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Thermal extremes alter population processes, which can result in part from temperature-
induced movement at different spatial and temporal scales. Thermal thresholds for
animal movement likely change based on underlying thermal physiology and life-history
stage, a topic that requires greater study. The intertidal porcelain crab Petrolisthes
cinctipes currently experiences temperatures that can reach near-lethal levels in
the high-intertidal zone at low tide. However, the thermal thresholds that trigger
migration to cooler microhabitats, and the extent to which crabs move in response to
temperature, remain unknown. Moreover, the influence of reproductive status on these
thresholds is rarely investigated. We integrated demographic, molecular, behavioral,
and physiological measurements to determine if behavioral thermal limits varied due
to reproductive state. Demographic data showed a trend for gravid, egg bearing,
crabs to appear more often under rocks in the cooler intertidal zone where crab
density is highest. In situ expression of 31 genes related to stress, metabolism,
and growth in the field differed significantly based on intertidal elevation, with mid-
intertidal crabs expressing the gene for the reproductive yolk protein vitellogenin (vg)
earlier in the season. Furthermore, VG protein levels were shown to increase with
density for female hemolymph. Testing for temperatures that elicit movement revealed
that gravid females engage in heat avoidance behavior at lower temperatures (i.e.,
have a lower voluntary thermal maximum, VTmax) than non-gravid females. VTmax

was positively correlated with the temperature of peak firing rate for distal afferent
nerve fibers in the walking leg, a physiological relationship that could correspond to
the mechanistic underpinning for temperature dependent movement. The vulnerability
of marine organisms to global change is predicated by their ability to utilize and
integrate physiological and behavioral strategies in response to temperature to maximize
survival and reproduction. Interactions between fine-scale temperature variation and
reproductive biology can have important consequences for the ecology of species, and
is likely to influence how populations respond to ongoing climate change.

Keywords: thermal sensitivity, climate change, neurophysiology, reproductive ecology, behavioral
thermoregulation
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INTRODUCTION

There is an increasing need to understand the effects of
temperature on biota given ongoing global change. Elevated
temperature affects organisms at all levels of biological
organization, and perturbations at each level can act on each
other in complex ways (Chaui-Berlinck et al., 2004; Huey et al.,
2012). Furthermore, physiological and behavioral sensitivity
to temperature varies across different stages of the life cycle
(Angilletta, 2009). One major life-history stage that influences
temperature-dependent behavior in females is gravidity or egg
bearing (Cree and Hare, 2016). For example, when females of
the oviparous lizard Podarics muralis become gravid, changes in
thermoregulatory behavior result in reduced body temperature
and reduced distance to refugia (Brana, 1993). Many species also
have strong oviposition site thermal preferences. When given the
choice within a laboratory thermal gradient, female alpine newts
prefer a narrow range of temperatures for oviposition (Dvořák
and Gvoždík, 2009), and thermal oviposition site selection is
likely an adaptive behavior that promotes optimal temperatures
for offspring survival and development in the butterfly Pyrgus
armoricanus (Eilers et al., 2013). Some organisms, such as the
crabs that are the focus of this study, carry their broods. Thus,
the female can precisely determine the thermal conditions
of her eggs by moving to different microhabitats. The female
preference-offspring performance hypothesis suggests that this
behavior evolutionarily favors temperatures that are optimal for
embryonic development (Jaenike, 1978). At the same time, there
is a high cost of reproduction in marine invertebrates (Fernandez
et al., 2000) and females must also consider temperatures that
maximize their own performance (Scheirs et al., 2000).

Organisms remain within a thermally optimum range by
eliciting escape reflexes to avoid thermal stress (Lagerspetz and
Vainio, 2006). The rate of neural firing is highly temperature
dependent and could trigger heat avoidant movement. The
voluntary thermal maximum (VTmax) is an upper thermal
tolerance limit where a temperature causes an organism to
deliberately move to avoid a warming event (Cowles and Bogert,
1944; Camacho and Rusch, 2017). The thermosensory systems
and physiological and molecular mechanisms that drive these
behaviors are well studied, especially in model invertebrate
organisms (Schafer, 2005; Barbagallo and Garrity, 2015).
Kobayashi et al. (2016) found that even a single thermosensory
neuron from C. elegans can memorize a temperature and
influence downstream interneurons and thus may determine
behavioral output. Many decapod crustaceans have nerve
fibers that coordinate escape reflexes, and single neurons can
command specific behavioral patterns in response to stimuli
(Weirsma, 1946; Edwards et al., 1999). Nevertheless, relevant
neurophysiological data linking thermosensory systems and
behavior in crustaceans is sparse (Lagerspetz, 1973; Lagerspetz
and Vainio, 2006). For example, lobster neurons change their rate
of firing when exposed to different temperatures, but it is unclear
if they trigger thermally driven behaviors (Konishi and Kravitz,
1978). Neural functions are the physiological basis for thermal
escape behavior in crabs (Lagerspetz, 2000). Neural control
of temperature selection may be mediated by thermoreceptors

or thermosensitive neurons; however, little is known about
the location or mechanisms used to sense temperature in
crustaceans. Moreover, porcelain crabs have thermal plasticity in
neural system performance thresholds after thermal acclimation
and exhibit interspecific variation in nerve thermal tolerance
(Miller and Stillman, 2012), but the behavioral repercussions and
ecological outcomes of this plasticity are unknown.

The rocky intertidal zone is thermally heterogeneous and
animals that inhabit the high-intertidal zone experience longer,
more frequent exposure to extreme temperature compared
to animals in lower intertidal zones (Evans, 1948; Helmuth,
2006). High-intertidal organisms also appear to have limited
physiological plasticity to cope with warming (Stillman, 2003),
such that rising temperatures may force these species to move
down the shore to cooler and more stable intertidal zones
(Stillman and Somero, 2000). However, they are more likely
to encounter predation risks lower in the intertidal zone
(Connell, 1961), as well as higher intraspecific densities and
competition. Crowding stress can lead to lowered reproductive
output and promote a negative relationship between gonad
and hepatopancreas mass which is responsible for reproductive
nutrient storage and associated with energetic limitations in
reproductive individuals (Kennish, 1997; Thomson et al., 2010;
Griffen et al., 2011; Zanette et al., 2011).

