo-inositol and recent chronic
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cannabis exposure to alterations in glutamate metabolism. This provides novel directions
for the interrogation of the impact of cannabis use on brain neurochemistry.
Keywords: cannabis, glutamate, imaging, myo-inositol, substance use disorder, magnetic resonance
spectroscopy, glial, anterior cingulate cortex
INTRODUCTION

Cannabis is used by some 4% of the global population. The past
decade has seen a doubling of high-frequency users (daily or near
daily) and the potency of cannabis plant and extracts has
increased by 20% since 2014 (1). In parallel with these changes
has been an increased burden of problematic cannabis use in
adolescents and adults (1, 2). The effects of cannabis use on brain
metabolites, and the functional relevance of these effects,
however, remain poorly understood.

Delta-9-tetrahydrocannabinol (THC), the primary psychoactive
component of cannabis, acts as a partial agonist of the
cannabinoid CB1 receptor which is expressed primarily on
GABAergic and glutamatergic neurons, but also on other cell
types such as astrocytes and glia (3). Preclinical evidence indicate
chronic exposure to THC has short- and long-term effects on
glutamate neurotransmission and synaptic plasticity (4, 5).
Increasing evidence from neuroimaging studies suggest chronic
cannabis exposure is also associated with disturbances of
glutamate in humans, with reports of reduced glutamate
metabolites in striatal, frontal cortical and white matter regions
(6–10).

Along with observations of morphological and functional
changes to anterior cingulate cortex (ACC) function (11–16),
evidence suggests that dysregulation of glutamate metabolism in
this brain region and neurotransmission plays a key role in the
development and maintenance of substance use disorders (17).
Glutamate metabolism is regulated by astrocytes which are
responsible for clearance of synaptic glutamate and provide
glutamine to neurons (18). Non-neuronal cells such as
microglia and astrocytes are not only critical to short- and
long-term neuronal function but are themselves affected by
exposure to drugs of abuse (18). Indeed, our group recently
demonstrated that a mitochondrial marker associated with glial
cells is elevated in cannabis users as compared to age-matched
healthy controls (19).

Proton magnetic resonance spectroscopy (1H-MRS) is a non-
invasive brain imaging technique that permits the in vivo
measurement of neurometabolites including glutamate,
glutamine, and myo-inositol. In imaging studies, myo-inositol
is commonly considered a marker of astrocyte function, based on
early studies with cultured cells showing high concentrations of
myo-inositol in astrocytes but absent or very low concentrations
in neuronal cell lines (20–23), although some have disputed this
claim of cell-type selectivity (20). Myo-inositol levels are
increased with neuroimmune activation (24) and in
neuroimmune disease (25), traumatic brain injury (26, 27) and
mild cognitive impairment (28). In addiction populations, myo-
inositol was reported to be elevated in cocaine and alcohol use
disorders, but reduced in cannabis users, and available studies
g 2
with other substances have largely shown mixed results or no
changes in this metabolite (29). Nevertheless, despite evidence
linking myo-inositol with neuroinflammatory conditions, our
understanding of the underlying neurobiology remains
incomplete (25, 29, 30).

Reductions in myo-inositol have been reported across multiple
brain regions of cannabis users including hippocampus (31),
parietal and temporal lobe white matter (8), left thalamus (32),
and ACC [(6, 33); but see (34)]. In striatum, myo-inositol was
reported to be reduced in male cannabis users (8) but elevated in
female cannabis users (10). Overall, the available evidence creates a
picture of brain-wide reductions in myo-inositol in cannabis users,
with some evidence that some regional effects may differ by sex.
Finally, reductions of myo-inositol in thalamus were associated with
increased impulsivity (8, 32), suggesting a link between reduced
myo-inositol and behaviors associated with higher risk for drug
abuse and dependence.

Whereas changes in myo-inositol in cannabis users appear
widespread, changes in glutamate may exhibit regional
specificity. Glutamate was reduced in the ACC of adolescent
cannabis users (6) although this was not observed in adult
cannabis users (34). Reduced glutamate metabolites were also
reported in the striatum of female (but not male) cannabis users
(8). In other regions studied, glutamate metabolites in cannabis
users did not differ from healthy controls in hippocampus,
parietal lobe, temporal lobe or frontal white matter (8, 10, 31,
35, 36).

