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INTRODUCTION 
 

Lung adenocarcinoma (LUAD) is a leading cause of 

cancer related death worldwide and accounts for about 

40% of lung cancer patients [1]. Over the last decade, 

treatment regimens that target epidermal growth factor 

receptor and anaplastic lymphoma kinase have only 

benefitted a small fraction of LUAD patients [2, 3]. 

Clinically defined molecular subtyping of LUAD is in 

urgent need for precise treatment. 

 

Programmed cell death protein 1/programmed cell death-

ligand 1 (PD-1/PD-L1) axis is a critical immune 

checkpoint pathway that could downregulate response of 

immune system in lung cancer [4]. Enhanced PD-L1 

expression level on tumor cells or tumor infiltrating 

lymphocytes leads to T cell exhaustion [5], therefore 

decreasing tumor-specific immune capacity and 

promoting tumor proliferation [6, 7]. Immune checkpoint 

blockade (ICB) therapy aimed at PD-1/PD-L1 could 

repress the negative regulatory signaling and unleash T 
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ABSTRACT 
 

Immune checkpoint blockade (ICB) therapies have revolutionized the treatment of human cancers including lung 
adenocarcinoma (LUAD). However, our understanding of the immune subtyping of LUAD and its association with 
clinical response of immune checkpoint inhibitor remains incomplete. Here we performed molecular subtyping 
and association analysis of LUAD from the Cancer Genome Atlas (TCGA) and validated findings from TCGA cohort 
in 9 independent validation cohorts. We conducted consensus molecular subtyping with nonnegative matrix 
factorization (NMF). Potential response of ICB therapy was estimated with Tumor Immune Dysfunction and 
Exclusion (TIDE) algorithm. We identified 2 distinct subtypes of LUAD in TCGA cohort that were characterized by 
significantly different survival outcomes (i.e., high- and low-risk subtypes). The high-risk subtype was featured by 
lower TIDE score, upregulation of programmed death-ligand 1 (PD-L1) expression, and higher tumor mutation 
burden (TMB). The high-risk subtype also harbored significantly elevated cell cycle modulators CDK4/CDK6 and 
TP53 mutation. These observations were validated in 9 independent LUAD cohorts. Our findings suggest that 
immune checkpoint blockade therapy may be efficacious for high-risk subtype of LUAD patients. 
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cell from exhausted status [7]. ICB therapy can reverse 

the immunosuppressive microenvironment by decreasing 

the potential of tumor immune escape, therefore, 

resulting in noteworthy improvement of prognosis [8, 9]. 

High expression level of PD-L1 was approved by The 

Food and Drug Administration (FDA) as a biomarker to 

receive pembrolizumab therapy in non-small-cell lung 

cancer (NSCLC) [8].  

 

Tumor mutation burden (TMB) is an indicator implicated 

in better response to ICB treatment, which is independent 

of PD-L1 expression level [10, 11]. An integrated analysis 

of 27 cancer types reported positive association between 

TMB and benefit of ICB treatment [12]. In present 

clinical practice, the proportion of patients benefitted from 

ICB therapy remains low. Therefore, the development of 

new biomarkers to select patient for ICB response rate is 

definitely required [13, 14]. 

 

Tumor Immune Dysfunction and Exclusion (TIDE) 

algorithm is a computational method using gene 

expression profile to predict the ICB response in NSCLC 

and melanoma [15]. TIDE uses a set of gene expression 

markers to estimate 2 distinct mechanisms of tumor 

immune evasion, including dysfunction of tumor 

infiltration cytotoxic T lymphocytes (CTL) and exclusion 

of CTL by immunosuppressive factors. Patients with 

higher TIDE score have a higher chance of antitumor 

immune escape, thus exhibiting lower response rate of 

ICB treatment [15]. The TIDE score was shown to have a 

higher accuracy than PD-L1 expression level and TMB 

in predicting survival outcome of cancer patients treated 

with ICB agents [15–18]. Several recent studies have 

reported its utility in predicting or evaluating the ICB 

therapy efficacy [18–22]. 