The reproductive protein vitellogenin (VG) is a useful
marker for estimating reproductive state within populations,
including how reproductive physiology is altered by changing
environmental conditions. VG is found in all egg laying
(oviparous) vertebrates and invertebrates, and functions as a
precursor to the vitellin (VN) yolk protein which is necessary
for ovarian maturation and embryonic development (Tsukimura,
2001; Liu C. et al., 2015). Vitellogenin production has been
shown to increase during cooler months in intertidal crabs (Salas,
2017). Furthermore, levels of vg gene expression can change
in response to acute stressors such as crowding or predator
presence, and can correlate with egg yolk availability during
embryonic development and act as a marker for reproductive
output (Lethimonier et al., 2000; Schreck et al., 2001).

The anomuran porcelain crab Petrolisthes cinctipes inhabits
the mid- to high-intertidal zone on rocky shorelines along the
Pacific coast from British Columbia to Southern California.
P. cinctipes currently lives at the upper limit of its physiological
thermal range (Stillman and Somero, 2000) and has limited
plasticity to physiologically buffer itself against warming
(Stillman, 2003). P. cinctipes can also experience fluctuations in
temperature of up to 20◦C in a period of 6 h (Stillman and
Somero, 1996; Gunderson et al., 2019). Therefore, it is likely that
these crabs will need to behaviorally thermoregulate by moving
to different microhabitats in order to avoid overheating under
future warming (McGaw, 2003; Gunderson et al., 2019).

Using P. cinctipes as a model system, numerous investigations
were conducted that span from the field to the lab to
develop an integrative picture of how thermal variation affects
populations with a focus on reproductive physiology. The
common thread through all of the studies is the connection
between physiological state and population demographics under
different thermal conditions and species density scenarios.
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Demographic field surveys were used to determine how
crab density and female gravidity vary along the intertidal
thermal gradient. To test whether the occupation of different
intertidal elevations influences the physiological state of crabs,
in situ expression of genes related to stress, metabolism,
development, and reproduction, including vitellogenin (vg)
expression, were measured. Given that crab density differences
were found with intertidal elevation, laboratory experiments
were conducted to determine if vg expression levels or VG
protein concentration were affected by density. To determine if
reproductive state influences temperature-dependent behavior,
heat avoidance behavior was measured in gravid and non-gravid
females. To identify mechanisms underlying these behaviors,
the physiological thresholds of neural thermal sensitivity were
experimentally tested to detect correlations with heat avoidance
behaviors. Thus, these studies present a holistic approach to
coupling organismal physiology to ecological conditions within
an environmental change context.

MATERIALS AND METHODS

Demography and Habitat Temperature
Demographic data and temperature data were collected from
June 19, 2015, through December 12, 2016, on a south-facing
boulder shore just south of Fort Ross State Park on the
northern California coast (38.5143◦N, 123.2438◦W; Gunderson
et al., 2019). The California coast has mixed semidiurnal tides
characterized by two high tides and two low tides of unequal
amplitude each lunar day. Following Gunderson et al. (2019), the
study area was categorized into two broad intertidal zones: mid-
intertidal zone (MIZ; n = 12; mean intertidal elevation = 0.00 m;
intertidal elevation range =−0.32 to 0.23 m), and high-intertidal
zone (HIZ; n = 12; mean intertidal elevation = 0.80 m; elevation
range = 0.31–1.10 m). Elevations for MIZ and HIZ are relative to
mean lower low water (MLLW). Rock intertidal elevations were
calculated using ground survey methods that employ yard sticks
and a basic theodolite (Mason et al., 2000). Reference points for
rock height measurements were set by assigning the observed
lower low water level on a calm day as the lower low water level
predicted for Fort Ross on that day based on tide charts. The
length and width of each rock was measured, and rocks ranged
in size from 568 to 2,671 cm2 surface area.

To sample P. cinctipes demographics, rocks were marked
with unique identification numbers using Z-spar marine epoxy
within the HIZ and MIZ transects. Temperature was monitored
under rocks within the transects using temperature data loggers
(iButton DS1921G, Dallas Semiconductor) that were placed
inside waterproof brass casings (23 × 25 mm) and affixed to
the center of the underside of rocks with Z-spar marine epoxy.
For each sampling event marked rocks were flipped over, all
crabs that had been underneath were collected, and were placed
in a temporary holding container with fresh sea water. Eleven
to fifteen rocks were sampled in the MIZ and 9–20 rocks in
the HIZ each trip. Sampling occurred every 2 weeks when low
tides permitted access to the site. The HIZ was sampled more
frequently than the MIZ because the HIZ rocks were exposed

more often and were therefore more frequently accessible for
sampling. Demographic data are presented as density in terms of
number of crabs per m2 of rock area sampled on a given date, as
well as the proportion of rocks where gravid females were present.

In situ Gene Expression Patterns of
Petrolisthes cinctipes in the Field
From July 6th through December 22nd, 2015, crabs were
collected from the HIZ and MIZ to measure expression of genes
related to reproduction, physiological stress, and metabolism.
This sampling period encompassed both low reproductive
periods and peak reproductive periods as well as seasonal changes
in temperature. Crabs were sampled from the HIZ on 11
occasions and the MIZ was sampled during six occasions because
of the reduced accessibility of the MIZ. In sum, gene expression
was measured in 160 individuals (HIZ n = 104; MIZ n = 56)
split between females and males (female n = 82; male n = 78).
Crabs were collected by flipping rocks adjacent and similar to,
but not within, the HIZ and MIZ transects so that animals were
not removed from the transects themselves. Upon collection,
animals were immediately frozen on dry ice, were transported
back to the laboratory on the same day and were stored at−80◦C
until RNA extraction.

Total RNA was extracted from the bodies of the crabs
following the protocol outlined in Gunderson et al. (2017).
Briefly, the walking legs and claws of the frozen crabs were
removed, and the remaining bodies were ground to a powder
in liquid nitrogen with a mortar and pestle. RNA was extracted
from the powder using guanidine isothiocyanate extraction
(Chomczynski and Sacchi, 1987) with Tri Reagent (Molecular
Research Center, United States) according to the manufacturer’s
protocol. Tri Reagent was added to each 50 mg powder sample
along with nuclease-free stainless-steel beads and shaken in a
TissueLyser (Qiagen) at 30 Hz for 10 min. Phase separation was
performed with BCP (Molecular Research Center, United States),
and isopropanol and a high salt buffer were used to precipitate
the RNA. The RNA was washed twice with 75% ethanol and
dissolved in 50 µL of RNase free water. RNA quality was assessed
with A260/280 ratios and 1% agarose gel electrophoresis with
ethidium bromide staining. RNA was stored at−80◦C.