The relationship between cannabis exposure, abuse and
dependence and neurometabolites is poorly understood. In the
ACC, glutamate and myo-inositol were not related to lifetime or
past-month cannabis use, urine cannabis metabolites, or age of
onset of cannabis use (6, 34). To date, no 1H-MRS study in cannabis
users has examined how ACC glutamate metabolites or myo-
inositol relate to measures of cannabis abuse and dependence.

Based on the observation of lower glutamate metabolites and
myo-inositol in ACC, we expect to observe lower glutamate and
myo-inositol in the ACC. We also hypothesize that myo-inositol
will be negatively associated with cannabis use and measures of
cannabis abuse and dependence, and that glutamate will be
negatively associated with past-year cannabis use.
MATERIALS AND METHODS

Participants
Twenty-six cannabis users and forty-seven healthy control
participants completed 1H-MRS scans. All participants had no
history of psychiatric illness including substance use disorders
(except nicotine or caffeine in all participants, or cannabis in
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cannabis users) as determined by the SCID, and had no family
history of psychotic disorders. Participants were excluded for past
or present alcohol abuse or dependence in the past 6 months.
Current use of alcohol was permitted. Participants were excluded
if they were pregnant or breastfeeding, or had medical illness or
metal implants precluding magnetic resonance imaging (MRI).
Cannabis users were invited to participate if they currently used
cannabis at least 4 days per week, had been using at that or higher
frequency for at least one year, and tested positive for cannabis use
at the baseline study visit. All participants were required to test
negative for drugs of abuse on a urine drug screen, except for
cannabis in cannabis users. The urine immunoassay tested for
ethanol, methadone, benzodiazepines, cannabinoids, opiates, and
cocaine metabolites (benzoylecgonine).

Drug use history was assessed by a semi-structured interview,
including standard questions and participant-specific drug
history, established using a natural history interview approach
(5) covering the period from the first cannabis use to the date of
the interview. Standardized questions include age of first use,
route of administration, unit dose, frequency, and dose used
during the past year, motivation for use and problems caused by
use. Current use was confirmed using a urine drug screen.
Problematic drug use was assessed using the Drug Abuse
Screening Test (DAST) and cannabis dependence was assessed
using the Severity of Dependence scale for cannabis (SDS).

This study was approved by the Research Ethics Board at the
Centre for Addiction and Mental Health (CAMH). All
Frontiers in Psychiatry | www.frontiersin.org 3
participants provided written informed consent after receiving
a description of all study procedures.

1H-Magnetic Resonance Spectroscopy
MRS Acquisition and Analysis
1H-MRS scans were performed at the CAMH Research Imaging
Centre (Toronto, Canada) using a 3T General Electric Discovery
MR750 scanner (Milwaukee, WI, USA) equipped with an 8-
channel head coil. Head motion was minimized by positioning
each subject at the center of the head coil with soft restraint
padding around the head and tape strapped across the
forehead. T1-weighted fast spoiled-gradient-echo 3-dimensional
sagittal acquisition scans were acquired for each participant
(FSPGR sequence, TE=3.0 ms, TR=6.7 ms, TI=650 ms, flip
angle=8°, FOV=28 cm, acquisition matrix 256 × 256 matrix,
slice thickness=0.9 mm).

Single voxel 1H-MRS spectra were obtained using the
standard GE Proton Brain Examination (PROBE) sequence
with point-resolved spectroscopy (PRESS sequence, TE=35 ms,
TR=2000 ms, number of excitations=8, bandwidth=5,000 Hz,
4,096 data points used, 128 water-suppressed, and 16 water-
unsuppressed averages. For each participant, the voxel (30 x 20 x
15 mm APxRLxSI) was carefully positioned on the bilateral
supragenual anterior cingulate cortex (ACC; Figure 1). The
voxel placement was independently confirmed during
placement and again during analysis by a trainer independent
rater. For each region, the signal over the voxel was shimmed to
FIGURE 1 | (A) Placement of the supragenual anterior cingulate cortex (ACC) voxel and, (B) ACC 1H-MRS spectra from a representative subject.
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achieve a linewidth of 12 Hz or less, measured from the
unsuppressed water signal in the voxel.