 

In this study, we performed consensus clustering 

analysis for LUAD based on immune gene expression 

signatures and identified 2 subtypes. These 2 subtypes 

were characterized by significantly different survival 

outcomes (i.e., low- versus high-risk subtypes), TIDE 

scores, PD-L1 expression, TMB and enrichment of cell 

cycle signaling. The high-risk subtype is presumably 

efficacious towards ICB treatment. 

 

RESULTS 
 

Identification of LUAD subtypes with prognostic 

significance 
 

A list of 2,995 immune-related genes (See Materials 

and Methods) was compiled, 433 of which were 

significantly associated with overall survival (all FDR < 

0.05; Supplementary Table 1) in the TCGA LUAD 

cohort (n = 502). Using this 433-gene panel, we 

identified 2 distinct LUAD subtypes (Figure 1A and 

Supplementary Figure 1) by performing consensus 

clustering analysis. These 2 subtypes were significantly 

different in survival (HR: 1.99, 95% CI: 1.43-2.76, Log 

rank P < 0.001; Figure 1B) and we referred them as 

high-risk and low-risk subtypes. After adjusting for age, 

gender, stage and smoking status, this association 

remained statistically significant (HR: 1.80, 95% CI: 

1.28-2.53, P < 0.001; Figure 1C).  

 

To verify the findings in TCGA LUAD cohort, we 

applied consensus clustering analysis using the 

aforementioned 433 immune-related genes and performed 

survival analysis in 9 additional independent LUAD 

cohorts. Our analysis showed that these 2 distinct 

subtypes identified in TCGA LUAD cohort were also 

identified in these 9 validation datasets, in that high-risk 

group was associated with worse survival outcome (HR 

range: 1.69 [95% CI: 1.29-2.21, Log rank P < 0.001] to 

4.29 [95% CI: 2.14-8.65, Log rank P < 0.001]; Figure 

2A–2I). These associations remained statistically 

significant after controlling for other confounding factors 

(Supplementary Figure 2A–2I). Result of another LUAD 

dataset GSE81089 (n = 108) showed a consistent trend 

although did not reach statistical significance (HR: 1.59, 

95% CI: 0.89-2.85, Log rank P = 0.11; Supplementary 

Figure 3A). No significant association was observed for 

lung squamous cell carcinoma from TCGA dataset (HR: 

1.03, 95% CI: 0.78-1.35, Log rank P = 0.86; 

Supplementary Figure 3B). 

 

We obtained an accuracy of 0.947 with 126 genes 

(Supplementary Figure 4A and Supplementary Table 2) 

by applying recursive feature elimination to reduce the 

number of genes. The prognostic significance of high-

risk versus low-risk subtypes was maintained using 

these 126 genes in TCGA and 9 validation cohorts (HR 

range: 1.84 [95% CI: 1.37-2.48, Log rank P < 0.001] to 

5.99 [95% CI: 2.72-12.23, Log rank P < 0.001]; 

Supplementary Figure 4B–4K). 

 

Predictive ICB response of identified LUAD 

subtypes 
 

In the TCGA LUAD cohort, the TIDE score was 

significantly lower in high-risk subtype compared with 

low-risk subtype (Wilcoxon rank-sum test, P < 0.001; 

Figure 3A). The difference remained statistically 

significant after adjusting for age, gender, stage and 

smoking status (OR: 0.13, 95% CI: 0.08-0.20, P < 0.001; 

Figure 3B). This association was verified in 9 independent 

cohorts using univariate analysis (Wilcoxon rank-sum test, 

P < 0.05; Figure 3C), and 8 of these 9 cohorts showed the 

same association through multivariate logistic model (P < 

0.001; Supplementary Figure 5A–5I). These discoveries 

suggested that patients of high-risk subtype may be more 

sensitive to ICB therapy as judged by the TIDE score. 
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Differences of PD-L1 expression and TMB between 2 

LUAD subtypes 

 

The expression of PD-L1 was significantly higher in 

high-risk group versus low-risk group in TCGA 

(Wilcoxon rank-sum test, P = 0.003; Figure 4A). 

Consistent association was also observed in 7 of 9 

validation cohorts (Wilcoxon rank-sum test, P < 0.05; 

Figure 4B). We could not validate this association in the 

other 2 cohorts (GSE68465 and GSE11969) due to the 

lack of PD-L1 probes on the expression chip used. 