The measurement of target and housekeeping gene expression
was conducted by the University of California, San Francisco
Center for Advanced Technology using the Nanostring platform
(Geiss et al., 2008). Nanostring generates read counts for
each gene from each sample without cDNA synthesis or PCR
amplification. 25 µL of RNA per sample at a concentration
of 100 ng/µL was provided to generate expression data of
31 target genes and eight housekeeping genes (Table 1).
Target genes were chosen based on their association with
important biological processes including stress physiology (e.g.,
heat-shock proteins, V-type proton ATPases, genes associated
with ubiquitination), metabolism (e.g., cytochromes, acyl-coa
synthetase), growth (e.g., cuticular proteins), and reproduction
(e.g., vitellogenin, vitelline egg coat protein). Nanostring probes
were designed from cDNA (Tagmount et al., 2010) and RNA-seq
(Armstrong and Stillman, 2016) transcriptomic datasets for
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TABLE 1 | Gene annotations, type (housekeeping (HK) or target), and gene
function for sequences used in in situ gene expression assays.

Annotation Type Function

Actin HK –

Tubulin HK –

WD repeat-containing protein 5 HK –

Partitioning defective 6 homolog gamma HK –

Paired amphipathic helix protein Sin3a HK –

U2 snRNP-associated SURP
motif-containing protein

HK –

Poly (U)-binding-splicing factor half pint HK –

Aldehyde Dehydrogenase, dimeric
NADP-preferring

HK –

Acyl-coA synthetase Target Lipid metabolism

WAP four-disulfide core domain protein 5 Target Immunity

AMPK-5 Target Lipid and carbohydrate
metabolism

Phosphoenolpyruvate carboxykinase Target Carbohydrate metabolism

Hsp40 Target Stress response

Complement C1q-like protein 4 Target Immunity

SIR-2 Target Cell cycle regulation

Retinitis pigmentosa GTPase regulator Target Development

Arginine kinase Target Amino acid metabolism

Hsp90 alpha Target Stress response

Epididymal secretory glutathione
peroxidase

Target Lipid metabolism/stress
response

I-connectin Target Muscle function

AMPK-2 Target Lipid and carbohydrate
metabolism

Hsp83 Target Stress response

Fatty acid-binding protein Target Lipid metabolism

Cuticle protein AM1159 Target Development/molt

Cytochrome P450 2L1 Target Oxidative metabolism

Cuticle protein Amp1a Target Development/molt

V-type proton ATPase subunit G Target Proton regulation

Endocuticle structural glycoprotein
SgAbd-3

Target Development/molt

Hsp70 Target Stress response

Troponin I Target Muscle function

Cuticle protein AM/CP1114 Target Development/molt

E3 ubiquitin-protein ligase UBR4 Target Protein catabolism

V-type proton ATPase subunit D 1 Target Proton regulation

V-type proton ATPase 116 kDa subunit Target Proton regulation

Cytochrome b-c1 complex subunit 8 Target Oxidative metabolism

Ral guanine nucleotide dissociation
stimulator

Target Signal transduction

Ubiquitin-conjugating enzyme E2 J1 Target Protein catabolism

Vitelline egg coat protein Target Reproduction

Vitellogenin (common and unique) Target Reproduction

P. cinctipes. Gene expression was standardized relative to
the expression of internal positive controls (for target and
housekeeping genes) and housekeeping genes (for target genes
only) for each individual. A positive control correction factor was
generated for each individual by dividing the geometric mean
of positive controls for the individual by the geometric mean of

positive controls across all individuals. The counts of all genes
for that individual were then multiplied by this factor. Target
genes for an individual were standardized to housekeeping
genes in a similar manner, whereby target gene expression was
multiplied by a correction factor taken as the geometric mean
of housekeeping gene expression for that individual divided by
the geometric mean of housekeeping gene expression across
all individuals.

Experimental Animal Collection and
Maintenance
P. cinctipes specimens were collected at Fort Ross State Park
and transported in coolers with aerated seawater to the Estuary
& Ocean Science Center in Tiburon, CA on the same day. For
common garden conditions, specimens were held in a controlled
4,000 L flow-through recirculating seawater system at a density of
82 crabs/m2, an ambient temperature of 13± 0.5◦C, and a salinity
of 33± 3 ppt for 2–6 weeks unless specified elsewhere. Specimens
were fed approximately a 1:10 dilution of Reed Mariculture Inc.
Shellfish Diet every 2–3 days. Crabs were collected throughout
the year, during both reproductive and non-reproductive seasons,
from rocks that were not in our demographic transects. These
crabs were collected for the following physiological experiments.

Density Effects on Vitellogenin
Expression and Protein Concentration
Non-gravid female crabs were collected during the end of the
reproductive season (February and March 2017). The day after
collection, crabs were individually housed in 20 × 7.6 cm acrylic
cylinders with a mesh bottom and held in the recirculating
seawater aquarium system for a 2-week common garden
acclimation period. Cylinders had a continuous flow of water
and were manually flushed daily to remove waste. Following
acclimation, crabs were randomly placed in “high” (787 crabs/m2,
n = 15) or “low” (250 crabs/m2, n = 13) density treatments.
Treatment densities were based on a range of observed densities
of P. cinctipes in the field. The low-density value was determined
from the average of the lower quartile of observed density at the
Fort Ross field site (Gunderson et al., 2019). The high-density
value was determined based on field observations of P. cinctipes
in Donahue (2004). Target densities were achieved by placing 14
individuals within 22 × 22 × 1.3 cm frame enclosures for the
high-density treatment, and 10 individuals within 13.3 × 13.3 ×
1.3 cm frame enclosures for the low-density treatment.