Data Processing and Analysis
MRS data were analyzed with LCModel version 6.3-0E (37), using
a standard basis set of metabolites (listed below). Spectra fits
yielded relative quantification of metabolite concentration levels.
This was achieved by normalizing the metabolite fits to the
unsuppressed water signal, corrected for fraction of water in
each compartment (grey matter (GM), white matter (WM) and
cerebrospinal fluid (CSF)). Neurometabolite quantities were thus
expressed in institutional units (IU) that could be compared across
individuals regardless of variations in CSF contributions to the
voxel signal. A field-appropriate basis set with TE = 35 ms was
used, and contained L-alanine, aspartate, Cr, Cr methylene group,
g-aminobutyric acid, glucose, glutamate, glutamine, glutathione,
glycerophosphocholine, L-lactate, myo-inositol, NAA, N-
acetylaspartylglutamate, phosphocholine, phosphocreatine,
scyllo-inositol, and taurine, as well as the following lipids (Lip)
and macromolecules (MM): Lip09, Lip13a, Lip13b, Lip20, MM09,
MM12, MM14, MM17, and MM20.

All scans included in statistical analyses met 1H-MRS quality
control cutoffs (full-width at half-maximum (FWHM) ≤0.1,
signal-to-noise ratio (SNR) ≥10, Cramér-Rao lower bounds
≤15%), scans failing to meet QC cutoffs or meeting criteria for
rejecting analyses described in the LC Model manual were
removed from the analyses (38).

Voxel Tissue Heterogeneity
T1-weighted MRI scans used for voxel localization were
segmented into GM, WM, and CSF using FSL5.0 (FAST;
FMRIB Analysis Group, Oxford University, UK). Voxel
location, orientation and size information obtained from
spectra file headers were used to generate binary masks in the
same matrix as the T1 image (Gannet 2.1, (39). Binary voxel
masks were applied to segmented T1 images in order to
determine percentages of GM, WM, and CSF within the 1H-
MRS voxel (36).

The water-scaled metabolite concentrations were corrected
for voxel tissue composition as follows. To get the observed
metabolite concentration (not corrected for metabolite
relaxation times), relative to a fully relaxed water concentration
in tissue, [M], the volume fractions, water relaxation times (T1,
T2) and water concentrations of the three compartments: WM,
GM and CSF, must be taken into account per (40). Values for
relaxation times at 3T were based on (41–44). To reconcile the
operation already performed by LC Model to give water-scaled
data (i.e., [M]WS), we performed the following:

M½ � = M½ �WS½ fCSF*55556*RCSF

� �
+ fGM*43300*RGM

� �
+ fWM*35880*RWM

� �

0:7*35880* 1 − fCSFð Þ� �

Where, Ri = (1 − e(−
TR
T1i))*e

(− TE
T2i)

For i = WM,  GM,   and  CSF
and where 0.7 * 35880 is used to account for the assumptions

used by LC model (i.e., WCONC=35,880 and ATT20 = 0:7 =
e(−

30
80)).
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Statistical Analysis
Analyses were performed using SPSS (version 24.0; IBM
Corporation, Armonk, NY, USA). Group differences in sample
characteristics were tested using t-tests or chi-square tests for
continuous and categorical variables, respectively (Table 1).

The effect of group on 1H-MRS neurometabolites were tested
using a general linear model including sex and creatine (creatine
+phosphocreatine) as covariates. Creatine is highly correlated
with other metabolites of interest in the 1H-MRS spectrum,
therefore creatine was included as a covariate in all analyses
(45). Previous 1H-MRS studies in cannabis users indicated that
including sex in their model affected their results with glutamate
metabolites and/or myo-inositol (6, 10, 31, 34), therefore all
statistical models included sex as a factor.

The effects of problematic drug use, severity of cannabis
dependence and past-year cannabis exposure on 1H-MRS
neurometabolites were tested using a general linear model
including sex and creatine (creatine+phosphocreatine) as
covariates. Non-significant interaction terms were removed from
the model. Significant interaction terms were followed up using a
general linear model. Each variable was tested with myo-inositol,
glutamate and glutamate+glutamine, therefore a statement of
statistical correction (3 metabolites) accompanies reporting of results.
RESULTS

Demographics and 1H-MRS Scan
Characteristics
In total, 54 healthy control participants and 26 cannabis users
underwent ACC 1H-MRS scans. Data for seven healthy control
participants did not meet quality control standards (FWHM>.1),
therefore the present analysis includes 47 healthy control
participants and 26 cannabis users.