 

Patients in high-risk subtype had a significantly higher 

mutation load in TCGA LUAD samples (Wilcoxon 

rank-sum test, P < 0.001; Figure 4C). Associations 

between high-risk subtype and TMB remained 

statistically significant (OR: 3.99, 95% CI: 2.19-7.46, P 
< 0.001; Figure 4D) after taking into account mutational 

signatures implicated in age-related deamination of 5-

methylcytosine (signature 1), overactivity of mRNA-

editing enzyme APOBEC (signature 2) and tobacco 

smoking-related C>A mutations (signature 4) 

(Supplementary Figure 6), and mutations in genes 

related to DNA damage repair (DDR) such as POLE, 

BRCA1/2, and TP53. Additionally, we found that high-

risk subtype harbored a significantly higher 

nonsynonymous mutation load (Wilcoxon rank-sum 

test, P < 0.001; Figure 4E). 

 

 
 

Figure 1. Identification of high-risk and low-risk subtypes of LUAD in TCGA cohort by consensus clustering. (A) The relationship 
between cophenetic, dispersion and silhouette coefficients with respect to number of clusters. (B) Kaplan-Meier survival plot of the high-risk 
versus the low-risk subtype. (C) Forest plot representation of multivariate Cox model depicted association between overall survival and LUAD 
subtypes with other clinical factors taken into account. 
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In TCGA LUAD cohort, association of TMB with 

survival was not significant. Associations of TIDE score 

and PD-L1 expression with survival were not 

significant across TCGA LUAD cohort and the 9 

validation cohorts (Supplementary Figure 7). 

 

Functional characterization of the high-risk subtype 
 

Cell cycle relevant signaling pathways were frequently 

activated in high-risk group as compared with low-risk 

group (FDR < 0.001; Figure 5A). Molecular markers 

involved in cell cycle checkpoint were significantly 

upregulated in the high-risk subtype (Wilcoxon rank-sum 

test, P < 0.001; Figure 5B). The cell cycle checkpoint 

markers analyzed include CCND1, CCNE1, CDK2, 

CDK4 and CDK6 in G1/S checkpoint, and CCNA2 and 

CDK1 in G2/M checkpoint. Previous studies reported that 

CDK4 and CDK6 inhibitors could enhance T cell activity 

[23] and reverse the T cell exclusion signature [24] to 

obtain better ICB treatment response. 

 

 
 

Figure 2. Kaplan-Meier plots of high-risk and low-risk subtypes of LUAD in 9 validation cohorts of (A) GSE72094, (B) GSE68465, (C) 

GSE50081, (D) GSE42127, (E) GSE41271, (F) GSE31210, (G) GSE30219, (H) GSE13213, and (I) GSE11969. 
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Figure 3. Distribution of TIDE scores in high-risk subtype of LUAD versus low-risk subtype of LUAD. (A) Boxplot representation of 
TIDE scores in the high-risk group versus low-risk group in TCGA LUAD cohort. (B) Forest plot representation of multivariate model with 
adjustment for confounding factors in TCGA cohort. (C) Distribution of TIDE scores in 9 independent validation cohorts. 
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Mutation patterns of SMGs in relation to LUAD 

subtypes 

 

We identified 23 significantly mutated genes (SMGs) in 

TCGA LUAD cohort (Supplementary Figure 8). TP53, 

NAV3, COL11A1, KEAP1 and SMARCA4 were more 

frequently mutated in high-risk subtype (Fisher exact 

test, OR > 1, P < 0.05; Figure 6). Association of these 

SMGs with high-risk subtype remained significant after 

including age, gender, stage and smoking status (OR > 

1, P < 0.01; Supplementary Figure 9). Higher mutation 

frequency of TP53 in high-risk subtype was observed in 

3 validation cohorts that had TP53 mutation data (OR > 

1, P < 0.01; Supplementary Figure 10). Mutation data of 

NAV3, COL11A1, KEAP1 and SMARCA4 of the 

aforementioned 3 validation cohorts was unavailable. In 

addition, we found that patients in high-risk subtype 

were more likely to be male, current smoker, and at 

advanced clinical stage (chi-square test, P < 0.001; 

Supplementary Table 3). 