RNA was extracted from crab bodies and protein was extracted
from hemolymph. Whole crabs and hemolymph samples were
flash frozen in liquid nitrogen and stored at −80◦C after a
2-week experimental period on March 16th and April 27th,
2017. To determine the expression level of vitellogenin, the
walking legs and claws of the frozen crabs were removed, and
crab bodies were ground to powder in liquid nitrogen using
mortar and pestle. RNA was extracted using Trizol as described
in Gunderson et al. (2017). A NanoDrop Spectrophotometer
(A260) and 1% agarose gel electrophoresis stained with ethidium
bromide were used to determine RNA quantity and quality.
RNA was reverse transcribed to first strand cDNA using the
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iScript Reverse Transcription SuperMix kit (Bio-rad, kit cat.
No. 170-8841) following the manufacturer’s instructions. Actin
and α-tubulin were used as reference genes and used to
normalize against vitellogenin (vg). Vitellogenin (VG) protein
concentration for Petrolisthes hemolymph was determined using
a competitive enzyme-linked immunosorbent assay (ELISA)
protocol as described in Delmanowski et al. (2017). Hemolymph
was drawn with a 27-gauge needle and 1 mL syringe and
was transferred to a 1.5 mL Eppendorf tube at a 1:1 dilution
with hemolymph buffer (0.1 M NaCl, 0.05 M Tris, 1 mM
EDTA, and 0.1% Tween-20, pH 7.8). A subset of individuals
used in vg analysis had hemolymph drawn prior for protein
concentration analysis.

Behavioral Heat Avoidance: Thermal
Sensitivity to Gravid State
We compared heat avoidance behavior in gravid (GF; n = 62)
and non-gravid female crabs (NGF; n = 30) exposed to a thermal
ramp while partially immersed in seawater. These crabs did not
undergo density experiments and were held in common garden
conditions for 2 weeks prior to experimentation. Experimental
crabs had a carapace width between 8 and 15 mm. Heat avoidance
was measured as the voluntary thermal maximum (VTmax),
recorded as the temperature at which a crab exited a temperature-
controlled chamber during a thermal ramp (Cowles and Bogert,
1944; Camacho and Rusch, 2017).

The temperature chamber was constructed using a petri dish
(100 × 15 mm) filled with aerated, filtered seawater nested in
an aluminum block (15 × 15 cm) fitted with internal copper
tubing (outer 3/8”) and connected to a water bath by flexible
PVC (inner 3/8”; Supplementary Video 1; Gunderson et al.,
2019). The aluminum block and tubing were insulated with
foam and walking surfaces were covered in an adhesive grip
tape to prevent crabs from slipping (Jessup the Original R©).
The chamber was covered with a ceramic dish elevated 4 cm
above the surface to provide shelter and simulate the dark
under-rock environment. The water temperature was monitored
with a digital thermometer (Omega model HH603A, type T,
sensitivity 0.1◦C). Initially, the experiment was conducted using a
temperature chamber for an individual crab and later a chamber
which assayed 6 crabs simultaneously was used to increase
throughput. The high throughput temperature chamber was built
using an insulated aluminum block (36 × 23 cm) with six small,
nested petri dishes (60 × 15 mm). Each dish was filled with
aerated seawater and was covered with an opaque plastic lid for
shelter and to prevent disturbance from neighboring crabs. Water
temperature was recorded using a multichannel thermocouple
(Omega model HH378, type K).

In both devices, crabs were placed in the dish at 13◦C and were
contained with a blockade for 10 min at a constant temperature.
The blockade was removed, and the temperature was ramped
by a controlled water bath at 0.5◦C per minute. The VTmax
was recorded as the temperature of the water when the crab
exited the dish, and all appendages were in contact with the grip
tape. Control crabs (n = 80) were similarly held at 13◦C for
10 min before the blockade was removed, then the temperature

remained at 13◦C for 30 min, which was the maximum time of
any treatment trial.

Thermosensory Behavior and Neural
Thermal Performance
To demonstrate that crabs sensed temperature with their legs,
behavioral responses to isolated thermal stimulation on the
walking legs of (n = 7) crabs were studied. Seawater was
dropped on the left 3rd walking leg with a 27 G × 1/2 syringe
in approximately 1◦C intervals at temperatures between 17
and 39◦C (Supplementary Video 2). Water temperature was
measured with a digital thermometer (Omega model HH603A,
type T, sensitivity 0.1◦C) immediately before administering
a drop to the crab leg. Experiments were conducted with
crabs placed in a petri dish in air at room temperature (21–
24◦C). When a drop of water was placed on the crab leg, the
behavioral response of the crab was recorded (i.e., moved away
or did not move away).

Action potential propagation in afferent nerve fibers exposed
to a thermal ramp was measured to quantify thermal sensitivity
of thermosensitive neural systems in crab walking legs. Neural
thermal performance was recorded in a group of gravid (GF,
n = 9) and non-gravid female crabs (NGF, n = 10) crabs 7–
16 days after being assayed for VTmax to determine if there
is a link between heat avoidance behavior and neural heat
sensitivity and an effect of reproductive state. These individuals
did not experience thermal stimulus isolated to their walking
leg as in the previous experiment. Spontaneous field potential
propagation was determined in nerve fibers of the 3rd walking
leg during a thermal ramp following the protocol from Miller
and Stillman (2012). Briefly, the left 3rd walking leg was
removed by gently tapping the joint between the coxa and
basischium with forceps and allowing it to autotomize. Sensory
neurons were isolated by cutting away the basischium article
and separating the merus from the carpus. Using this method,
the nerve bundle is exposed and remains attached to the distal
portion of the walking leg. The dissected nerve preparation
was placed in a temperature-controlled petri dish filled with
seawater at 13◦C.

Measurements were taken on an anti-vibrational table, in
a grounded faraday cage with the lights turned off to reduce
electrical noise, using a hand-pulled glass Ag/AgCl suction
electrode. A glass capillary tube was pulled with an oxygen
acetylene torch, cut at the appropriate point to produce the right
diameter opening, and the cut tip was flame polished. Silver
wires were submerged in bleach (6% sodium hypochlorite) for
30 min to chloride the wire. An Ag/AgCl wire was placed in the
glass capillary tube and a reference Ag/AgCl wire was wrapped
around the tube. The electrode was attached to a Grass P55 A.C.
pre-amplifier at 1,000× amplification with the low-pass filter at
30 Hz and the high-pass filter at 1 kHz to distinguish neural
spikes. The glass Ag/AgCl electrode was filled with seawater
and negative pressure was applied with a 10 mL syringe to
suction a loop of the nerve into the tip of the electrode. The
output was recorded using a Power Lab 15T (ADInstruments)
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and continuous measurements were recorded using LabChart
software (ADInstruments Chart v.8.1.5).