Healthy controls and cannabis users did not differ significantly
in age or sex, however there were more tobacco smokers in the
cannabis user group (Table 1). The linewidth (FWHM), signal-to-
noise ratio (SNR) and Cramér-Rao lower bounds for all metabolites
were comparable in healthy controls and cannabis users (Table 1).
Tissue grey matter fraction was lower in the cannabis user group
(F1,69 = 4.82, p=.031), but groups did not differ in white matter
(F1,69 = 2.69, p=.11) or CSF fractions (F1,69 = 0.44, p=.56).

1H-MRS creatine is strongly associated with other
neurometabolites (myo-inositol: F1,70 = 24.71, p=4.55x10-6,
glutamate: F1,70 = 10.68, p=.0017 and glutamate+glutamine:
F1,70 = 16.45, p=.00013) as previously reported (45).

Consistent with previous literature, 1H-MRS metabolites of
interest differed significantly by sex (creatine: F1,70 = 4.35,
p=.041; myo-inositol: F1,70 = 4.29, p=.042; glutamate: F1,70 =
6.06, p=.016; glutamate+glutamine: F1,70 = 21.11, p=.000019)
therefore sex was included in all models.

1H-MRS Neurometabolites Do Not Differ
Between Healthy Controls and Cannabis
Users
Controlling for sex, healthy controls and cannabis users did not
differ significantly in creatine (F1,69 = 1.48, p=.23; Figure 2).
August 2020 | Volume 11 | Article 764
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Controlling for sex and creatine, healthy controls, and
cannabis users did not differ in myo-inositol (F1,69 = 0.18,
p=.67; myo-inositol), glutamate (F1,69 = 0.018, p=.89), or
glutamate+glutamine (F1,69 = 0.56, p=.46). These results
Frontiers in Psychiatry | www.frontiersin.org 5
remained unchanged after controlling for tobacco use (myo-
inositol: F1,68 = 0.62, p=.43; glutamate: F1,68 = 0.04, p=.85;
glutamate+glutamine: F1,68 = 0.29, p=.59).

Myo-Inositol Is Related to Severity of Drug
Abuse and Dependence
Controlling for sex and creatine, myo-inositol was significantly
associated with problematic drug use behaviors (DAST), such
that cannabis users with the most problematic drug use exhibited
the lowest levels of myo-inositol (F1,22 = 11.95, p=.002, Cohen’s
f=0.59, large effect; Figure 3). Similarly, controlling for sex and
creatine, myo-inositol was significantly associated with severity
of cannabis dependence score (SDS) (F1,22 = 6.61, p=.017,
Cohen’s f=0.44, large effect; Figure 3). The associations of
myo-inositol with problematic drug use behaviors and severity
of dependence remained significant after controlling for tobacco
use (DAST: F1,21 = 7.95, p=.005; SDS: F1,21 = 6.61, p=.018). The
association of myo-inositol with problematic drug use
behaviors remains significant after correction for multiple
testing but the association with severity of dependence does
not survive correction.

In contrast to results with myo-inositol, glutamate and
glutamate+glutamine were not significantly associated with
problematic drug use behaviors (DAST; glutamate: F1,22 = 0.36,
p=.55; or glutamate+glutamine: F1,22 = 2.15, p=.16) or severity of
dependence (SDS; glutamate: F1,22 = 0.01, p=.94; or
glutamate+glutamine: F1,22 = 0.17, p=.90).

Glutamate Metabolites Are Related to
Past-Year Cannabis Exposure
Glutamate and glutamate+glutamine exhibited a significant
interaction with sex on past-year cannabis exposure
(glutamate: F1,21 = 6.31, p=.02; glutamate+glutamine: F1,21 =
FIGURE 2 | Groupwise scatter of 1H-MRS metabolites in healthy control participants and in cannabis users with and without cannabis use disorder. Group mean
reflects estimated marginal mean for the healthy control participants (n=47) and cannabis users (n=26), controlling for sex and creatine. CUD, cannabis use disorder;
I.U., institutional units.
TABLE 1 | Sample characteristics (mean ± SD) [range].

