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Abstract

Decoupling shading and reflectance from complex scene-images is a long-standing problem

in computer vision. We introduce a framework for decomposing an image into the product of

an illumination component and a reflectance component. Due to the ill-posed nature of the

problem, prior information on shading and reflectance is mandatory. The proposed method

adopts the premise that pixels in a region with similar chromaticity values should have the

same reflectance. This assumption was used to minimize the l2 norm of the local per-pixel

reflectance gradients to extract the shading and reflectance components. To obtain smooth

chromatic regions, texture was treated in a new style. Texture was removed in the first step

of the algorithm and the smooth image was processed for intrinsic decomposition. In the

final step, texture details were added to the intrinsic components based on the material of

each pixel. In addition, user-assistance was used to further refine the results. The qualitative

and quantitative evaluation on the MIT intrinsic dataset indicated that the quality of intrinsic

image decomposition was improved in comparison with previous methods.

Introduction

Intrinsic image components can be regarded as a set of images describing an image in terms of

scene illumination, shape and reflectance of surfaces in the scene. Decomposing an image into

its intrinsic components has a wide range of applications in industry. Eliminating the shading

component provides illumination-free models that could be used for relighting [1], retexturing

[2, 3], gray scale colorization [4], and reflectance editing [5].

The process of recovering shading and reflectance can be accomplished by two approaches:

using a single image or multiple images. Employing depth information and image sequences

for deriving intrinsic components have also been considered in many studies. It is also conve-

nient to aid intrinsic image decomposition through user-assistance. The user specifies pixels

that have constant illumination or reflectance in order to disambiguate illumination and

reflectance [6, 7]. Additional information contributes to the improvement of intrinsic image
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decomposition. However, the required multiple images and depth information limit the gen-

eral application of these methods.

Acquiring intrinsic components from a single image is a non-trivial task due to its ill-posed

nature, and solving this problem remains an open challenge. To solve the intrinsic decomposi-

tion problem, it is necessary to obtain prior knowledge on reflectance and shading. Some

approaches consider the global sparsity assumption by stating that each image is composed of

a small set of chrominance values, and smooth variation of intensity is due to luminance

changes which should be assigned to the shading component. These methods usually apply

clustering algorithms to find regions with similar chromaticity values and utilize the informa-

tion within each cluster to calculate the reflectance value.

This paper proposes a new framework for intrinsic image decomposition. Our approach

applies several steps in order to obtain high quality shading and reflectance components from

a single image. The approach is based on the assumption that regions with smooth intensity

variations share the same material properties and have the same reflectance. Thus, the reflec-

tance of a pixel can be obtained as a weighted function of a connected set of pixels (O) with

similar intensity values. To find O for an input pixel, region growing was applied to ensure

that O is connected and any change of intensity is smooth. To avoid ambiguity caused by tex-

ture, we treat texture differently from the preceding methods. Texture details were removed

from the image and the smooth image was processed for intrinsic decomposition. Texture

details were added to the reflectance or shading components based on the material of each

pixel in the final stage. To evaluate the performance of our method qualitatively, the algorithm

was tested on several natural-scene images to demonstrate the advantages of the proposed

method. For quantitative evaluation, the MIT intrinsic dataset was considered and the results

were compared with results of methods tested on this dataset.

The contributions of the paper towards solving the intrinsic image decomposition problem

can be stated as below:

• Applying material recognition for handling fine texture.

• Calculating the reflectance of the input pixel based on its neighbor pixels obtained via region

growing which results in reflectance values that are globally more preserved.

• Performing structural-preserving image smoothing for handling fine texture details and

enhancing the performance of region growing.

The rest of the paper is organized as follows: Section 2 describes pervious work related to

intrinsic image decomposition. In Section 3, the method for intrinsic image decomposition is

explained and the advantages of the method is discussed. Section 4 shows the experimental

results and Section 5 concludes the paper.

Related Work

Intrinsic image decomposition methods which compute shading and reflectance components

are briefly reviewed in this section. We divide the methods into three categories, Retinex-

based methods, global sparsity assumption methods, and methods that use additional informa-

tion other than the 2D image.

Retinex-Based methods

In 1971, Land and McCann [8] proposed the Retinex algorithm. They assumed that Mon-

drian-like images have regions of constant reflectance where large illumination gradient

indicates reflectance changes, and small gradients are caused by shading. Intrinsic images
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were then decomposed by integrating their respective derivatives across the input image.

For methods such as simple Retinex which operate on grayscale images, the output reflec-

tance image has the same chromaticity as the input image. Therefore, this approach strug-

gles if the assumptions of white light and Lambertian surfaces are violated. However, using

RGB information, makes the method more resilient against the violation of these assump-

tions [9].