Spontaneous field potentials of nerve fibers were recorded in
mV with the detection threshold set to 200 mV at a rate of 40
k/s (Supplementary Figure 2). The temperature was ramped at
0.5◦C per minute controlled by a Lauda proline RP 855 water
bath. The frequency of field potential firing as a function of
temperature provided a thermal performance curve (Figure 1).
Recordings began immediately after the nerve was fixed to the
suction electrode and continued until nerve function ceased.
Thermal performance curves were obtained by using LabChart
software extension spike histogram and the built-in macros to
extract field potential frequency (Hz) and temperature data. The
initial point at which firing frequency showed a significant change
from baseline was considered the initial firing temperature and
the point at which firing frequency was the highest was called
peak firing temperature. Initial firing temperature was extracted
by identifying frequency values that are significantly different
from baseline using a sliding window function. Optimal peak
firing temperature was determined from thermal performance
curve using R software (v.4.1.1; R Core Team, 2017) and applying
the “loess” function. Neural profiles were discarded if a peak
temperature was not generated because of diminished signal if
the nerve slipped from the suction from the electrode.

Statistical Analyses
Statistical analyses were conducted in R software (v.4.1.1; R Core
Team, 2017). Differences in average responses were examined
with Welch’s two sample t-test in laboratory physiology and
behavioral experiments. Expression data were condensed using
principal components analysis on log-transformed standardized
transcript counts. Principal component data were used in linear
models to test for associations between gene expression and day
of the year (i.e., time), sex, intertidal zone, and their interactions.

FIGURE 1 | Field potential frequency and temperature in an individual crab
with raw data fitted by Loess function. Peak firing temperature is denoted by
the asterisks (*). The detection threshold of the recording was 200 mV at a
rate of 40 k/s. The temperature was ramped at 0.5◦C per minute.

Following Crawley (2010), we started with full models with all
interactions and simplified models by removing non-significant
interaction terms. All gene expression standardization and
analyses were conducted in R (R Core Team, 2017). A linear
mixed effects model (LME) was used to compare VTmax in GF
and NGF where date and trial were included as random effects.
A generalized linear mixed effects model (GLMM) was used to
determine the response to discrete thermal stimulus on the crab
walking leg and repeated measures were included as a random
effect. Linear regression was used to define the relationship
between peak sensory nerve firing and VTmax in female crabs.

RESULTS

Demography and Habitat Temperature
Mean daily maximum temperature in the HIZ (16.4 ± 4.1◦C)
was 2.5◦C higher than in the MIZ (13.9 ± 1.8◦C) and the
HIZ reached temperatures that were higher than 25◦C more
often than the MIZ (Figure 2; Gunderson et al., 2019). Crabs
were consistently found at higher densities within the MIZ
(mean ± SE: 108.6 ± 10.9 crabs/m2) than the HIZ (mean ± SE:
43.4 ± 6.8 crabs/m2; Figure 3A). The highest observed density
under an individual rock was 697 crabs/m2 (Figure 3A). There
was clear seasonality to P. cinctipes reproductive patterns. Gravid
females were found from early winter through early summer, with
the most gravid females found in winter (Figure 3B). There were
more rocks in the MIZ with gravid females under them than in
the HIZ (48 vs. 24%, respectively; Chi square test, X2 = 3.73,
p = 0.054), but the proportion of females that were gravid did not
differ between the MIZ and HIZ (0.49 vs. 0.43, respectively; Chi
square test, X2 = 0.22, p = 0.637).

FIGURE 2 | Summary of daily maximum temperature under rocks within our
study site at different intertidal zones from July 2015 to December 2016. Data
from Gunderson et al. (2019), where greater detail about the thermal
conditions can be found.
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FIGURE 3 | Demographic patterns by intertidal zone for P. cinctipes. On a boulder shore in northern California by time of year. (A) Density of crabs in the MIZ
(mean ± SE: 108.6 ± 10.9 crabs/m2) and HIZ (mean ± SE: 43.4 ± 6.8 crabs/m2). (B) Proportion of rocks with gravid females.

In situ Gene Expression Patterns of
Petrolisthes cinctipes in the Field
Results from PC axes 1–3, each of which explain at least 10%
of the variation in gene expression individually and collectively
explain 60% of the variation, are presented here. The first
expression principal component axis (PC1) explained 26% of
the variability in gene expression. PC1 was most strongly
associated with high expression of hsp40, V-type proton ATPase
subunits, and cuticular protein am1159 and amp1a, and low
expression of vitelline egg coat protein, arginine kinase, and
the molecular chaperones hsp90 and hsp70 (Supplementary
Table 2). No interactions were found between sex, date, or
intertidal zone (all p > 0.05), but all individual terms were
significant (Table 2A, model explains 22% of the variation
in PC1). Gene-expression PC1 decreased significantly over
time from July to December in all crabs and was higher
on average in the HIZ and in females (Table 2A and
Figure 4A).

The second expression principal component axis (PC2)
explained 21% of the variability in gene expression. PC2 was
most strongly associated with high expression of vitellogenin,
complement c1q-like protein 4; and wap domain protein 5;
and low expression of retinitis pigmentosa gtpase regulator and
hsp83 (Supplementary Table 2). There was a significant sex
× date interaction associated with expression PC2, where PC2
increased in females on average from July to December in
both the HIZ and MIZ but remained relatively constant for
males; PC2 also had higher expression in females compared to

males (Table 2B and Figure 4B; model explains 66% of the
variation in PC2).