 

 
 

Figure 4. Distribution of PD-L1 expression and tumor mutation burden and their associations with the high-/low-risk 
subtypes of LUAD. (A, B) Difference in the PD-L1 expression in TCGA and validation cohorts stratified by high-/low-risk subtypes of LUAD. 
(C–E) Distribution and association of mutation burden in the high-risk group versus low-risk group. 
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DISCUSSION 
 

We uncovered 2 prognostic subtypes of LUAD by 

analyzing 2,300 LUAD samples from TCGA LUAD 

cohort and 9 independent validation cohorts. The high-

risk subtype has significantly lower TIDE score, higher 

PD-L1 expression and higher TMB. Pathway analysis 

suggested that high-risk group was featured by activated 

cell cycle signaling. TP53 mutation was more 

frequently mutated in the high-risk subtype.  

 

We observed that TIDE score was significantly lower in 

high-risk subtype than low-risk subtype via univariate 

regression analysis in TCGA LUAD cohort and 9 

validation cohorts. The difference remained statistically 

significant in multivariate analysis among these cohorts 

except GSE30219, this is probably due to smaller 

sample size of GSE30219 cohort (n = 85) as compared 

with the other LUAD cohorts. These findings suggested 

that patients of high-risk subtype may be more sensitive 

to ICB treatment  

 

Based on the KEYNOTE-001 clinical trial, PD-L1 high 

expression was an essential condition for the use of 

pembrolizumab in NSCLC [8, 25]. Several studies have 

reported that PD-L1 high expression was correlated to 

elevated response rate and survival benefit in ICB 

therapy of NSCLC, chronic lymphocytic leukemia and 

urothelial cancer [26–28]. However, in the clinical trial 

CHECKMATE-032 that enrolled patients with 

urothelial cancer, no significant difference was 

observed in response rate between PD-L1 positive and 

negative subgroups [29]. This suggests that our 

understanding of association between PD-L1 and ICB

 

 
 

Figure 5. Functional annotation in high-/low-risk subtypes of LUAD. (A) Dysregulation of signaling pathways stratified by identified 
LUAD subtypes. (B) Expression profiles of cell cycle checkpoint markers in the high-risk group versus low-risk group. 
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response is far from complete and that new markers 

associated with ICB response are needed. A possible 

explanation for this inconsistency is attributed to 

different criterion used for evaluating high and low PD-

L1 expression [30]. TMB is emerging as a potential 

biomarker for predicting response of ICB therapy. 

Three clinical trials including KEYNOTE-001, 

CHECKMATE-026 and CHECKMATE-227 showed 

that patients had high TMB could benefit more from 

ICB therapy in NSCLC [31–33]. In our study, the high-

risk subtype had significantly higher PD-L1 expression 

and TMB, suggesting a greater potential of ICB therapy 

response. 

 

Consistent with our findings, Seo et al. identified the 

immune-defective and immune-competent subtypes in 

LUAD, and the immune-competent subtype was 

characterized by activated microenvironment and 

elevated expression of immune checkpoint genes [34]. 

In our study, we observed a significant prognostic 

difference between the high-risk and low-risk subtypes. 

However, a survival difference was not observed for the 

2 subtypes proposed by Seo et al. A recent study from 

Song et al. also reported identification of the high-risk 

and low-risk subtypes of LUAD [35]. The high-risk 

subtype in this study exhibited worse survival outcome 

and a higher tumor mutation load, which supports our 

result that the high-risk subtype may be more 

responsive to immune checkpoint therapy because of 

the higher tumor mutation load. The prognostic 

significance of high-risk and low-risk subtypes from our 

study was validated in GSE31210, a validation dataset 

used in Song et al. research, whereas subtypes proposed 

by Song et al. was not significant. Taken together, the 

gene panels used in our study for molecular subtyping 

are more generalizable and robust given that we 

included more validation sets (n=9) as compared with 4 

validation cohorts used by Song et al. 
 