Inspired by the work of McCann [8], Fun et al. [10] extended the Retinex algorithm for

color images by assuming that shading variations does not alter chromaticity, and associated

reflectance derivatives to significant chromaticity changes. Garces et al. [11] leveraged the cor-

relation between reflectance and chrominance reported in [10] by detecting regions of similar

chromaticity in the input image to approximate regions of similar reflectance. Other algo-

rithms have been built upon the original Retinex algorithm [12–14]. However, the original

algorithm outperformed all the other algorithms prior to 2009 when tested on the MIT intrin-

sic image dataset [15]. Tappen et al. [16] presented a system that used multiple cues for

recovering shading and reflectance components. They trained a classifier based on color infor-

mation to distinguish illumination changes caused by shading and reflectance. They applied

Markov Random Fields to propagate the classification of areas in order to disambiguate

regions where the local analysis delivered unsatisfactory results. In Tappen’s method, training

a comprehensive classifier suitable for all range of shading and reflectance is exhaustive, and

classifying pixels into shading and reflectance based on local evidence is not always easy. Meth-

ods based on the Retinex algorithm are intuitively simple and efficient but the mentioned pre-

assumption on real scenes does not always hold.

Global sparsity prior

Some recent methods assume the global sparsity prior on reflectance which suggests natural

images are subjugated by a relatively small set of material colors [17]. Bell et al. [18] used K-

means clustering to estimate distinct regions and employed Conditional Random Fields

(CRF) for pixel labeling. Applying clustering algorithms to find regions with distinct reflec-

tance in the image has some disadvantages. Firstly, there is no guarantee that pixels in each

cluster form connected regions. This could violate the assumption made by Fun et al. [10].

Secondly, in the case of c0 and c1 discontinuity, shading smoothness assumption breaks and

leads to undesired clustering of the input image. Bi et al. [19] proposed an L1 image trans-

form for image flattening and used the flattened image to develop a pipeline for intrinsic

image decomposition relying on probabilistic boosting trees for reflectance labelling. Utiliz-

ing the smooth image for clustering is more desirable compared to clustering the raw input

image because of higher probability of associating regions of similar chrominance to reflec-

tance. Rother et al. [14] introduced prior on reflectance values as being drawn from a sparse

set of basis colors resulting in a random field model with global, latent variables and pixel-

level output reflectance values. Solving the intrinsic decomposition by energy minimization

problems has been frequently proposed. Shen et al. [7] suggested neighboring pixels have

similar intensity values and therefore have similar reflectance. Their decomposition was for-

mulated by minimizing an energy function with the addition of a weighting constraint to the

local image properties. Barron et al. [20] presented a unified method to shape, shading, and

reflectance estimation from a single image. Nevertheless, for scene-level images, their

assumption about depth continuity does not hold, and unsatisfactory results are produced

for such images. Finlayson et al. [21] proposed entropy minimization for calculating illumi-

nant-free images. The invariant image was derived from the physics behind color formation

in the presence of a Planckian light source, Lambertian surfaces, and narrowband imaging
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sensors. Shen et al. [22] suggested neighboring pixels with similar chromaticity share the

same reflectance. Also they adopted the premise that natural images are dominated by a

small set of material colors. They used multi-resolution analysis to enforce the local reflec-

tance sparseness constraint at a global level. They further applied a total-variations-like cost

term to take into account the global sparsity assumption.

Multiple Images and Image sequences

Some techniques use a sequence of images or video streams for intrinsic image decomposition.

While some of these methods use multiple images to find the intrinsic component for a single

image, other methods try to find the intrinsic components throughout the entire input video

stream.

Bonnel et al. [23] used a hybrid l2-lp formulation that separates image gradients into

smooth illumination and sparse reflectance gradients using look-up tables. They used a

multi-scale parallelized solver to reconstruct the reflectance and illumination from these gra-

dients while enforcing spatial and temporal reflectance constraints. They also used user-

assistance for refining the results of the initial decomposition. More recently, Meka et al. [9]

proposed a variational approach by solving an l2-lp optimization problem to find the intrinsic

image components. Their optimization problem includes local sparsity prior on reflectance,

spatio-temporal reflectance consistency prior, reflectance clustering prior, and a data fitting

term.

Laffont et al. [24, 25] uses a collection of images taken from a scene for intrinsic image

decomposition. Assuming Lambertian surfaces, they use Multiview-stereo to produce an ori-

ented 3D cloud point of the scene, from which, they derive relationships between reflectance

values at different locations, across multiple views. They then identify reflectance ratios

between pairs of points and infer constraints to optimize a coherent solution across multiple

views and illuminations. Lee et al. [26] used both image sequences and depth information to

extract intrinsic components from video. Their shading constraints enforce relationships

among the shading components of different surface points according to the similarity of the

surface orientation. Further, temporal constraints applied to video data allowed for handling

view-dependent non-Lambertian reflections. Incorporating video sequences makes it possible

to use spatio-temporal features to increase the accuracy of intrinsic image decomposition and

further provides information to handle intense lighting conditions. However, requirement of

additional image frames and depth cues limits the application of these method when only a

single image is available for decomposition.

The main focus of this study is to obtain intrinsic image components from a single image.