Healthy
controls

Cannabis
users

t/c2 p

Sample size 47 26
Age (years)
± SD

23.38 ± 3.88
[18-37]

23.76 ± 4.20
[18-35]

0.15 .69

Gender Male 21 17 2.88 .09
Female 26 9

Current
drug use

Tobacco 0 4 7.65 .001
Other drugs of
abuse

0 0

Cannabis 0 26
Cannabis
exposure
and
measures of
drug abuse
and
dependence

Age at first use
(years)

16.53 ± 3.39
[12-29]

Age at regular
use (years)

19.23 ± 4.27
[14-34]

Estimated
lifetime cannabis
use (grams)

2284 ± 1684

Estimated past-
year cannabis
use (grams)

455 ± 256

Current daily
use (grams)

1.39 ± 0.82

CUD/no CUD 17/9
SDS 2.77 ± 2.18
DAST 4.42 ± 3.40

1H-MRS
FWHM 0.036 ± 0.011 0.036 ± 0.0094 0.041 .84
SNR 25.79 ± 4.29 25.58 ± 4.13 0.041 .84
CUD, cannabis use disorder; SDS, severity of dependence scale; DAST, drug abuse
screening test; FWHM, full-width at half-maximum; SNR, signal-to-noise ratio.
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7.20, p=.014), such that greater past-year cannabis exposure was
related to higher concentrations of glutamate metabolites in male
cannabis users (glutamate: F1,14 = 25.94, p=.000016; Cohen’s
f=1.32, large effect; glutamate+glutamine: F1,14 = 23.24,
p=.00027, Cohen’s f=1.24, large effect; Figure 4) but not female
cannabis users (glutamate: F1,6 = 0.082, p=.78; glutamate
+glutamine: F1,6 = 0.001, p=0.97; Figure 4).

The outcome of these tests were not meaningfully altered
after controlling for tobacco use (males: glutamate: F1,13 =
23.84, p=.00003; glutamate+glutamine: F1,13 = 21.19, p=.0005;
female cannabis users: glutamate: F1,5 = 0.06, p=.81;
glutamate+glutamine: F1,5 = 0.001, p=.98). The associations
between glutamate metabolites and past-year cannabis
exposure survives correction for multiple tests.

These effects were not driven by the male cannabis user
with particularly high past-year cannabis use (Figure 4), as the
results did not change if this high-exposure participant was
excluded from the analysis (interaction: glutamate: p=.041;
glutamate+glutamine: p=.025; association with past-year cannabis
use: glutamate: p=.004; glutamate+glutamine: p=.004).

Finally, in contrast to results with glutamate metabolites,
myo-inositol was not significantly associated with past-year
cannabis exposure (F1,22 = 0.47, p=.50).
DISCUSSION

In this study, we observed that young adult cannabis users
do not differ in myo-inositol or glutamate metabolites in the
ACC relative to demographically matched healthy control
participants. Cannabis users with greater drug abuse severity
had lower levels of myo-inositol. Greater past-year cannabis
exposure was strongly associated with higher levels of
glutamate metabolites in the ACC, and this effect was observed
in male but not female cannabis users.

To date, reductions of glutamate metabolites and myo-
inositol levels in ACC were observed in adolescent (16–19
years) (6) but not in ACC of young adult (18–39 years)
cannabis users (34). The adolescent and young adult studies
differ also in cannabis use history, 1H-MRS acquisition, and
Frontiers in Psychiatry | www.frontiersin.org 6
voxel size and placement. An expanding body of evidence
suggests that adolescents and adults may be differently affected
by short and long-term cannabis exposure (4, 46). Alternatively,
given the placement and size of the larger voxel in that study, the
reductions in glutamate metabolites observed in adolescent
cannabis users may reflect changes in medial prefrontal cortex
rather than ACC (7). Therefore, further work is needed in order
to disentangle the contributions of age and brain region to
cannabis-related alterations of brain metabolites.

Lower ACC myo-inositol was associated with greater drug
abuse severity. Drug abuse behaviors (e.g, persisting in drug use
despite problems caused, inability to limit intake) are often
associated with impairments in self-control and impulsivity,
which are central functions of the ACC (47). In young adults
(21 ± 3.6 years) with cannabis dependence, lower myo-inositol
across parietal, temporal, frontal and subcortical regions was
associated with greater impulsivity (8, 32). Altogether, results
support an association of drug abuse behaviors with myo-
inositol in the ACC (8).

Reduced myo-inositol may reflect disturbances of astrocyte
function in the ACC of cannabis users. Astrocytes are in contact
with hundreds to thousands of synapses, positioning them to
regulate both neuroimmune activity and neurotransmission across
large areas (18). In animals, astrocytic CB1 receptors contribute to
THC-inducedmemory deficits in the hippocampus, but this has not
been studied in the ACC (48, 49). Finally, a disturbance of astrocyte
function could be related to changes to glutamate metabolism,
however such interactions are not well understood in humans
(18, 31).