Cell cycle relevant pathways and checkpoint markers 

contributed mostly to the worse prognosis of high-risk 

subtype were significantly upregulated. These 

observations suggested the high-risk patients may be 

suitable to receive cell cycle inhibitors. Previous studies 

 

 
 

Figure 6. Mutational landscape of SMGs in TCGA LUAD cohort stratified by high-/low-risk subtypes. SMGs with significantly 
different mutation rate were highlighted in bold. 
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showed that CDK4 and CDK6 inhibitors enhanced the 

response of ICB in mouse models due to their ability to 

elevate expression of endogenous retroviruses [36] that 

was associated with T cell activity [23] and ICB 

response [37]. Another study reported that the T cell 

exclusion signature was predictive of poor ICB 

response, however, CDK4 and CDK6 inhibitors could 

reverse this signature to get a better response in in vitro 

experiments in melanoma [24]. The combination 

therapy of cell cycle inhibitors and ICB agents may be 

more effective for the high-risk patients. 

 

TP53 was frequently mutated in the high-risk subtype 

and its mutation was reported to be associated with 

poorer prognosis [38, 39]. Patients harbored mutations 

of TP53 had a higher TMB owing to loss of DNA repair 

function (Figure 4D). Recent study reported that TP53 
mutations significantly induced the expression of 

immune checkpoints and activated T-effector and 

interferon-γ signature in LUAD, suggesting TP53 

mutation patients would be more responsive to 

checkpoint blockade [40]. Patients of high-risk subtype 

were more likely to be current smokers. Higher 

response rate of ICB treatment was observed in smokers 

of NSCLC [41], typically due to high mutation burden 

generated by the mutagenic effects of cigarette smoke 

[42]. These 2 factors may underlie the response to ICB 

therapy for patients of high-risk group. 

 

There are several limitations in this study. Firstly, gene 

expression data used in our study was from different 

platforms, this difference may introduce bias in the 

analysis procedure. Secondly, results derived from 

TCGA LUAD mutational landscape were not validated 

in independent datasets due to the unavailability of 

mutation data in validation sets. Thirdly, we lacked an 

in-house validation set. 

 

In summary, we identified 2 prognostically and 

clinically relevant subtypes of LUAD. Molecular 

markers suggest that patients from the high-risk subtype 

may be more responsive to ICB therapy, which needs to 

be tested in future clinical trials. 

 

MATERIALS AND METHODS 
 

Collection of genomic data 
 

We collected gene expression profiles of 502 LUAD 

samples from TCGA-LUAD cohort (https://gdc.cancer. 

gov) and 1,798 samples from 9 cohorts in Gene 

Expression Omnibus (GEO) repository (https://www. 

ncbi.nlm.nih.gov/geo/) (Supplementary Table 4). In 

total, we obtained 2,300 LUAD samples from 10 

independent cohorts (Supplementary Table 5). We also 

collected clinical data for each cohort. All gene 

expression data were uniformly normalized. For genes 

with multiple probes, their expression levels were 

calculated as the mean expression level of these probes. 

Only TCGA cohort contained genomic mutation data 

used in our study. A flow chart to depict the study 

design was shown in Supplementary Figure 11. 

 

Identification of immune-related genes associated 

with prognosis  

 

We obtained 2,995 immune-related genes from 160 

immune signatures curated in the TCGA pan-cancer 

immune landscape project [43], which was based on 11 

immune relevant studies [44–54] (Supplementary 

Materials and Methods). We used univariate Cox 

proportional hazards model to examine the associations 

between gene expression and overall survival. Genes 

with false discovery rate (FDR) less than 0.05 were 

considered to be statistically significant and included in 

consensus clustering analysis. Further feature selection 

was conducted by using recursive feature elimination 

(RFE) with random forest as classifier and 10-fold 

cross-validation method in R package caret (version 

6.0-82). 

 

Consensus molecular subtyping with NMF 
 

We used nonnegative matrix factorization (NMF) to 

perform molecular subtyping [55, 56]. Specifically, 

NMF was applied to gene expression matrix A that 

contained prognostically significant immune-related 

genes aforementioned. Matrix A was factorized into 2 

nonnegative matrices W and H (i.e., A≈WH). Repeated 

factorization of matrix A was performed and its outputs 

were aggregated to obtain consensus clustering of 

LUAD samples. The optimal number of subtypes was 

selected according to cophenetic, dispersion, and 

silhouette coefficients [57]. The consensus clustering 

was conducted with R package NMF (version 0.21.0) 

[58]. The NMF method was also used to extract 

mutational signatures based on the framework proposed 

by a previously study [59]. The R code was available in 

Supplementary Materials and Methods. 