In summary, our method applies the following steps to extract the shading and reflectance

components: To preserve the piecewise constancy of chrominance values, we separate the tex-

ture information and process the smooth image for intrinsic decomposition. In the next step,

assuming Mondrian-like images, we achieve a sparse solution by minimizing an l2 norm of the

local per-pixel reflectance gradients. In contrast to conventional methods that use fixed size

patches, we apply region growing for choosing the local pixels used in the minimization pro-

cess. In addition, we consider material recognition in our frame work. Through material rec-

ognition, texture that was removed in the initial step, will be added to either reflectance or

shading component based on the material of each pixel. Finally we consider user brushes for

assisting the minimization process. The addition of user brushes allows to disambiguate shad-

ing and reflectance at a global level by defining regions of the image that share either the same

reflectance or shading information. This step will help to find regions with similar reflectance

and shading information at a global level defined by the user.

Intrinsic Image Decomposition via Structure-Preserving Image Smoothing and Material Recognition
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Our Method

Intrinsic image decomposition is an ill-posed problem and cannot be solved without prior

information on reflectance and illumination. The proposed approach in this paper is built

based on well-established assumptions on reflectance and illumination, suggested by Funt

et al. [10] and the Retinex algorithm. The first assumption suggests that changes in reflectance

are associated with changes in chromaticity, and the Retinex algorithm suggests that shading is

smooth. Based on these assumptions, we employed the prior on shading and reflectance as an

image region with smooth intensity variations indicates constant reflectance. Thus, the reflec-

tance of pixel p can be represented by the weighted summation of pixels in a set O that con-

tains p, whose members have similar intensity compared to p.

Implementation steps of our approach are depicted in Fig 1. First, a smooth version of the

input image was obtained via structure preserving image smoothing. Then, the smooth version

of the image was used for intrinsic decomposition, and the shading and reflectance compo-

nents were extracted. In the final stage, the texture information was added to either the shading

or the reflectance component based on the material of each pixel.

Structure-preserving image smoothing

The proposed assumption on reflectance and shading suggests that pixels with similar chroma-

ticity are parts of the same material and hence share the same reflectance values. Retinex

Fig 1. The proposed intrinsic image decomposition pipeline: The input image is processed for material recognition and image smoothing. The

initial reflectance and shading components are extracted from the smooth image. The residue texture of the original image is assigned to either the

shading or reflectance component based on the material of each pixel.

doi:10.1371/journal.pone.0166772.g001
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algorithm [8] confirms the proposed assumption by suggesting that any change of intensity in

an image is caused by either reflectance or shading, and generally, large gradients correspond

to reflectance changes while shading is smoother. In some cases, the Retinex pre-assumption

may not hold. For instance, the wrinkles on a piece of fabric produce large gradient changes

that belong to the shading component. Therefore, removing texture details and processing the

smooth image increases the chance of finding regions with similar reflectance values. In gen-

eral, the image smoothing step has two objectives:

1. Handle fine synthetic texture: Many natural scene images contain fabric, tiles and similar

regions with fine and smooth texture details that belong to the reflectance component.

However, in many cases, variations of illumination may be assigned to the shading compo-

nent. By image smoothing, it is possible to separate texture details which can be later

reassigned to the shading or reflectance components based on the output of the material

recognition algorithm.

2. Improving the calculated reflectance value: In order to estimate the reflectance of a pixel,

we used the color values of its neighbor pixels which are found through region growing.

Existence of small edges in the image reduces the performance of the region growing algo-

rithm. In the smooth version of the image, larger regions can be found for calculating the

reflectance value of the input pixel.

In order to find image regions with similar reflectance, it is necessary to remove as much

shading information as possible without changing the image structure, i.e. obtaining the struc-

ture-preserved smooth version of the image. To acquire the smooth image, the method pre-

sented by Karacan et al. [27] was adopted. The desired goal is to decompose a given image I
into its structural (J) and textural (T) parts as follows:

I ¼ J þ T ð1Þ

The structural component of an image pixel is defined as:

JðpÞ ¼
1

P
qwpq

X

q2Nðp;rÞ

wpqIðqÞ ð2Þ

where N(p,r) shows a square neighborhood centered at p with (2r+1)2 pixels. wpq measures the

similarity between k×k patches centered on pixels p and q. The similarity between two regions

can be calculated via the region covariance descriptor proposed by [28], where an image region

R is described with a d×d covariance matrix:

CR ¼
1

n � 1

Xn

i¼1

ðzi � mÞðzi � mÞ
T

ð3Þ

zi = 1,. . .,n denotes a d-dimensional feature vector inside R and μ is the mean of these feature

vectors. The features are intensity values, first and second order intensity change in horizontal

and vertical directions of the image, and pixel locations. Karacan et al. [27] proposed two func-

tions for calculating the similarity between pixels. Based on our observations, the wpq that bet-

ter suits our approach is defined as:

wpq ¼ exp
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmp � mqÞC� 1ðmp � mqÞ
T

q� �2

2s2

0

B
@

1

C
A ð4Þ

where C = Cp + Cq and μ are region covariance and mean values extracted for image patches
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centered at p and q, respectively. Fig 2 illustrates the original image and the output smooth

image. The edges of the image caused by shading have disappeared and smooth regions (O)

can be easily detected from J.