The third expression principal component axis (PC3)
explained 13% of the variation in the expression data and was
associated most strongly with high expression of V-type proton
ATPase subunits, troponin I, and cytochrome b-c1 complex subunit

TABLE 2 | Results of linear models for factors explaining variation in gene
expression principal components for field collected crabs.

df SS MS F P

A. PC1

Date 1 141.8 141.8 21.2 <0.001

Intertidal zone 1 77.3 77.3 11.6 <0.001

Sex 1 36.8 36.8 5.5 <0.001

Residuals 156 1043.2 6.7

B. PC2

Date 1 20.2 20.2 8.7 0.004

Intertidal zone 1 0.0 0.0 0.0 0.915

Sex 1 639.2 639.2 275.5 <0.001

Date × Sex 1 23.8 23.8 10.3 0.002

Residuals 155 359.7 2.3

C. PC3

Date 1 4.7 4.7 1.1 0.289

Intertidal zone 1 17.4 17.4 4.2 0.042

Sex 1 6.5 6.5 1.6 0.213

Residuals 156 647.6 4.2
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FIGURE 4 | Patterns of gene expression for crabs in the field related to date,
intertidal zone height, and sex. Gene expression data have been transformed
using principal component analysis (see Supplementary Table 2). (A) The
model explains 22% of the variation in PC1, (B) 66% of the variation in PC2
and (C) 4% of the variation in PC3. Samples from a particular sampling date
are jittered so that all of the data points are visible.

8; and low expression of ampk-2, cuticle protein am/cp1114,
and epididymal secretory glutathione peroxidase (Supplementary
Table 2). There were no interactions between factors with respect
to PC3, though there was an effect of intertidal zone, with crabs
in the MIZ having higher values than crabs in the HIZ (Figure 4C
and Table 2C; model explains 4% of the variation in PC3).

In the field, vg expression was seasonally elevated
in female crabs (Figure 5). Intertidal height shifted vg
temporally such that vg onset in female crabs from the
HIZ did not occur until October and remained high
through December (Figure 5A). MIZ female crabs began
expressing vg in late August, peak expression was in October
and expression began to decline in December (Figure
5B).

Experimental Effects of Density on
Vitellogenin Expression and Protein
Concentration
In the lab there was no significant difference in vg expression fold
change between high- and low-density groups (p > 0.05, high
density mean = 0.62 ± 0.3 SE, low density mean = 0.212 ± 0.09
SE; Welch Two Sample t-test; Figure 6A). However, under high
density assemblages VG protein concentration was significantly
higher than in low density assemblages (Two-way ANOVA, F1,
26 = 0.05, p = 0.05; Figure 6B).

Behavioral Heat Avoidance and Thermal
Sensitivity to Gravid State
When exposed to a thermal ramp, gravid females (GF) had
significantly lower VTmax than non-gravid females (NGF; LME;
t1, 17 =−2.24, p = 0.039, Figure 7).

Thermosensory Behavior and Neural
Thermal Performance
When a thermal stimulus (water drops of discreet temperatures)
was applied to the walking legs of crabs, 0% of crabs moved
at temperatures between 17 and 23◦C. 29% of crabs moved at
24–31◦C. 100% of crabs exhibited a behavioral response to the
hot water at temperatures above 31◦C (GLMM; z = −11.30,
p < 0.0001, Figure 8).

When nerve fibers of the terminal segments of the walking
leg were exposed to a thermal ramp, field potential rates
increased slowly, reached a peak firing frequency, and then fell at
temperatures beyond permissive thermal thresholds (Figure 1).

Peak nerve firing temperature was not significantly
different in gravid and non-gravid females (p > 0.05, GF
mean = 30.7 ± 0.80 SE, F mean = 30.0 ± 3.98 SE; Welch
Two Sample t-test) (Figure 9). In this subset of individuals
where neural performance data was generated, there was
also no significant difference in VTmax between gravid and
non-gravid females (p > 0.05, GF mean 28.33◦C ± 1.43 SE, F
mean = 24.4◦C ± 0.74 SE; Welch Two Sample t-test; Data not
shown). However, the temperature of peak sensory nerve firing
was positively correlated to VTmax in both gravid and non-gravid
female crabs (slope y = 4.5+ 0.51x) [linear regression; R2 = 0.259,
F(1, 17) = 5.94 p ≤ 0.05] (Figure 10).
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FIGURE 5 | Normalized Vitellogenin gene expression of female crabs (n = 58) in the field from July 2016 to December 2016. (A) high-intertidal zone (HIZ) and (B)
mid-intertidal zone (MIZ).

DISCUSSION

Thermal conditions in the intertidal zone fluctuate greatly in
both time and space, which is likely to have major implications
for the reproductive physiology of taxa living within intertidal
habitats. This study took an integrative approach to understand
how temperature variability affects the reproductive physiology
of the intertidal crab Petrolisthes cinctipes, a species which can
be exposed to physiologically damaging temperatures in the field
(Stillman, 2003; Gunderson et al., 2019). The goal was to perform
a set of interrelated studies that examined aspects of organismal
physiology at cellular- and tissue-levels that were integrated with
organismal behavior and ecological distributions across a range
of environmental and ecological conditions.

Demography of Petrolisthes cinctipes
Across the Intertidal Zones
Intertidal zone organisms often show population structure along
intertidal elevation gradients (Vermeij, 1972) and P. cinctipes is
no exception. Crabs were less dense in the HIZ than in the MIZ
(Figure 3A), a result that is perhaps not surprising given that the
HIZ habitat that we sampled represents a distributional edge (i.e.,
near the maximum intertidal elevation of P. cinctipes at this site),
while the MIZ habitat is an interior region of the distribution. Our
results are consistent with observations within the intertidal and
more broadly that densities are low at local distributional limits
(Robles, 1987; Takada, 1996; Pardo and Johnson, 2005).

P. cinctipes at our site demonstrated clear seasonality in
reproductive biology. Gravid females were found from winter
through early summer, with the most gravid females observed
during winter months (Figure 3B). Brood extrusion by females
was preceded by upregulation of vg, the precursor molecule to
the vitellin protein deposited in yolk (Tsukimura, 2001) in late
summer and fall. This can be seen in gene expression PC2,
which loaded highly for vitellogenin and increased over the
season in females but not in males (Supplementary Table 2
and Figure 4B). These reproductive patterns are consistent
with reproductive patterns observed for this species at a
site approximately 160 km south on the California coast
(Delmanowski et al., 2017). Intertidal zone height did not appear
to influence whether a female became gravid, but female crabs
in the MIZ had high levels of vitellogenin 2 months earlier than
females in the HIZ. A greater proportion of rocks in the MIZ
had gravid females than rocks in the HIZ. However, this may
simply be due to differences in the density of crabs in each
zone, as the proportion of females that were gravid in each
zone did not differ.