 

Prediction of ICB therapy response 
 

Potential ICB response was predicted with TIDE 

algorithm [15].  

 

Gene set enrichment analysis 
 

The R package limma (version 3.38.3) [60] and DESeq2 

(version 1.22.2) [61] were used to calculate the 

differential expressed t statistics for microarray and 

RNA sequencing data. We used t statistic as input to R 

function fgsea that implemented in fgsea package 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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(version 1.6.0) to perform gene set enrichment analysis 

(GSEA). Signaling pathways in Molecular Signatures 

Database (MSigDB) were used in GSEA [62]. 

 

Identification of significantly mutated genes 

 

Significantly mutated genes (SMGs) were identified 

using MutSigCV algorithm [63]. The significant 

enrichment of non-silent somatic mutations of a gene 

was measured by MutSigCV through addressing 

mutational context specific background mutation rates. 

A gene was considered an SMG if it meets these 

criteria: statistically significant (q < 0.1), expressed in 

TCGA LUAD data [64] and encyclopedia of cell lines 

[65], and mutation rate greater than 3%. 

 

Statistical analyses 
 

R software 3.5.1 was applied in this study for the 

statistical analyses. Univariate and multivariate Cox 

proportional hazards model were used to analyze the 

association between subtypes and prognosis with R 

survival package. Survival curve was drawn with 

Kaplan-Meier method and Log-rank test was used to 

evaluate difference between survival curves. 

Association between mutation rate of SMGs and 2 

subtypes was evaluated by Fisher’s exact test. 

Multivariate logistic regression was performed to test 

the association between SMGs and identified LUAD 

subtypes by taking into account confounding factors. 

The continuous and categorical variables between 2 

subtypes were compared using two-sided Wilcoxon 

rank-sum test and chi-square test, respectively. 

Benjamini-Hochberg method was used to adjust for 

multiple hypothesis testing [61].  
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SUPPLEMENTARY MATERIALS 
 

 

2995 immune-related genes 

 

We obtained these 2995 immune-related genes from 

160 immune signatures curated in a previous study 

[1], which was based on 11 immune relevant studies. 

Eighty-three of these 160 immune signatures were 

cancer immune response-related signatures, whereas 

the remaining 77 signatures are of general validity for 

immunity. These 83 signatures consisted of 68 gene 

sets from a earlier study [2], 9 signatures derived from 

TCGA gene expression data (immune metagene 

attractors) [3, 4], 3 signatures representing immune 

contexture function [5–7], and 3 signatures from a 

recent study [8]. The remaining 77 signatures 

comprised of 45 immune-cell specific signatures from 

2 sources [9, 10], and 32 signatures from the 

ImmuneSigDB [11, 12]. 

 

Main R codes used in this study 

 
# Nonnegative matrix factorization (NMF) 

 library(NMF) 

 estim.r <- nmf(gene_expression_matrix, 2:6, 

nrun = 200, method = 'brunet') 

 plot(estim.r) 

 consensusmap(estim.r) 

 fit <- nmf(gene_expression_matrix, 2, nrun = 

200, method = "brunet") 

 subtype.result <- predict(fit) 

# Gene set enrichment analysis (GSEA) 

 library(fgsea) 

library(ggplot2) 

 fgsea.result <- fgsea(pathways = 

annotation_pathways, 

                    stats = genes_rank_list,  

                    minSize = 15, 

                    maxSize = 500, 

                    nperm = 1000000) 

 plotEnrichment(path[["pathway_name"]], 

genes_rank_list) 

# Waterfall plot 

 library(GenVisR) 

waterfall(mutation_data, plotGenes = genes_to_plot, 

mainDropMut = TRUE, coverageSpace = 

30000000, clinDat = clinical_data) 

# Multivariate regression model 

 library(forestmodel) 

library(survival) 

forest_model(coxph(Surv(survival_time, survival_end) 

~ variables, related_data), factor_separate_line = T) 

forest_model(glm(categorical variable ~ variables, 

binomial(), related_data), factor_separate_line = T)) 
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Supplementary Figures 
 

 
 