Intrinsic decomposition

In the second stage of our algorithm, the smooth image J is processed for intrinsic decomposi-

tion. The interaction between light and objects can be described using RGB color channels.

Assuming Lambertian surfaces, the observed color at pixel of the input image can be denoted

as:

J ¼ S:� R ð5Þ

R and S are the reflectance and shading components respectively, and × denotes per-chan-

nel multiplication. The objective is to retrieve S and R components for every pixel i � J, but Eq

(5) is an ill-posed problem with two unknowns and one known which results in an infinite set

of answers without any prior information on shading or reflectance. Lambert surface is the

general assumption for solving many image processing problems. In the case of intrinsic

image decomposition using a single image, since there is no information about lighting condi-

tions and scene geometry, it is not possible to use more complex models and the Lambert

assumption has been used frequently in previous methods [2, 6, 19].

In order to solve Eq (5), a new decomposition approach is developed based on the assump-

tion that pixels of a connected region O with similar pixel intensity values have the same reflec-

tance. Thus, R for a pixel i � O is obtained as the weighted sum of reflectance values of pixels pj
� O, denoted as:

Ri ¼
X

j2O

wijRj ð6Þ

where wij defines the similarity between pi and pj. In (6), we have followed the notation of Shen

et al. [7], however, our approach for choosing O is different as will be explained in the next sec-

tion. To measure similarity between pixels, many affinity functions have been proposed in the

Fig 2. Structure-preserving image smoothing. (A) Original image, (B) smooth image (image selected from

the MINC database [18] (S2 File)).

doi:10.1371/journal.pone.0166772.g002
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literature of image segmentation [24, 27, 29, 30] and colorization [31]. We considered two

terms for measuring affinity between pi and pj: illumination similarity and color angle differ-

ence. Illumination difference between pi and pj as a conventional affinity function is defined as

wI
ij and formulated as:

wI
ij ¼ exp

� kYi � Yjk
2

2

2s2
y

0

@

1

A ð7Þ

where Y is the luminance component of a pixel in YUV color space and σy represents the vari-

ance between the luminance of pixel i with its neighbor pixels. The second affinity measure

used in this study is color difference introduced in [16], where each pixel is treated as a vector

in the RGB space and the difference between color angels is used to measure the similarity

between two pixels:

wc
ij ¼ exp

� ffðIi:IjÞ
2s2

c

� �

ð8Þ

where σc represents variance between color difference of pixel i and its neighbor pixels.∠ is

the angle between pixel i and j. To obtain the affinity function, Eqs (7)) and (8) are combined

as:

wij ¼ wI
ijw

c
ij ð9Þ

Based on the above explanation, the energy term for intrinsic image decomposition is for-

mulated as:

EðR; S� 1Þ ¼
X

i2Ib

Ri �
X

j2Oi

wijRj

 !2

�
X

i2Ib

IiS
� 1

i � Ri

� �2
ð10Þ

where Oi is obtained by region growing pi. Fast region growing algorithm presented in [32]

was employed for region growing. The optimization problem to be solved is then defined as:

argminEðR; S� 1Þ
R;S� 1

8i 2 Ib

subject to : 0 � Ri;rgb � 1

ð11Þ

The quadratic function (11) was solved by setting the derivative of its dependent variables

to zero (i.e.: Ri,r, Ri,g, Ri,b, and S-1) and Gaussian-Seidel method was applied iteratively to

improve the results of the linear solver [33].

Discussion on selecting Ω
Selecting pixels to obtain the reflectance value at pi needs to be handled carefully. In order to

find the region Oi, we performed region growing and used pi as the input seed. Eq (9) was used

to find wij for pixels in Oi.

Oi obtained from region growing consists of pixels that more likely have the same reflec-

tance. This is supported by Funt et al. [10] which suggests regions with similar reflectance to

have similar chromaticity values. In contrast, Shen et. al. [7] selected pixels in a k×k patch cen-

tered at pi to calculate the reflectance value at pi. This method does not impose any constraints

on the properties of the selected pixel in the patch that limits the choice of k to small values.

Thus, reflectance of each pixel is only represented by a limited number of neighboring pixels.

Intrinsic Image Decomposition via Structure-Preserving Image Smoothing and Material Recognition
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Our approach to finding the reflectance at pi is also more advantageous compared to those

methods that employ clustering or segmentation to find a region with similar reflectance to pi.
As an example, Bi et al. [19] used clustering in the CIE-Lab color space and merged the gener-

ated clusters based on similarity measures to find regions with similar reflectance. It seems

that their approach has two disadvantages: first, clustering generates unconnected image seg-

ments that require an additional merging step to find regions with similar reflectance. Second,

selecting the efficient number of clusters for an arbitrary image is an issue on its own. An

insufficient number of clusters leads to selecting clusters with high intra-class variance which

in turn results in undesired cluster merging. Common issues such as handling empty clusters

and algorithm convergence are other problems that need to be considered. The proposed

region growing approach for finding pixels with similar reflectance ensures that Oi is con-

nected and smooth.