Male cannabis users with greater past-year cannabis exposure
had higher levels of ACC glutamate metabolites. The direction of
this effect is unexpected, given reports of lower, but not higher
glutamate metabolites in cannabis users (6, 8). The relationship
between glutamate and cannabis use history has been largely
unexplored. Of eight 1H-MRS studies in cannabis users, only
three reported testing glutamate metabolites with measures of
recent and long-term cannabis exposure (6–10, 31, 34, 35).
Glutamate metabolites in mPFC or ACC were not significantly
associated with cannabis metabolites, current cannabis
consumption, or lifetime cannabis exposure (6, 7, 34). Studies
with longitudinal or drug-challenge designs, are needed better
A B

FIGURE 3 | Associations between myo-inositol and (A) problematic drug use behaviors (DAST) and (B) Severity of cannabis dependence (SDS). Values adjusted for
creatine and sex. I.U., institutional units.
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understand the nature of the relationship between cannabis
exposure and glutamate.

Past-year cannabis use was associated with increased
glutamate metabolites in male but not female cannabis users.
Few human imaging studies have examined sex differences in
glutamate metabolites in cannabis users, or in response to acute
THC/cannabis challenge. One study reported that striatal
glutamate+glutamine/creatine was reduced in female but not
male daily cannabis users (10). In contrast to sex differences in
neurometabolic disturbances in cannabis users, a rich and
expanding literature describes sex differences in behavioral,
neural and long-term neurophysiological effects of cannabis
use (50, 51). Future imaging studies should emphasize samples
balanced for sex, in order to identify and characterize
neurometabolic consequences of cannabis use for males and
females (50, 51).

Strengths of the present study include measurement of past
and recent cannabis use history, and measures of cannabis abuse
and dependence (52, 53). The present sample also included
cannabis users with and without cannabis use disorder,
permitting dimensional analysis of these variables across
diagnostic categories. Finally, 1H-MRS measurements were
corrected for tissue segmentation as well as the water
relaxation times and water concentrations of GM,WM, and CSF.

The present study also has limitations that should be
considered. Due to the cross-sectional design, the present results
cannot establish a causal relationship between neurometabolites
and cannabis abuse, dependence, or exposure. As with most 1H-
MRS studies in cannabis users, participants in the present study
were not treatment-seeking. This study included cannabis users
with and without cannabis use disorder, which provided wide
variation in problematic drug use behaviors and cannabis
exposure, however this may have reduced the ability of this
study to observe group differences in metabolites. Finally, the
resonances of glutamate and glutamine cannot be reliably
separated using the standard short-TE PRESS acquisition at 3T,
so we cannot make separate conclusions about these metabolites.
Lastly, although myo-inositol is routinely interpreted as an
astrocyte-specific marker, some have disputed this claim (20).
Frontiers in Psychiatry | www.frontiersin.org 7
The THC and CBD content of the cannabis smoked by users
was not measured, therefore our estimates of cannabis use-
occasions may not directly translate to THC dose. Although
current cannabis use was confirmed by urine drug screens, we
did not measure cannabinoids in hair, which would help to verify
self-reported cannabis use history. Moreover, there is a need for
increased standardization of measures of cannabis exposure,
cannabis use characteristics and reporting in future studies in
order to facilitate comparison of results across studies (54).

Finally, the present study tested the statistical association of
three metabolites with three secondary outcome measures, and
although the associations between myo-inositol and drug abuse
beahviors and between glutamate, glutamate+glutamine and past-
year cannabis use survive statistical correction, the number of tests
nevertheless increases the possibility of false positive results.
Conclusions
Young adult cannabis users do not differ in myo-inositol or
glutamate metabolites in the ACC relative to demographically
matched healthy young adult control participants. Cannabis
users with greater severity of drug abuse behaviors had lower
levels of myo-inositol. Greater past-year cannabis exposure was
strongly associated with higher levels of glutamate metabolites in
the ACC, and this effect was observed in male but not female
cannabis users. This study demonstrates the importance of
examining measures of drug abuse and dependence in addition
to drug exposure in studies of neurometabolites in cannabis users
and substance use disorders more generally. Studies with
longitudinal designs are needed in order to establish causal
relationships between neurometabolites, cannabis exposure and
cannabis abuse and dependence.
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