Expression of Stress and Reproductive
Genes in situ
Spatial and temporal variation in abiotic conditions generated
spatial and temporal variation in gene-regulation as organisms
respond to prevailing conditions, as expected (Tagmount
et al., 2010; Banni et al., 2011; Chapman et al., 2011;
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FIGURE 6 | Molecular quantification of vitellogenin in female P. cinctipes from laboratory density experiments. (A) Vitellogenin gene expression under high (787
crabs/m2, n = 15) and low (250 crabs/m2, n = 13) densities (p > 0.05, high density mean = 0.62 ± 0.3 SE, low density mean = 0.212 ± 0.09 SE; Welch Two
Sample t-test). (B) Vitellogenin protein concentration in hemolymph under high (787 crabs/m2, n = 15) and low (250 crabs/m2, n = 13) densities [Two-way ANOVA,
F(1, 26) = 0.05, p = 0.05]. Data are log transformed.

Lockwood et al., 2015). Consistent with previous studies that
have shown differences in gene expression among individuals at
different intertidal elevations (Gracey et al., 2008; Place et al.,
2008; Clark et al., 2018) gene expression PC1 was associated
with high expression of hsp40, cuticle protein genes, and V-
type proton pump genes, and low expression of hsp70, hsp90,
arginine kinase, and vitelline egg coat protein (Supplementary
Table 2). The lack of high expression of most heat-shock
protein genes in the HIZ (Supplementary Figure 1) is somewhat
surprising given that the HIZ reaches much higher temperatures
than the MIZ (Gunderson et al., 2019), and high heat shock
protein gene expression in the high- compared to the low-
intertidal has been shown in other systems (Place et al., 2012).
However, during sampling for gene expression in 2015, the
mean maximum temperatures in the HIZ were rarely above
the 25◦C temperature threshold that has been measured in
the lab for heat shock protein gene induction (Gunderson
et al., 2019). Repeated sampling to target a period where mean
maximum temperatures often exceed the 25◦C threshold may
result in higher heat shock protein gene induction, as seen
in other studies.

Gene expression PC1 decreased over time in both intertidal
zones, indicating that temperature may still play a role in driving
these gene expression patterns without inducing stress, as mean
and maximum temperatures in both zones decreased over the
period for which expression data was collected (Figure 4A and
Table 2). There was also a great deal of variation among crabs

in PC1 in both zones (Figure 4A), which might be expected
given the high degree of microclimatic variability among boulders
(Gunderson et al., 2019) as fine-scale microclimatic variation
can induce physiological differences in intertidal organisms over
short distances (Jimenez et al., 2015).

Gene expression patterns often differ between sexes (Chang
et al., 2011; Manousaki et al., 2014), and this was most apparent
in P. cinctipes in gene expression PC2, with females having
higher values than males in both zones. PC2 was most strongly
associated with high expression of vitellogenin, complement c1q-
like protein 4, and wap domain protein 5 genes, and low expression
of retinitis pigmentosa GTPase regulator and hsp83. The high
expression of vitellogenin in the fall and early winter precedes
the egg extrusion that was observed in females in January
through May (Figure 5) and is also commensurate with seasonal
patterns of hemolymph vitellogenin concentrations observed in
P. cinctipes on the California coast (Delmanowski et al., 2017).
Complement c1q-like protein 4 and wap domain protein 5 are
related to immune function (Amparyup et al., 2008; Du et al.,
2010; Gerdol et al., 2015; Visetnan et al., 2017), and their greater
expression in females is consistent with sex-specific differences
in the expression of immune function genes seen in other
crabs (Liu Y. et al., 2015). Retinitis pigmentosa gtpase regulator
(rpgr) is a gene associated with retinal function in mammals
(Rao et al., 2016). Nonetheless rpgr has been shown to have
sex-specific expression in crustaceans, although usually with
females having higher expression than males (Zeng et al., 2011;
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FIGURE 7 | Voluntary thermal maximum (VTmax) of gravid (GF; n = 62) and
non-gravid female (NGF; n = 30) crabs under a thermal ramp of 0.5◦C per
minute [LME; t(1, 17) = −2.24, p = 0.039].

FIGURE 8 | The proportion of crabs (GF; n = 7) that responded to isolated
thermal stimulus from a drop of water on the distal portion of a walking leg in
approximately 1◦C intervals at temperatures between 17 and 39◦C (GLMM;
z = −11.30, p < 0.0001).

Peng et al., 2015); why females would have lower expression
than males in P. cinctipes is unclear. HSP83 proteins have
diverse functions and have sex-related expression differences in
arthropods with males having higher expression than females
(McAfee et al., 2017), though the consequences of sex specific
expression are unknown. Overall, the sex-specific patterns of
gene expression implicate genes that are important for female
reproduction and can potentially be used as indicators of the
reproductive state of individuals in the field.

Gene expression PC3 was associated with high expression of
v-type proton atpase subunits, troponin I, and cytochrome b-c1
complex subunit 8, and low expression of ampk-2, cuticle protein
am/cp1114, and epididymal secretory glutathione peroxidase

FIGURE 9 | Peak firing temperature from field potential measurements of a
nerve bundle from the distal walking leg in and gravid females (GF, n = 9) and
non-gravid females (NGF, n = 10) exposed to a thermal ramp (p > 0.05, GF
mean = 30.7 ± 0.80 SE, F mean = 30.0 ± 3.98 SE; Welch Two Sample
t-test).

(Supplementary Table 2). PC3 differed between intertidal zones,
with higher values in the MIZ (Figure 4C and Table 2).
However, the model explained only 4% of the variation in PC3,
and therefore is of little value in identifying patterns of gene
expression that differ between the zones.