Region growing is a costly process; therefore, we add two steps to speed up this process.

First, to prevent generating very large regions, the region size is limited to pixels that are within

a distance of D pixels from the input pixel (D = 30 was chosen in this study). Second, to execute

the region growing algorithm less frequent, we make use of pixel labeling. For this task, let

Olast be the last output of the region growing algorithm and pi be the next input pixel. If pi has

been labeled to be part of Olast, that is pi � Olast, we let region Oi be the same as Olast with a

small modification. To obtain Oi, pixels farther than D pixels from pi are removed from

Olast, and pixels closer than D with an intensity less than half of the average values of Olast are

added to form Oi. Algorithm 1 summarizes the steps preformed to generate the image region

required to calculate wij.

Algorithm 1. Reducing calls to region growing algorithm
1. Regiondistance= D;
2. For inputpixelpi
3. If pi =2 Ωlast:
4. {RegionMask = 0
5. Grow Ωi until||pj-pi||>D
6. UpdateΩi};
7. Else
8. {fromΩlast, removepixelsoutside||pj-pi||>D
9. For pixelsin range||pj-pi||�D
10. If pj < average(Ωi)/2
11. Let pj � Ωi};
12. Calculatewij

User brushes

In many applications such as texture mapping and matting, user interaction is required. This

interaction can be extended to the intrinsic image decomposition process to improve the

results. Bousseau et al. [6] recommended three kinds of user strokes for specifying local cues

about illumination and reflectance. We apply the constant-reflectance and constant-illumina-

tion brushes. Pixels marked with constant-reflectance brush can be used to find a local cue

about reflectance of the image pixels as:

Bref ðRÞ ¼
X

i2Ib

zðbÞ
X

j2b
ref
i

ðRi � RjÞ ð12Þ

where z(.) is a normalization factor defined as z(β) = 1/| β| that ensures strokes have an influ-

ence independent of their size, and | β| is the number of pixels specified by the user-brush. Eq

(12) was generated taking R as the variable to be optimized since the optimization process was

solved for reflectance and shading was obtained using Eq (5). The constant-illumination brush
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covering pixel pi and pj denotes that IjSj = IiSj and hence the energy function for this brush can

be formulated as:

BlumðRÞ ¼
X

i2Ib

zðbÞ
X

j2b
ref
i

ðSiJj � SjJiÞ ð13Þ

The optimization problem for intrinsic image decomposition with added user brushes can

be defined as:

argminEðR; S� 1Þ
R;S� 1

þ Bref ðRÞ þ BlumðRÞ 8i 2 Ib

subject to : 0 � Ri;rgb � 1

ð14Þ

Fig 3 shows the extracted reflectance component obtained with and without user brushes.

In this figure, color lines identify regions with constant reflectance while the white lines show

regions with constant shading. Magnified regions show how the effect of shadows has been

decreased after implementing the user brushes.

Learning material

After performing intrinsic decomposition for image J, the texture information should be

assigned to the correct component. High frequency changes in the image are conventionally

assigned to the reflectance component [8, 34]. However, there are cases that high frequency

changes are part of the shading component (e.g. surfaces with bumps and wrinkles). In order

to obtain better decomposition results, we apply material recognition which helps to assign

texture information to the correct intrinsic component.

Fig 3. Reflectance component for the smooth input image with and without user brushes. (A) Original image, (B) image with added

user brushes, (C, D) reflectance components without and with user brushes (S3 File).

doi:10.1371/journal.pone.0166772.g003
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Material recognition is a challenging problem by itself and many methods have been pro-

posed for solving this problem [18, 35, 36]. Bell et al. [18] presented a large scale dataset of

materials in the wild and used learning techniques for material recognition. They enabled

detection of materials in 23 categories which cover a large variety of materials (e.g. foliage,

human skin, wood, glass and etc.). We directly use their implementation to find out if assign-

ing texture information to intrinsic components based on material information has a positive

effect on the intrinsic image decomposition problem.

Fig 4 shows an example where material recognition was beneficial for adding texture details

to the correct intrinsic component. Fig 4A and 4B show the reflectance and shading compo-

nent obtained from the scene shown in Fig 2. The colored regions in Fig 4C and 4D show how

the texture removed in the image smoothing process should be added to shading and reflec-

tance components respectively. For example, in Fig 4D, the foliage and water are the colored

regions and hence, the texture details of pixels that belong to these regions should be added to

the shading component. Fig 4E–4H show the intrinsic components before and after assigning

texture components to shading and reflectance images. It can be observed that fine details

added to the shading and reflectance images improve the results. A Lookup Table (LUT) was

created for assigning texture details to the intrinsic components. A number between 1 and 23

was assigned to each unique material in the first column of the LUT. The second column of

the LUT determines the intrinsic component for the corresponding material. For example, the

texture details of Foliage were assigned to the shading component and the texture details of

Fig 4. Assigning texture information to shading and reflectance components based on material of pixels. (A) Original Image, (B)

result of material recognition. Colored regions in (C) and (D) show how texture should be assigned to reflectance and shading components

respectively. (E) Reflectance obtained from J, (F) shading obtained from J, (G) final reflectance, and (H) final shading component (S4 File).

doi:10.1371/journal.pone.0166772.g004
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materials such as Brick, Fabric, and Carpet were assigned to reflectance component. After

detecting the material type for an input pixel, the texture details of that pixel were assigned to

the reflectance or shading component based on this LUT. The correspondence between each

material class with shading and reflectance components is supplied in the supplementary

material (S1 File).