Supplementary Figure 1. Heatmap representation of NMF clustering. 
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Supplementary Figure 2. Prognostic significance of high-risk versus low-risk subtypes using multivariate Cox model in 9 validation cohorts 
of (A) GSE72094, (B) GSE68465, (C) GSE50081, (D) GSE42127, (E) GSE41271, (F) GSE31210, (G) GSE30219, (H) GSE13213, and (I) GSE11969. 
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Supplementary Figure 3. (A) Kaplan-Meier plot of identified 2 subtypes in GSE81089 dataset. (B) Kaplan-Meier plot of identified TCGA 
LUSC subtypes. 
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Supplementary Figure 4. (A) Relation between classification accuracy and selected genes via recursive feature elimination algorithm.  
(B–K) Keplan-Meier plot of identified subtypes using 126 genes in TCGA and 9 validation cohorts. 



www.aging-us.com 3332 AGING 

 
 

Supplementary Figure 5. Association of identified LUAD subtypes with TIDE socre using multivariate logistic analysis in 9 validation cohorts 
of (A) GSE72094, (B) GSE68465, (C) GSE50081, (D) GSE42127, (E) GSE41271, (F) GSE31210, (G) GSE30219, (H) GSE13213, and (I) GSE11969. 
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Supplementary Figure 6. (A) Mutational signatures extracted from TCGA LUAD cohort and (B) their cosine similarity with COSMIC 
mutational signatures. 
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Supplementary Figure 7. Kaplan-Meier plots with respect to TIDE score, PD-L1 expression, and TMB in TCGA and 9 validation 
cohorts. 
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Supplementary Figure 8. Mutational landscape of SMGs in TCGA LUAD cohort. 
 

 
 

Supplementary Figure 9. Associations between mutations in TP53, NAV3, CLO11A1, KEAP1 and SMARCA4 and identified 2 
LUAD subtypes using multivariate logistic analysis. 



www.aging-us.com 3336 AGING 

 
 

Supplementary Figure 10. Associations of TP53 mutation with high-risk subtype in (A) GSE72094, (B) GSE13213 and (C) GSE11969. 
 

 
 

Supplementary Figure 11. Flow chart of our study. TCGA and 9 public LUAD cohorts containing 2300 samples were included to 
peroform relevant analyses. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1 
 

Supplementary Table 1. 433 genes with FDR less than 0.05 in univariate survival analysis. 

 

Supplementary Table 2. 126 genes were obtained through RFE features selection. 