Vitellogenin Protein and mRNA
Expression Levels in Female Crabs in
High- and Low-Density Assemblages
The results from the density experiments did not support
the hypothesis that crowding stress suppresses reproduction in
porcelain crabs. High density assemblages were found to increase
VG levels in the hemolymph. Elevated VG levels were similarly
observed after a heat stress event in porcelain crabs (Salas,
2017). One possible explanation is that crabs are undergoing
resorption of the oocytes, which is an established adaptive
strategy to preserve and recycle nutrients under unfavorable
conditions (Tuck et al., 1997; Becker et al., 2020). The ELISA
system may not be able to detect the difference between VG
and vitellin, the latter may have been released from resorbed
oocytes, as the animal experiences stress. Another alternative
is that the density used here may not have been high enough
to elicit a strong enough stress response to suppress VG. With
future warming, organisms may behaviorally thermoregulate
resulting in local distribution shifts to cooler environments
(Sunday et al., 2012). Range contractions often cause an
increase in density and therefore we expect P. cinctipes habitat
densities to increase as temperatures become more extreme.
A follow-up study incorporating a larger range of densities
and time series could help to understand the reproductive
consequences of crowding. Previous density gradient studies
have linked increased density to reduced numbers of eggs and
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FIGURE 10 | Relationship between the temperature of peak neural firing and Voluntary thermal maximum (VTmax) of female porcelain crabs (gravid and non-gravid)
exposed to a thermal ramp. Gravid females (GF, n = 9) are represented by triangles and non-gravid females (NGF, n = 10) are represented by circles (Slope
y = 4.5 + 0.51x) [linear regression; R2 = 0.259, F(1, 17) = 5.94 p ≤ 0.05].

offspring survival in snails. This negative relationship between
density and fecundity has been observed across many taxa
(Mangal et al., 2010).

Many factors influence the abundance of circulating VG
in the hemolymph. Vitellogenin levels are related to oocyte
developmental stage and have been shown to peak after
spawning in the blue crab, Callinectes sapidus (Lee et al.,
1996). Field experiments have reported an average hemolymph
VG concentration of 23.1 µg/mL ± 6.4 SEM in April (Salas,
2017), which is the same month that hemolymph samples were
collected in this study. Low levels of VG were found in the
density experiments relative to the average levels observed in
the field, which may suggest that hemolymph was sampled
near the end of the reproductive season and crabs were
not vitellogenic. The sampling may also have been associated
with full moons, when P. cinctipes are not producing VG,
whereas high levels of VG are synthesized during new moons
(Salas, 2017).

Behavioral Sensitivity to Temperature in
Gravid Females
The behavioral heat avoidance results predict that gravid
females should be found in cooler, more stable regions of their
distribution. Although a greater proportion of rocks in the

MIZ had gravid females (Figure 3B), intertidal zone height
did not appear to have an effect on whether or not a female
became gravid. Gravid females may not be avoiding the HIZ but
rather may delay reproduction in the HIZ until temperatures
are cooler, however, gravid crabs may not be able to maintain
this strategy with future warming. Female crabs in the HIZ
had high levels of vitellogenin later in the season compared to
females in the MIZ (Figure 5), and thus presence in the HIZ
could reduce fecundity. Gravid or reproductive females tend
to seek refugia from predation to a higher degree than non-
gravid crabs and P. cinctipes is more susceptible to predation
when lower in the intertidal zone (Jensen and Armstrong, 1991);
therefore it appears that the observed patterns are likely also
driven by biotic factors.

There are several potential explanations for why gravid
females may be more averse to high temperatures. Gravid
females invest a substantial amount of energy on brood care
in addition to reproductive output which place constraints on
their available energy budget for activity (Brante et al., 2003).
Therefore, they may have fewer energy reserves available to
tolerate thermal stress. Reproduction itself is highly thermally
constrained. For example, egg attachment and retention are
temperature-controlled processes and in crustaceans, attachment
failure has been reported at high temperatures (Waddy and
Aiken, 1995; Fischer and Thatje, 2008). Additionally, temperature
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regulates ovarian maturation and egg laying where egg laying, or
extrusion of the brood, only occurs at low temperatures (Aiken,
1969). Previous research on P. cinctipes shows that exposing
late-stage embryos to a heat-shock of 30◦C for 1 h causes a 20.3%
reduction in brood survival (Yockachonis et al., 2020).

Thermosensory Behavior and Neural
Thermal Performance
Behavioral studies reveal that crustaceans can detect fluctuations
in temperatures with great precision. For example, in lobsters,
changes of 0.15◦C can trigger a response (Crossin et al.,
1998; Jury and Watson, 2000). This study confirmed that
P. cinctipes individuals respond to thermal stimulus isolated to
their walking legs. This provides evidence that suggests that
crabs have thermosensory systems in their walking legs that
could be triggering heat avoidance behavior. Understanding how
organisms generate and integrate thermosensory information
to accurately perceive and respond to their environment is
important because thermotactic guided behavior contributes
to thermoregulation to effectively avoid lethal temperatures
(Harshaw et al., 2017).

Gravid and non-gravid females did not differ in neural
thermal sensitivity (Figure 9). This could be due to the
seasonality of sampling and the fact that the NGF may have
been reproductive but had not extruded their broods yet.
Although the gravid state has a significant effect on VTmax
(Figure 7), a larger sample size and collection throughout the
year may be needed to link the effects of gravidity to the
relationship between neural and whole organism sensitivity
to temperature. Nonetheless, there was a significant positive
correlation between peak nerve firing temperature and VTmax
among all crabs (Figure 10). Although the neural thresholds
for peak firing temperature are higher than escape temperature,
they are in line with the temperatures that elicited a response
in isolated thermal stimulus experiments (Figure 8). The effect
of temperature on neural systems corresponds tightly with
thermal thresholds that trigger behavior, suggesting that the
thermosensitive property of neurons in the walking leg may
result in motor output responsible for behaviorally determined
temperature selection. This finding provides evidence for
thermosensitive neurons acting as a mechanistic trigger for
whole organism behavior. There is compelling evidence linking
thermosensory neurophysiology and thermoregulatory behavior
in porcelain crabs.

CONCLUSION

The extensive fine-scale thermal variability present along a
boulder shore intertidal gradient is likely to influence the
distribution and demographics of taxa through life-cycle
dependent physiological and behavioral processes. To examine if
demographic patterns could be partially explained by interactions
between temperature-dependent behavior and reproductive state,
this study integrated demographic, molecular, behavioral, and
physiological approaches. Most notably, the results suggest
that behavioral responses to temperature depend on female

reproductive state. Specifically, gravid females became more
heat sensitive, which could influence species demographics
and ranges under warming conditions. As warming occurs,
the most fecund individuals may move to cooler areas
first, leaving warm edge populations with fewer reproductive
individuals. Furthermore, changes in behavioral responses may
be mediated by variation in afferent neuron temperature
sensitivity, suggesting a locus of interest for further study
into the mechanisms underlying species responses to warming.
Overall, this study reinforces that an integrative research program
that spans multiple approaches and levels of organization
can yield important insights into ecological processes under
anthropogenic global change.
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