Experimental Results

This section reports the experimental results to evaluate the performance of the proposed

method. The full pipe-line for producing the intrinsic components is illustrated in Fig 5. The

Fig 5. Illustration of the intrinsic image decomposition pipe-line. (A) Original image, (B) smooth image

with added user brushes, (C) material segmentation, (D) reflectance material, (E) shading material, (F)

reflectance component obtained from J, (G) reflectance component with added texture detail, (H) reflectance

component obtained by applying user brushes, (I) shading component of the smooth image, (J) shading

component with added texture details, and (K) shading component with added user brushes (S5 File).

doi:10.1371/journal.pone.0166772.g005
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input image and its smooth version (J) are shown in the top row. The added user brushes are

also depicted in the smooth image. Fig 5C shows the material segmentation step, where each

color indicates a unique material. Fig 5D and 5E illustrate how texture information should be

added to the reflectance or shading components. Fig 5F and 5I illustrate the extracted reflec-

tance and shading components for the smooth image, while Fig 5G and 5J show the reflectance

and shading components with added texture details. As an example, texture of the human hair,

shown in yellow, was added to the shading component (Fig 5J), while the texture information

of the purple region was assigned to the reflectance component (Fig 5I). To our knowledge,

this is a very fine-level improvement in intrinsic image decomposition since previous methods

do not provide such solutions for handling small illumination variations. Fig 5H and 5K show

the reflectance and shading components when user brushes were considered in the decomposi-

tion process. The texture details were added the same as the automatic decomposition mode.

Fig 6 shows the performance of the proposed method for handling non-smooth shading

without applying user brushes (i.e. the doll’s winter cap). The figures illustrate improvement of

results when compared with the methods of [6, 7, 16, 37]. This improvement is due to texture

removal in the first stage of the proposed algorithm which enables more accurate selection of

regions with similar reflectance. As previously discussed, Shen et al. [8] used a small patch of

pixels for reflectance calculation. This has led to obtaining different reflectance values for a

region with the same material, as shown in Fig 6. In [6], the effect of JPEG compression signifi-

cantly distorts the output reflectance. In [16] and [37] the reflectance components are not cor-

rectly extracted and lots of shading details are mistakenly added to the reflectance image.

Fig 7 shows a visual comparison between our method and recent methods of [19] and [38]

which adopt the sparsity assumption on reflectance. The input image is quite complex due to

large shading variations such as highlights and shadows (Fig 7A). Fig 7F shows the input

image with added brushes. Fig 7B–7D show the reflectance components extracted from our

method and methods of [19] and [38], respectively. Three regions are shown distinctly for bet-

ter visualization. First, the reflectance component for the human face region extracted using

our method is more uniform compared to the results of [19, 38]. Second, our method was able

to handle shading component in the sofa region more accurately and specular regions were

Fig 6. An illustrative comparison between image decomposition results using are method and methods of [6, 7, 16,

37]. (A) The original image. Decomposed reflectance component by: (B) our method, (c) Shen et al. [7], (d) Bousseau et al. [6],

(E) Tappen et al. [16], and (F) Weiss at al. [37] (S6 File).

doi:10.1371/journal.pone.0166772.g006
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correctly added to the shading component. Third, the shading component of the floor region

is correctly extracted by our method, where the effect of shadow and light reflectance were

clearly added to the shading component.

In Fig 8 we illustrate how our method can handle intense lighting conditions. The building

in the scene has produced an intense shadow region on the grass leading to a large color differ-

ence between regions “a” and “b”, which cannot be handled with region growing introduced

in (6). Fig 8B shows the user brushes applied to the image which specify regions with constant

Fig 7. Intrinsic image decomposition results from our method and methods of [19] and [38]. (A, F) The original image and added user brushes, (B,

C) reflectance components without and with user brushes, (D) reflectance component obtained in Bi et al. [19], (E) reflectance component obtained in Bell

et al. [38]. (G, H) shading component from our method without and with user brushes, (I) shading component obtained from Bi et al. [19] and (J) shading

component obtained from the method of Bell et al. [38] (S7 File).

doi:10.1371/journal.pone.0166772.g007

Fig 8. Handling intense lighting conditions with user brushes. (A) Original image, (B) user brushes, (C, D) intrinsic components with and

without user brushes (S8 File).

doi:10.1371/journal.pone.0166772.g008
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shading or reflectance. Fig 8E and 8F show the extracted shading and reflectance components

with and without user brushes. When brushes were applied the shadows on the grass were cor-

rectly detected and assigned to shading component.