Gene Entrezid Gene Entrezid Gene Entrezid Gene Entrezid 

TSPAN32 10077 NCR3 259197 MCM10 55388 CCNB1 891 

RASGRP2 10235 ASPM 259266 DEPDC1 55635 SELENBP1 8991 

CDKN3 1033 STAP1 26228 PBK 55872 PRC1 9055 

NDC80 10403 AMPD1 270 KIF15 56992 CD1B 910 

CENPA 1058 HPGDS 27306 PTGDS 5730 CD1C 911 

CENPE 1062 GNG7 2788 SPC25 57405 CD1D 912 

RAD51AP1 10635 LINC00926 283663 DNASE2B 58511 CD1E 913 

PLK4 10733 C11orf21 29125 RGS13 6003 CCNB2 9133 

KIF2C 11004 RACGAP1 29127 RRM2 6241 EXO1 9156 

UBE2C 11065 HLA-DOB 3112 BLK 640 CD5 921 

CHEK1 1111 BIRC3 330 NCAPG 64151 AURKB 9212 

ZWINT 11130 BIRC5 332 SFTPB 6439 CACNA2D2 9254 

OIP5 11339 IL16 3603 SLAMF1 6504 CD19 930 

FCRL1 115350 KLRB1 3820 SLC18A2 6571 MS4A1 931 

CCR6 1235 KIF11 3832 SPIB 6689 SIGLEC6 946 

ADH1A 124 LY9 4063 AURKA 6790 KIF23 9493 

ADH1B 125 MAD2L1 4085 BUB1B 701 CD40LG 959 

COL4A3 1285 MAL 4118 TK1 7083 ESPL1 9700 

CR2 1380 MKI67 4288 CLEC3B 7123 CD79A 973 

CTSG 1511 MYBL2 4605 TOP2A 7153 CD79B 974 

DNASE1L3 1776 NEK2 4751 TTK 7272 ACAP1 9744 

FAM129C 199786 PAX5 5079 CCR2 729230 DLGAP5 9787 

SKA1 220134 NUSAP1 51203 VIPR1 7433 CDK1 983 

MS4A2 2206 GTSE1 51512 DSCC1 79075 MELK 9833 

FCER2 2208 PLK1 5347 ANKRD55 79722 CDC6 990 

TMEM130 222865 POLE2 5427 CXorf21 80231 CDC20 991 

TPX2 22974 ERCC6L 54821 TRAF3IP3 80342 KIF14 9928 

FOXM1 2305 PARPBP 55010 TLR10 81793 CD302 9936 

NCAPH 23397 CEP55 55165 CDC45 8318 CDC25C 995 

TNFRSF13B 23495 FANCI 55215 ATP13A4 84239 HS3ST2 9956 

LILRA4 23547 NEIL3 55247 FCRLA 84824 
  

KIF4A 24137 HJURP 55355 CCNA2 890 
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Supplementary Table 3. Distinct clinical characteristics between 2 LUAD subtypes. 

Characteristics Low risk (n=210) High risk (n=256) P 

Age (years ) 66.6±9.1 64.2±10.6 0.125 

Gender 
   

  Female 137 (65.2) 120 (46.9) 

  Male 73 (34.8) 136 (53.1) 

Stage 
   

  I 139 (66.2) 115 (44.9) 

  II 38 (18.1) 74 (28.9) 

  III 25 (11.9) 50 (19.5) 

  IV 8 (3.8) 17 (6.6) 

Smoking status 
   

  Never smoker 39 (18.6) 31 (12.1) 

  Non-smoker>15 years 69 (32.9) 52 (20.3) 

  Non-smoker≤15 years 67 (31.9) 95 (37.1) 

  Current smoker 35 (16.7) 78 (30.5) 

 

Supplementary Table 4. Summary of TCGA and 9 validation datasets included in this study. 

Datasets Platforms Sample size 

TCGA Illumina RNAseq HTSeq 502 

GSE72094 Rosetta/Merck Human RSTA Custom Affymetrix 2.0 microarray  398 

GSE68465 Affymetrix Human Genome U133A Array 442 

GSE50081 Affymetrix Human Genome U133 Plus 2.0 Array 127 

GSE42127 Illumina HumanWG-6 v3.0 expression beadchip 132 

GSE41271 Illumina HumanWG-6 v3.0 expression beadchip 181 

GSE31210 Affymetrix Human Genome U133 Plus 2.0 Array 226 

GSE30219 Affymetrix Human Genome U133 Plus 2.0 Array 85 

GSE13213 Agilent-014850 Whole Human Genome Microarray 4x44K G4112F  117 

GSE11969 Agilent Homo sapiens 21.6K custom array 90 

Total  2300 
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Supplementary Table 5. Descriptions of clinical characteristics for LUAD patients in TCGA and 9 validation datasets. 

Characteristics TCGA GSE72094 GSE68465 GSE50081 GSE42127 GSE41271 GSE31210 GSE30219 GSE13213 GSE11969 

Number of 

patients 

502 398 422 127 132 181 226 85 117 90 

Age (years) 65.3 ± 9.9 69.4 ± 9.5 64.5 ± 10.1 68.7 ± 9.7 65.8 ± 10.3 64.6 ± 10.4 59.6 ± 7.4 61.5 ± 9.3 60.7 ± 10.2 61.1 ± 9.8 

Gender           

Male 209 174 219 65 67 91 105 66 60 47 

Female 257 219 214 62 65 90 121 19 56 43 

Stage 

I 
254 254  92 89 95 168  78 52 

II 112 67 - 35 22 27 58 - 13 13 

III 75 57 - 0 20 43 0 - 25 25 

IV 25 15 - 0 1 16 0 - - - 

Grade           

G1   60       25 

G2 - - 208 - - - - - - 31 

G3 - - 165 - - - - - - 34 

Smoking status 

Never smoker 
70 298 15 23  25 111  55 45 

Ever smoker - 30 94 56 - 156 115 - 61 45 

Current smoker 113 - 16 36 - - - - - - 

Non-smoker>15 

years 

121 - - - - - - - - - 

Non-smoker≤ 15 

years 
162 - - - - - - - - - 

NA - 65 90 12 - - - - - - 

 