Fig 9 shows an example were processing the smooth image for intrinsic image decomposi-

tion is beneficial. This example is focused on the patterned fabric. We compare the result of

our method with that of Shen et al. [7], where the raw input image is processed for intrinsic

decomposition. It is obvious that the pattern of the fabric is part of the reflectance component.

Fig 9A shows the original image and Fig 9B and 9C show the structural and texture compo-

nents. The result of intrinsic decomposition using our method and Shen et al. [7] are shown in

Fig 9D through 9G. Using our method, the texture details of the fabric region were correctly

assigned to the reflectance component. This example shows that our method can be used for

intrinsic image decomposition of images with fine texture details.

For quantitative evaluation of our intrinsic image decomposition method, ground truth

data about the scene geometry and lighting conditions is required. Intrinsic images in the wild

and the MIT intrinsic image dataset are the available datasets that represent images in terms of

Fig 9. Effect of image smoothing in the intrinsic image decomposition. (A) Original image, (B) smooth image, (C) texture image, Images (D,E,

F,G) show the reflectance and shading components when using our method and Shen et al. [7] respectively (S9 File).

doi:10.1371/journal.pone.0166772.g009
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their intrinsic components. The intrinsic images database is a collection of annotated images

from real-world consumer photographs. In this database, surface segments are drown on

crowd souring and surface properties including textural and contextual information are added

for each segment [18]. The MIT intrinsic images dataset was created by Grosse et al. [15]. To

create the complete image, each object was photographed using a polarizing filter set to maxi-

mum specular value. The diffuse image was captured by setting up the filter to remove specular

regions. Each object was then painted and re-captured to obtain the shading component.

These three images were used to calculate the reflectance and specular images. We used the

MIT dataset since special imaging conditions were considered for acquiring the shading and

reflectance components. Further explanation about the MIT intrinsic dataset can be found in

[15]. The objective performance measures used in this evaluation was the Least Mean Square

Error (LMSE) as defined in [15].

Table 1 provides the LMSE values obtained from our method with and without applying

user brushes. The results presented by Shen J. et al. [7], Shen L. et al. [22], and Color-Retinex

[39] as reported in [15] are also shown in Table 1. The values shown in bold indicate the lowest

value for each image among the tested methods. For method of Shen J. et al. [21] and Color-

Retinex, the LMSE values for images that contain specular regions were not provided. The val-

ues in Table 1 show that when user brushes were applied, the LMSE values for our method

were less than the previous methods except for Teabag1 and Teabag2. We have calculated the

average value of LMSE values for all the images except those with specular regions. The average

value for our method with user brushes was 0.0129 which is about 0.07 better that the method

of Shen L, et al. [22]. LMSE values for images with specular regions were obtained by adding

the ground truth shading and specular values.

Table 1. Comparison of LMSE values of our results and the results by previous works [7, 22, and 39] on the MIT dataset.

Our method without brushes Our method with brushes Shen J. et al.[7] Shen L. et al.[22] Finlayson GD et al. [39]

Box 0.0061 0.0051 0.0065 0.0018 0.013

Cup 1 0.0054 0.0023 0.0057 0.0030 0.007

Cup 2 0.0068 0.0035 0.0892 0.0045 0.011

Deer 0.0418 0.0341 0.0312 0.0419 0.041

Dinosaur 0.0212 0.0183 0.0228 0.0216 0.035

Frog 1 0.0523 0.0424 0.0783 0.0482 0.066

Frog 2 0.0067 0.0241 0.0094 0.0472 0.071

Panther 0.0943 0.0068 0.0087 0.0078 0.011

Paper 1 0.0334 0.0011 0.0385 0.0014 0.004

Paper 2 0.0031 0.0019 0.0034 0.0021 0.004

Raccoon 0.0041 0.0035 0.0044 0.0048 0.015

Squirrel 0.0037 0.0035 0.0041 0.079 0.072

Sun 0.0025 0.0018 0.0027 0.0023 0.003

Tea bag 1 0.039 0.034 0.0410 0.0280 0.032

Tea bag 2 0.0291 0.024 0.0320 0.0141 0.023

Turtle 0.0019 0.0018 0.0210 0.0174 0.069

Apple 0.008 0.0056 0.0077 - -

Pear 0.0039 0.0034 0.0045 - -

Phone 0.0043 0.0039 0.0059 - -

Potato 0.0045 0.0032 0.0054 - -

Average 0.0219 0.0129 0.0249 0.0203 0.0298

doi:10.1371/journal.pone.0166772.t001
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Fig 10 illustrates the shading and reflectance components for three examples from the

MIT dataset without using user brushes. For each image, the ground truth reflectance and

shading components are also shown. For visual comparison, the output reflectance and shad-

ing components obtained from the work Shen J. et al. [7] are also depicted. The first row

shows the shading and reflectance components for the turtle image. This example illustrates

the effectiveness of the proposed method approach to handle the texture. Our method has

successfully extracted the reflectance component while in the reflectance component

extracted from [7], the reflectance details are incorrectly added to the shading component.

In the second row, the example shows that our reflectance output is more monotonic com-

pared to the reflectance component obtained from the work of Shen J. et al. [7]. The last row

shows a limitation of the proposed method when user brushes were not applied. For this

image, the surface of the apple violates the Lambert assumption, and the reflectance compo-

nent of this image contains smooth reflectance variations. The complete results on the MIT

intrinsic images dataset including Base, Shading, Reflectance, and Texture images can be

found in (S10 File).

In order to illustrate how the added user brushes improve the output of our algorithm,

the result of intrinsic decomposition for the image Apple from the MIT dataset is shown

in Fig 11. Reflectance and shading components extracted with and without user brushes,

added user brushes, and the ground truth images are shown in this figure. When user

brushes were applied, more shadows have been correctly assigned to the shading compo-

nent. Also, the specular region on the surface of the apple were correctly assigned to the

shading component.

Fig 12 shows more examples of intrinsic image decomposition using our method and the

method of Shen L. et al. [22]. For the image Raccoon, applying the constant reflectance brush

resulted in accurate extraction of the reflectance component. In addition, the shadows in the

original image were correctly added to the shading component. For Cup1, less shading infor-

mation is present in the reflectance component compared to Shen L. et al. [22], however, the

shading component from Shen L. et al. [22] method holds less reflectance information. The

image of the Paper1 is another example with complex shading. As the results shows, our

method has been able to correctly decompose this surface into shading and reflectance

components.

Fig 10. Example of reflectance and shading components extracted from the MIT intrinsic image dataset. For each example the following are

shown in order: Original image, ground truth reflectance, reflectance component from our method, reflectance component from Shen et al. [7], ground

truth shading component, shading component obtained from our method, shading component obtained from Shen el al. [7].

doi:10.1371/journal.pone.0166772.g010
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Implementation

Our algorithm was implemented in MATLAB 2015a using an Intel Corei7 CPU for data pro-

cessing. The region growing algorithm was programmed in C++ and combined with the rest

of the code through a Mex file. For image smoothing, the code provided by Karacan et al. [27]

was utilized. Our intrinsic decomposition was implemented in two parts: weight matrix calcu-

lation and optimization step. Calculating the wij matrix required less than 1 minute to process

for an image with 640×480 pixels. The Gaussian- Seidel iterative process requires intensive

vector multiplications and each iteration takes about 10–13 second. In general, 15 to 30

Fig 11. Results of intrinsic image decomposition for the image of the Apple, with and without user brushes. (A) Original image with added user

brushes, (B) ground truth reflectance, (C) reflectance with user brushes, (D) reflectance without user brushes, (E, H) ground truth shading and specular

components, (G) shading with user- brushes, and (H) shading without user brushes.

doi:10.1371/journal.pone.0166772.g011

Fig 12. Result of intrinsic image decomposition by applying user brushes. Images in the left column show how the brushes were

applied. Images in the second section show the reflectance components and the third section shows the shading components.

doi:10.1371/journal.pone.0166772.g012
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iterations were required to obtain the reported results. The time variation in the optimization

step for each iteration was due to un-fixed wij vector length for each pixel. The vector size was

determined by the number of pixels in Oi. The overall intrinsic decomposition processing time

of our approach is comparable to recent intrinsic image decomposition algorithms. Bi et al.

[19] has reported that their image decomposition pipeline requires about 5 to 10 minutes to

process. The proposed method by Shen J. et al. [7] requires 200 iterations for the algorithm to

obtain acceptable decomposition, and each iteration requires 2 to 5 seconds of processing time

depending on the size of image patches used for calculating the weights. Weight calculations

should also be added to the processing time required for intrinsic decomposition for this

method. Parallel processing and utilization of GPU can improve the computation speed of our

algorithm, which is also a recommended solution suggested in [7, 19].

Conclusions

A framework for intrinsic image decomposition was presented in this paper. Our method was

based on the assumption that pixels in a region with similar chromaticity share the same reflec-

tance value. To ensure Mondrian-like images, we applied structure preserving image smooth-

ing and processed the smooth image for intrinsic decomposition. The reflectance component

was obtained by minimizing an energy function which defined the reflectance value of a pixel

as the weighted sum of reflectance values of pixels obtained by region growing the current

pixel. Texture details separated in the smoothing step were added to the shading or reflectance

components based on the material of each pixel. Qualitative examples showed that processing

the smooth image along with user brushes and material recognition results in correct separa-

tion of shading and reflectance components for a wide range of images with large illumination

variations and complex surfaces. Quantitative experiments conducted on the MIT dataset

showed that our method has improved the quality of intrinsic image decomposition compared

to previous methods tested on this dataset. The average LMSE values of our method on the

MIT intrinsic images was about 0.013 which showed to be at least 0.07 better than the methods

tested on this dataset. Altogether, our approach to intrinsic image decomposition allows for

accurate extraction of shading and reflectance components for a wide range of images which

makes this method attractive for applications that require intrinsic components of the image.
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